]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "proxmark3.h" | |
40 | #include "apps.h" | |
41 | #include "util.h" | |
42 | #include "string.h" | |
43 | #include "common.h" | |
44 | // Needed for CRC in emulation mode; | |
45 | // same construction as in ISO 14443; | |
46 | // different initial value (CRC_ICLASS) | |
47 | #include "iso14443crc.h" | |
48 | ||
49 | static int timeout = 4096; | |
50 | ||
51 | // CARD TO READER | |
52 | // Sequence D: 11110000 modulation with subcarrier during first half | |
53 | // Sequence E: 00001111 modulation with subcarrier during second half | |
54 | // Sequence F: 00000000 no modulation with subcarrier | |
55 | // READER TO CARD | |
56 | // Sequence X: 00001100 drop after half a period | |
57 | // Sequence Y: 00000000 no drop | |
58 | // Sequence Z: 11000000 drop at start | |
59 | #define SEC_X 0x0c | |
60 | #define SEC_Y 0x00 | |
61 | #define SEC_Z 0xc0 | |
62 | ||
63 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); | |
64 | ||
65 | //----------------------------------------------------------------------------- | |
66 | // The software UART that receives commands from the reader, and its state | |
67 | // variables. | |
68 | //----------------------------------------------------------------------------- | |
69 | static struct { | |
70 | enum { | |
71 | STATE_UNSYNCD, | |
72 | STATE_START_OF_COMMUNICATION, | |
73 | STATE_RECEIVING | |
74 | } state; | |
75 | uint16_t shiftReg; | |
76 | int bitCnt; | |
77 | int byteCnt; | |
78 | int byteCntMax; | |
79 | int posCnt; | |
80 | int nOutOfCnt; | |
81 | int OutOfCnt; | |
82 | int syncBit; | |
83 | int parityBits; | |
84 | int samples; | |
85 | int highCnt; | |
86 | int swapper; | |
87 | int counter; | |
88 | int bitBuffer; | |
89 | int dropPosition; | |
90 | uint8_t *output; | |
91 | } Uart; | |
92 | ||
93 | static RAMFUNC int OutOfNDecoding(int bit) | |
94 | { | |
95 | //int error = 0; | |
96 | int bitright; | |
97 | ||
98 | if(!Uart.bitBuffer) { | |
99 | Uart.bitBuffer = bit ^ 0xFF0; | |
100 | return FALSE; | |
101 | } | |
102 | else { | |
103 | Uart.bitBuffer <<= 4; | |
104 | Uart.bitBuffer ^= bit; | |
105 | } | |
106 | ||
107 | /*if(Uart.swapper) { | |
108 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
109 | Uart.byteCnt++; | |
110 | Uart.swapper = 0; | |
111 | if(Uart.byteCnt > 15) { return TRUE; } | |
112 | } | |
113 | else { | |
114 | Uart.swapper = 1; | |
115 | }*/ | |
116 | ||
117 | if(Uart.state != STATE_UNSYNCD) { | |
118 | Uart.posCnt++; | |
119 | ||
120 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
121 | bit = 0x00; | |
122 | } | |
123 | else { | |
124 | bit = 0x01; | |
125 | } | |
126 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
127 | bitright = 0x00; | |
128 | } | |
129 | else { | |
130 | bitright = 0x01; | |
131 | } | |
132 | if(bit != bitright) { bit = bitright; } | |
133 | ||
134 | ||
135 | // So, now we only have to deal with *bit*, lets see... | |
136 | if(Uart.posCnt == 1) { | |
137 | // measurement first half bitperiod | |
138 | if(!bit) { | |
139 | // Drop in first half means that we are either seeing | |
140 | // an SOF or an EOF. | |
141 | ||
142 | if(Uart.nOutOfCnt == 1) { | |
143 | // End of Communication | |
144 | Uart.state = STATE_UNSYNCD; | |
145 | Uart.highCnt = 0; | |
146 | if(Uart.byteCnt == 0) { | |
147 | // Its not straightforward to show single EOFs | |
148 | // So just leave it and do not return TRUE | |
149 | Uart.output[Uart.byteCnt] = 0xf0; | |
150 | Uart.byteCnt++; | |
151 | ||
152 | // Calculate the parity bit for the client... | |
153 | Uart.parityBits = 1; | |
154 | } | |
155 | else { | |
156 | return TRUE; | |
157 | } | |
158 | } | |
159 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { | |
160 | // When not part of SOF or EOF, it is an error | |
161 | Uart.state = STATE_UNSYNCD; | |
162 | Uart.highCnt = 0; | |
163 | //error = 4; | |
164 | } | |
165 | } | |
166 | } | |
167 | else { | |
168 | // measurement second half bitperiod | |
169 | // Count the bitslot we are in... (ISO 15693) | |
170 | Uart.nOutOfCnt++; | |
171 | ||
172 | if(!bit) { | |
173 | if(Uart.dropPosition) { | |
174 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
175 | //error = 1; | |
176 | } | |
177 | else { | |
178 | //error = 7; | |
179 | } | |
180 | // It is an error if we already have seen a drop in current frame | |
181 | Uart.state = STATE_UNSYNCD; | |
182 | Uart.highCnt = 0; | |
183 | } | |
184 | else { | |
185 | Uart.dropPosition = Uart.nOutOfCnt; | |
186 | } | |
187 | } | |
188 | ||
189 | Uart.posCnt = 0; | |
190 | ||
191 | ||
192 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
193 | Uart.nOutOfCnt = 0; | |
194 | ||
195 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
196 | if(Uart.dropPosition == 4) { | |
197 | Uart.state = STATE_RECEIVING; | |
198 | Uart.OutOfCnt = 256; | |
199 | } | |
200 | else if(Uart.dropPosition == 3) { | |
201 | Uart.state = STATE_RECEIVING; | |
202 | Uart.OutOfCnt = 4; | |
203 | //Uart.output[Uart.byteCnt] = 0xdd; | |
204 | //Uart.byteCnt++; | |
205 | } | |
206 | else { | |
207 | Uart.state = STATE_UNSYNCD; | |
208 | Uart.highCnt = 0; | |
209 | } | |
210 | Uart.dropPosition = 0; | |
211 | } | |
212 | else { | |
213 | // RECEIVING DATA | |
214 | // 1 out of 4 | |
215 | if(!Uart.dropPosition) { | |
216 | Uart.state = STATE_UNSYNCD; | |
217 | Uart.highCnt = 0; | |
218 | //error = 9; | |
219 | } | |
220 | else { | |
221 | Uart.shiftReg >>= 2; | |
222 | ||
223 | // Swap bit order | |
224 | Uart.dropPosition--; | |
225 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
226 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
227 | ||
228 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
229 | Uart.bitCnt += 2; | |
230 | Uart.dropPosition = 0; | |
231 | ||
232 | if(Uart.bitCnt == 8) { | |
233 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
234 | Uart.byteCnt++; | |
235 | ||
236 | // Calculate the parity bit for the client... | |
237 | Uart.parityBits <<= 1; | |
238 | Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; | |
239 | ||
240 | Uart.bitCnt = 0; | |
241 | Uart.shiftReg = 0; | |
242 | } | |
243 | } | |
244 | } | |
245 | } | |
246 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { | |
247 | // RECEIVING DATA | |
248 | // 1 out of 256 | |
249 | if(!Uart.dropPosition) { | |
250 | Uart.state = STATE_UNSYNCD; | |
251 | Uart.highCnt = 0; | |
252 | //error = 3; | |
253 | } | |
254 | else { | |
255 | Uart.dropPosition--; | |
256 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
257 | Uart.byteCnt++; | |
258 | ||
259 | // Calculate the parity bit for the client... | |
260 | Uart.parityBits <<= 1; | |
261 | Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; | |
262 | ||
263 | Uart.bitCnt = 0; | |
264 | Uart.shiftReg = 0; | |
265 | Uart.nOutOfCnt = 0; | |
266 | Uart.dropPosition = 0; | |
267 | } | |
268 | } | |
269 | ||
270 | /*if(error) { | |
271 | Uart.output[Uart.byteCnt] = 0xAA; | |
272 | Uart.byteCnt++; | |
273 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
274 | Uart.byteCnt++; | |
275 | Uart.output[Uart.byteCnt] = 0xAA; | |
276 | Uart.byteCnt++; | |
277 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
278 | Uart.byteCnt++; | |
279 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
280 | Uart.byteCnt++; | |
281 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
282 | Uart.byteCnt++; | |
283 | Uart.output[Uart.byteCnt] = 0xAA; | |
284 | Uart.byteCnt++; | |
285 | return TRUE; | |
286 | }*/ | |
287 | } | |
288 | ||
289 | } | |
290 | else { | |
291 | bit = Uart.bitBuffer & 0xf0; | |
292 | bit >>= 4; | |
293 | bit ^= 0x0F; // drops become 1s ;-) | |
294 | if(bit) { | |
295 | // should have been high or at least (4 * 128) / fc | |
296 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
297 | if(Uart.highCnt == 8) { | |
298 | // we went low, so this could be start of communication | |
299 | // it turns out to be safer to choose a less significant | |
300 | // syncbit... so we check whether the neighbour also represents the drop | |
301 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
302 | Uart.syncBit = bit & 8; | |
303 | Uart.samples = 3; | |
304 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
305 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
306 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
307 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
308 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
309 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
310 | Uart.syncBit = 8; | |
311 | ||
312 | // the first half bit period is expected in next sample | |
313 | Uart.posCnt = 0; | |
314 | Uart.samples = 3; | |
315 | } | |
316 | } | |
317 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
318 | ||
319 | Uart.syncBit <<= 4; | |
320 | Uart.state = STATE_START_OF_COMMUNICATION; | |
321 | Uart.bitCnt = 0; | |
322 | Uart.byteCnt = 0; | |
323 | Uart.parityBits = 0; | |
324 | Uart.nOutOfCnt = 0; | |
325 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
326 | Uart.dropPosition = 0; | |
327 | Uart.shiftReg = 0; | |
328 | //error = 0; | |
329 | } | |
330 | else { | |
331 | Uart.highCnt = 0; | |
332 | } | |
333 | } | |
334 | else { | |
335 | if(Uart.highCnt < 8) { | |
336 | Uart.highCnt++; | |
337 | } | |
338 | } | |
339 | } | |
340 | ||
341 | return FALSE; | |
342 | } | |
343 | ||
344 | //============================================================================= | |
345 | // Manchester | |
346 | //============================================================================= | |
347 | ||
348 | static struct { | |
349 | enum { | |
350 | DEMOD_UNSYNCD, | |
351 | DEMOD_START_OF_COMMUNICATION, | |
352 | DEMOD_START_OF_COMMUNICATION2, | |
353 | DEMOD_START_OF_COMMUNICATION3, | |
354 | DEMOD_SOF_COMPLETE, | |
355 | DEMOD_MANCHESTER_D, | |
356 | DEMOD_MANCHESTER_E, | |
357 | DEMOD_END_OF_COMMUNICATION, | |
358 | DEMOD_END_OF_COMMUNICATION2, | |
359 | DEMOD_MANCHESTER_F, | |
360 | DEMOD_ERROR_WAIT | |
361 | } state; | |
362 | int bitCount; | |
363 | int posCount; | |
364 | int syncBit; | |
365 | int parityBits; | |
366 | uint16_t shiftReg; | |
367 | int buffer; | |
368 | int buffer2; | |
369 | int buffer3; | |
370 | int buff; | |
371 | int samples; | |
372 | int len; | |
373 | enum { | |
374 | SUB_NONE, | |
375 | SUB_FIRST_HALF, | |
376 | SUB_SECOND_HALF, | |
377 | SUB_BOTH | |
378 | } sub; | |
379 | uint8_t *output; | |
380 | } Demod; | |
381 | ||
382 | static RAMFUNC int ManchesterDecoding(int v) | |
383 | { | |
384 | int bit; | |
385 | int modulation; | |
386 | int error = 0; | |
387 | ||
388 | bit = Demod.buffer; | |
389 | Demod.buffer = Demod.buffer2; | |
390 | Demod.buffer2 = Demod.buffer3; | |
391 | Demod.buffer3 = v; | |
392 | ||
393 | if(Demod.buff < 3) { | |
394 | Demod.buff++; | |
395 | return FALSE; | |
396 | } | |
397 | ||
398 | if(Demod.state==DEMOD_UNSYNCD) { | |
399 | Demod.output[Demod.len] = 0xfa; | |
400 | Demod.syncBit = 0; | |
401 | //Demod.samples = 0; | |
402 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
403 | ||
404 | if(bit & 0x08) { | |
405 | Demod.syncBit = 0x08; | |
406 | } | |
407 | ||
408 | if(bit & 0x04) { | |
409 | if(Demod.syncBit) { | |
410 | bit <<= 4; | |
411 | } | |
412 | Demod.syncBit = 0x04; | |
413 | } | |
414 | ||
415 | if(bit & 0x02) { | |
416 | if(Demod.syncBit) { | |
417 | bit <<= 2; | |
418 | } | |
419 | Demod.syncBit = 0x02; | |
420 | } | |
421 | ||
422 | if(bit & 0x01 && Demod.syncBit) { | |
423 | Demod.syncBit = 0x01; | |
424 | } | |
425 | ||
426 | if(Demod.syncBit) { | |
427 | Demod.len = 0; | |
428 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
429 | Demod.sub = SUB_FIRST_HALF; | |
430 | Demod.bitCount = 0; | |
431 | Demod.shiftReg = 0; | |
432 | Demod.parityBits = 0; | |
433 | Demod.samples = 0; | |
434 | if(Demod.posCount) { | |
435 | //if(trigger) LED_A_OFF(); // Not useful in this case... | |
436 | switch(Demod.syncBit) { | |
437 | case 0x08: Demod.samples = 3; break; | |
438 | case 0x04: Demod.samples = 2; break; | |
439 | case 0x02: Demod.samples = 1; break; | |
440 | case 0x01: Demod.samples = 0; break; | |
441 | } | |
442 | // SOF must be long burst... otherwise stay unsynced!!! | |
443 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
444 | Demod.state = DEMOD_UNSYNCD; | |
445 | } | |
446 | } | |
447 | else { | |
448 | // SOF must be long burst... otherwise stay unsynced!!! | |
449 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
450 | Demod.state = DEMOD_UNSYNCD; | |
451 | error = 0x88; | |
452 | } | |
453 | ||
454 | } | |
455 | error = 0; | |
456 | ||
457 | } | |
458 | } | |
459 | else { | |
460 | modulation = bit & Demod.syncBit; | |
461 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
462 | //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
463 | ||
464 | Demod.samples += 4; | |
465 | ||
466 | if(Demod.posCount==0) { | |
467 | Demod.posCount = 1; | |
468 | if(modulation) { | |
469 | Demod.sub = SUB_FIRST_HALF; | |
470 | } | |
471 | else { | |
472 | Demod.sub = SUB_NONE; | |
473 | } | |
474 | } | |
475 | else { | |
476 | Demod.posCount = 0; | |
477 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
478 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
479 | Demod.state = DEMOD_ERROR_WAIT; | |
480 | Demod.output[Demod.len] = 0xaa; | |
481 | error = 0x01; | |
482 | } | |
483 | }*/ | |
484 | //else if(modulation) { | |
485 | if(modulation) { | |
486 | if(Demod.sub == SUB_FIRST_HALF) { | |
487 | Demod.sub = SUB_BOTH; | |
488 | } | |
489 | else { | |
490 | Demod.sub = SUB_SECOND_HALF; | |
491 | } | |
492 | } | |
493 | else if(Demod.sub == SUB_NONE) { | |
494 | if(Demod.state == DEMOD_SOF_COMPLETE) { | |
495 | Demod.output[Demod.len] = 0x0f; | |
496 | Demod.len++; | |
497 | Demod.parityBits <<= 1; | |
498 | Demod.parityBits ^= OddByteParity[0x0f]; | |
499 | Demod.state = DEMOD_UNSYNCD; | |
500 | // error = 0x0f; | |
501 | return TRUE; | |
502 | } | |
503 | else { | |
504 | Demod.state = DEMOD_ERROR_WAIT; | |
505 | error = 0x33; | |
506 | } | |
507 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { | |
508 | Demod.state = DEMOD_ERROR_WAIT; | |
509 | Demod.output[Demod.len] = 0xaa; | |
510 | error = 0x01; | |
511 | }*/ | |
512 | } | |
513 | ||
514 | switch(Demod.state) { | |
515 | case DEMOD_START_OF_COMMUNICATION: | |
516 | if(Demod.sub == SUB_BOTH) { | |
517 | //Demod.state = DEMOD_MANCHESTER_D; | |
518 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
519 | Demod.posCount = 1; | |
520 | Demod.sub = SUB_NONE; | |
521 | } | |
522 | else { | |
523 | Demod.output[Demod.len] = 0xab; | |
524 | Demod.state = DEMOD_ERROR_WAIT; | |
525 | error = 0xd2; | |
526 | } | |
527 | break; | |
528 | case DEMOD_START_OF_COMMUNICATION2: | |
529 | if(Demod.sub == SUB_SECOND_HALF) { | |
530 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
531 | } | |
532 | else { | |
533 | Demod.output[Demod.len] = 0xab; | |
534 | Demod.state = DEMOD_ERROR_WAIT; | |
535 | error = 0xd3; | |
536 | } | |
537 | break; | |
538 | case DEMOD_START_OF_COMMUNICATION3: | |
539 | if(Demod.sub == SUB_SECOND_HALF) { | |
540 | // Demod.state = DEMOD_MANCHESTER_D; | |
541 | Demod.state = DEMOD_SOF_COMPLETE; | |
542 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
543 | //Demod.len++; | |
544 | } | |
545 | else { | |
546 | Demod.output[Demod.len] = 0xab; | |
547 | Demod.state = DEMOD_ERROR_WAIT; | |
548 | error = 0xd4; | |
549 | } | |
550 | break; | |
551 | case DEMOD_SOF_COMPLETE: | |
552 | case DEMOD_MANCHESTER_D: | |
553 | case DEMOD_MANCHESTER_E: | |
554 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
555 | // 00001111 = 1 (0 in 14443) | |
556 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
557 | Demod.bitCount++; | |
558 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
559 | Demod.state = DEMOD_MANCHESTER_D; | |
560 | } | |
561 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
562 | Demod.bitCount++; | |
563 | Demod.shiftReg >>= 1; | |
564 | Demod.state = DEMOD_MANCHESTER_E; | |
565 | } | |
566 | else if(Demod.sub == SUB_BOTH) { | |
567 | Demod.state = DEMOD_MANCHESTER_F; | |
568 | } | |
569 | else { | |
570 | Demod.state = DEMOD_ERROR_WAIT; | |
571 | error = 0x55; | |
572 | } | |
573 | break; | |
574 | ||
575 | case DEMOD_MANCHESTER_F: | |
576 | // Tag response does not need to be a complete byte! | |
577 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
578 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
579 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
580 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
581 | Demod.len++; | |
582 | // No parity bit, so just shift a 0 | |
583 | Demod.parityBits <<= 1; | |
584 | } | |
585 | ||
586 | Demod.state = DEMOD_UNSYNCD; | |
587 | return TRUE; | |
588 | } | |
589 | else { | |
590 | Demod.output[Demod.len] = 0xad; | |
591 | Demod.state = DEMOD_ERROR_WAIT; | |
592 | error = 0x03; | |
593 | } | |
594 | break; | |
595 | ||
596 | case DEMOD_ERROR_WAIT: | |
597 | Demod.state = DEMOD_UNSYNCD; | |
598 | break; | |
599 | ||
600 | default: | |
601 | Demod.output[Demod.len] = 0xdd; | |
602 | Demod.state = DEMOD_UNSYNCD; | |
603 | break; | |
604 | } | |
605 | ||
606 | /*if(Demod.bitCount>=9) { | |
607 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
608 | Demod.len++; | |
609 | ||
610 | Demod.parityBits <<= 1; | |
611 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
612 | ||
613 | Demod.bitCount = 0; | |
614 | Demod.shiftReg = 0; | |
615 | }*/ | |
616 | if(Demod.bitCount>=8) { | |
617 | Demod.shiftReg >>= 1; | |
618 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
619 | Demod.len++; | |
620 | ||
621 | // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT | |
622 | Demod.parityBits <<= 1; | |
623 | Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; | |
624 | ||
625 | Demod.bitCount = 0; | |
626 | Demod.shiftReg = 0; | |
627 | } | |
628 | ||
629 | if(error) { | |
630 | Demod.output[Demod.len] = 0xBB; | |
631 | Demod.len++; | |
632 | Demod.output[Demod.len] = error & 0xFF; | |
633 | Demod.len++; | |
634 | Demod.output[Demod.len] = 0xBB; | |
635 | Demod.len++; | |
636 | Demod.output[Demod.len] = bit & 0xFF; | |
637 | Demod.len++; | |
638 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
639 | Demod.len++; | |
640 | // Look harder ;-) | |
641 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
642 | Demod.len++; | |
643 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
644 | Demod.len++; | |
645 | Demod.output[Demod.len] = 0xBB; | |
646 | Demod.len++; | |
647 | return TRUE; | |
648 | } | |
649 | ||
650 | } | |
651 | ||
652 | } // end (state != UNSYNCED) | |
653 | ||
654 | return FALSE; | |
655 | } | |
656 | ||
657 | //============================================================================= | |
658 | // Finally, a `sniffer' for iClass communication | |
659 | // Both sides of communication! | |
660 | //============================================================================= | |
661 | ||
662 | //----------------------------------------------------------------------------- | |
663 | // Record the sequence of commands sent by the reader to the tag, with | |
664 | // triggering so that we start recording at the point that the tag is moved | |
665 | // near the reader. | |
666 | //----------------------------------------------------------------------------- | |
667 | void RAMFUNC SnoopIClass(void) | |
668 | { | |
669 | // DEFINED ABOVE | |
670 | // #define RECV_CMD_OFFSET 3032 | |
671 | // #define RECV_RES_OFFSET 3096 | |
672 | // #define DMA_BUFFER_OFFSET 3160 | |
673 | // #define DMA_BUFFER_SIZE 4096 | |
674 | // #define TRACE_SIZE 3000 | |
675 | ||
676 | // We won't start recording the frames that we acquire until we trigger; | |
677 | // a good trigger condition to get started is probably when we see a | |
678 | // response from the tag. | |
679 | //int triggered = FALSE; // FALSE to wait first for card | |
680 | ||
681 | // The command (reader -> tag) that we're receiving. | |
682 | // The length of a received command will in most cases be no more than 18 bytes. | |
683 | // So 32 should be enough! | |
684 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
685 | // The response (tag -> reader) that we're receiving. | |
686 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
687 | ||
688 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
689 | // into trace, along with its length and other annotations. | |
690 | //uint8_t *trace = (uint8_t *)BigBuf; | |
691 | ||
692 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
693 | ||
694 | // reset traceLen to 0 | |
695 | iso14a_set_tracing(TRUE); | |
696 | iso14a_clear_trace(); | |
697 | iso14a_set_trigger(FALSE); | |
698 | ||
699 | // The DMA buffer, used to stream samples from the FPGA | |
700 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
701 | int lastRxCounter; | |
702 | int8_t *upTo; | |
703 | int smpl; | |
704 | int maxBehindBy = 0; | |
705 | ||
706 | // Count of samples received so far, so that we can include timing | |
707 | // information in the trace buffer. | |
708 | int samples = 0; | |
709 | rsamples = 0; | |
710 | ||
711 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
712 | ||
713 | // Set up the demodulator for tag -> reader responses. | |
714 | Demod.output = receivedResponse; | |
715 | Demod.len = 0; | |
716 | Demod.state = DEMOD_UNSYNCD; | |
717 | ||
718 | // Setup for the DMA. | |
719 | FpgaSetupSsc(); | |
720 | upTo = dmaBuf; | |
721 | lastRxCounter = DMA_BUFFER_SIZE; | |
722 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
723 | ||
724 | // And the reader -> tag commands | |
725 | memset(&Uart, 0, sizeof(Uart)); | |
726 | Uart.output = receivedCmd; | |
727 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
728 | Uart.state = STATE_UNSYNCD; | |
729 | ||
730 | // And put the FPGA in the appropriate mode | |
731 | // Signal field is off with the appropriate LED | |
732 | LED_D_OFF(); | |
733 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
734 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
735 | ||
736 | int div = 0; | |
737 | //int div2 = 0; | |
738 | int decbyte = 0; | |
739 | int decbyter = 0; | |
740 | ||
741 | // And now we loop, receiving samples. | |
742 | for(;;) { | |
743 | LED_A_ON(); | |
744 | WDT_HIT(); | |
745 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
746 | (DMA_BUFFER_SIZE-1); | |
747 | if(behindBy > maxBehindBy) { | |
748 | maxBehindBy = behindBy; | |
749 | if(behindBy > 400) { | |
750 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
751 | goto done; | |
752 | } | |
753 | } | |
754 | if(behindBy < 1) continue; | |
755 | ||
756 | LED_A_OFF(); | |
757 | smpl = upTo[0]; | |
758 | upTo++; | |
759 | lastRxCounter -= 1; | |
760 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
761 | upTo -= DMA_BUFFER_SIZE; | |
762 | lastRxCounter += DMA_BUFFER_SIZE; | |
763 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
764 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
765 | } | |
766 | ||
767 | //samples += 4; | |
768 | samples += 1; | |
769 | //div2++; | |
770 | ||
771 | //if(div2 > 3) { | |
772 | //div2 = 0; | |
773 | //decbyte ^= ((smpl & 0x01) << (3 - div)); | |
774 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... | |
775 | //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... | |
776 | if(smpl & 0xF) { | |
777 | decbyte ^= (1 << (3 - div)); | |
778 | } | |
779 | //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); | |
780 | ||
781 | // FOR READER SIDE COMMUMICATION... | |
782 | //decbyte ^= ((smpl & 0x10) << (3 - div)); | |
783 | decbyter <<= 2; | |
784 | decbyter ^= (smpl & 0x30); | |
785 | ||
786 | div++; | |
787 | ||
788 | if((div + 1) % 2 == 0) { | |
789 | smpl = decbyter; | |
790 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
791 | rsamples = samples - Uart.samples; | |
792 | LED_C_ON(); | |
793 | //if(triggered) { | |
794 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
795 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
796 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
797 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
798 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); | |
799 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); | |
800 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); | |
801 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); | |
802 | trace[traceLen++] = Uart.byteCnt; | |
803 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); | |
804 | traceLen += Uart.byteCnt; | |
805 | if(traceLen > TRACE_SIZE) break; | |
806 | //} | |
807 | /* And ready to receive another command. */ | |
808 | Uart.state = STATE_UNSYNCD; | |
809 | /* And also reset the demod code, which might have been */ | |
810 | /* false-triggered by the commands from the reader. */ | |
811 | Demod.state = DEMOD_UNSYNCD; | |
812 | LED_B_OFF(); | |
813 | Uart.byteCnt = 0; | |
814 | } | |
815 | decbyter = 0; | |
816 | } | |
817 | ||
818 | if(div > 3) { | |
819 | smpl = decbyte; | |
820 | if(ManchesterDecoding(smpl & 0x0F)) { | |
821 | rsamples = samples - Demod.samples; | |
822 | LED_B_ON(); | |
823 | ||
824 | // timestamp, as a count of samples | |
825 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
826 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
827 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
828 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); | |
829 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); | |
830 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); | |
831 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); | |
832 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); | |
833 | // length | |
834 | trace[traceLen++] = Demod.len; | |
835 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
836 | traceLen += Demod.len; | |
837 | if(traceLen > TRACE_SIZE) break; | |
838 | ||
839 | //triggered = TRUE; | |
840 | ||
841 | // And ready to receive another response. | |
842 | memset(&Demod, 0, sizeof(Demod)); | |
843 | Demod.output = receivedResponse; | |
844 | Demod.state = DEMOD_UNSYNCD; | |
845 | LED_C_OFF(); | |
846 | } | |
847 | ||
848 | div = 0; | |
849 | decbyte = 0x00; | |
850 | } | |
851 | //} | |
852 | ||
853 | if(BUTTON_PRESS()) { | |
854 | DbpString("cancelled_a"); | |
855 | goto done; | |
856 | } | |
857 | } | |
858 | ||
859 | DbpString("COMMAND FINISHED"); | |
860 | ||
861 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
862 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
863 | ||
864 | done: | |
865 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
866 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
867 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
868 | LED_A_OFF(); | |
869 | LED_B_OFF(); | |
870 | LED_C_OFF(); | |
871 | LED_D_OFF(); | |
872 | } | |
873 | ||
874 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
875 | int i; | |
876 | for(i = 0; i < 8; i++) { | |
877 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
878 | } | |
879 | } | |
880 | ||
881 | //----------------------------------------------------------------------------- | |
882 | // Wait for commands from reader | |
883 | // Stop when button is pressed | |
884 | // Or return TRUE when command is captured | |
885 | //----------------------------------------------------------------------------- | |
886 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) | |
887 | { | |
888 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
889 | // only, since we are receiving, not transmitting). | |
890 | // Signal field is off with the appropriate LED | |
891 | LED_D_OFF(); | |
892 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
893 | ||
894 | // Now run a `software UART' on the stream of incoming samples. | |
895 | Uart.output = received; | |
896 | Uart.byteCntMax = maxLen; | |
897 | Uart.state = STATE_UNSYNCD; | |
898 | ||
899 | for(;;) { | |
900 | WDT_HIT(); | |
901 | ||
902 | if(BUTTON_PRESS()) return FALSE; | |
903 | ||
904 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
905 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
906 | } | |
907 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
908 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
909 | /*if(OutOfNDecoding((b & 0xf0) >> 4)) { | |
910 | *len = Uart.byteCnt; | |
911 | return TRUE; | |
912 | }*/ | |
913 | if(OutOfNDecoding(b & 0x0f)) { | |
914 | *len = Uart.byteCnt; | |
915 | return TRUE; | |
916 | } | |
917 | } | |
918 | } | |
919 | } | |
920 | ||
921 | ||
922 | //----------------------------------------------------------------------------- | |
923 | // Prepare tag messages | |
924 | //----------------------------------------------------------------------------- | |
925 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) | |
926 | { | |
927 | int i; | |
928 | ||
929 | ToSendReset(); | |
930 | ||
931 | // Send SOF | |
932 | ToSend[++ToSendMax] = 0x00; | |
933 | ToSend[++ToSendMax] = 0x00; | |
934 | ToSend[++ToSendMax] = 0x00; | |
935 | ToSend[++ToSendMax] = 0xff; | |
936 | ToSend[++ToSendMax] = 0xff; | |
937 | ToSend[++ToSendMax] = 0xff; | |
938 | ToSend[++ToSendMax] = 0x00; | |
939 | ToSend[++ToSendMax] = 0xff; | |
940 | ||
941 | for(i = 0; i < len; i++) { | |
942 | int j; | |
943 | uint8_t b = cmd[i]; | |
944 | ||
945 | // Data bits | |
946 | for(j = 0; j < 8; j++) { | |
947 | if(b & 1) { | |
948 | ToSend[++ToSendMax] = 0x00; | |
949 | ToSend[++ToSendMax] = 0xff; | |
950 | } else { | |
951 | ToSend[++ToSendMax] = 0xff; | |
952 | ToSend[++ToSendMax] = 0x00; | |
953 | } | |
954 | b >>= 1; | |
955 | } | |
956 | } | |
957 | ||
958 | // Send EOF | |
959 | ToSend[++ToSendMax] = 0xff; | |
960 | ToSend[++ToSendMax] = 0x00; | |
961 | ToSend[++ToSendMax] = 0xff; | |
962 | ToSend[++ToSendMax] = 0xff; | |
963 | ToSend[++ToSendMax] = 0xff; | |
964 | ToSend[++ToSendMax] = 0x00; | |
965 | ToSend[++ToSendMax] = 0x00; | |
966 | ToSend[++ToSendMax] = 0x00; | |
967 | ||
968 | // Convert from last byte pos to length | |
969 | ToSendMax++; | |
970 | } | |
971 | ||
972 | // Only SOF | |
973 | static void CodeIClassTagSOF() | |
974 | { | |
975 | ToSendReset(); | |
976 | ||
977 | // Send SOF | |
978 | ToSend[++ToSendMax] = 0x00; | |
979 | ToSend[++ToSendMax] = 0x00; | |
980 | ToSend[++ToSendMax] = 0x00; | |
981 | ToSend[++ToSendMax] = 0xff; | |
982 | ToSend[++ToSendMax] = 0xff; | |
983 | ToSend[++ToSendMax] = 0xff; | |
984 | ToSend[++ToSendMax] = 0x00; | |
985 | ToSend[++ToSendMax] = 0xff; | |
986 | ||
987 | // Convert from last byte pos to length | |
988 | ToSendMax++; | |
989 | } | |
990 | ||
991 | //----------------------------------------------------------------------------- | |
992 | // Simulate iClass Card | |
993 | // Only CSN (Card Serial Number) | |
994 | // | |
995 | //----------------------------------------------------------------------------- | |
996 | void SimulateIClass(uint8_t arg0, uint8_t *datain) | |
997 | { | |
998 | uint8_t simType = arg0; | |
999 | ||
1000 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1001 | ||
1002 | // Enable and clear the trace | |
1003 | tracing = TRUE; | |
1004 | traceLen = 0; | |
1005 | memset(trace, 0x44, TRACE_SIZE); | |
1006 | ||
1007 | // CSN followed by two CRC bytes | |
1008 | uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1009 | uint8_t response3[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
1010 | ||
1011 | // e-Purse | |
1012 | uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1013 | ||
1014 | if(simType == 0) { | |
1015 | // Use the CSN from commandline | |
1016 | memcpy(response3, datain, 8); | |
1017 | } | |
1018 | ||
1019 | // Construct anticollision-CSN | |
1020 | rotateCSN(response3,response2); | |
1021 | ||
1022 | // Compute CRC on both CSNs | |
1023 | ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); | |
1024 | ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); | |
1025 | ||
1026 | // Reader 0a | |
1027 | // Tag 0f | |
1028 | // Reader 0c | |
1029 | // Tag anticoll. CSN | |
1030 | // Reader 81 anticoll. CSN | |
1031 | // Tag CSN | |
1032 | ||
1033 | uint8_t *resp; | |
1034 | int respLen; | |
1035 | uint8_t* respdata = NULL; | |
1036 | int respsize = 0; | |
1037 | uint8_t sof = 0x0f; | |
1038 | ||
1039 | // Respond SOF -- takes 8 bytes | |
1040 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
1041 | int resp1Len; | |
1042 | ||
1043 | // Anticollision CSN (rotated CSN) | |
1044 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
1045 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); | |
1046 | int resp2Len; | |
1047 | ||
1048 | // CSN | |
1049 | // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) | |
1050 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); | |
1051 | int resp3Len; | |
1052 | ||
1053 | // e-Purse | |
1054 | // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) | |
1055 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); | |
1056 | int resp4Len; | |
1057 | ||
1058 | // + 1720.. | |
1059 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
1060 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1061 | int len; | |
1062 | ||
1063 | // Prepare card messages | |
1064 | ToSendMax = 0; | |
1065 | ||
1066 | // First card answer: SOF | |
1067 | CodeIClassTagSOF(); | |
1068 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1069 | ||
1070 | // Anticollision CSN | |
1071 | CodeIClassTagAnswer(response2, sizeof(response2)); | |
1072 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1073 | ||
1074 | // CSN | |
1075 | CodeIClassTagAnswer(response3, sizeof(response3)); | |
1076 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1077 | ||
1078 | // e-Purse | |
1079 | CodeIClassTagAnswer(response4, sizeof(response4)); | |
1080 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1081 | ||
1082 | ||
1083 | // Start from off (no field generated) | |
1084 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1085 | SpinDelay(200); | |
1086 | ||
1087 | ||
1088 | // We need to listen to the high-frequency, peak-detected path. | |
1089 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1090 | FpgaSetupSsc(); | |
1091 | ||
1092 | // To control where we are in the protocol | |
1093 | int cmdsRecvd = 0; | |
1094 | ||
1095 | LED_A_ON(); | |
1096 | for(;;) { | |
1097 | LED_B_OFF(); | |
1098 | //Signal tracer | |
1099 | // Can be used to get a trigger for an oscilloscope.. | |
1100 | LED_C_OFF(); | |
1101 | ||
1102 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { | |
1103 | DbpString("button press"); | |
1104 | break; | |
1105 | } | |
1106 | //Signal tracer | |
1107 | LED_C_ON(); | |
1108 | ||
1109 | ||
1110 | // Okay, look at the command now. | |
1111 | if(receivedCmd[0] == 0x0a) { | |
1112 | // Reader in anticollission phase | |
1113 | resp = resp1; respLen = resp1Len; //order = 1; | |
1114 | respdata = &sof; | |
1115 | respsize = sizeof(sof); | |
1116 | //resp = resp2; respLen = resp2Len; order = 2; | |
1117 | //DbpString("Hello request from reader:"); | |
1118 | } else if(receivedCmd[0] == 0x0c) { | |
1119 | // Reader asks for anticollission CSN | |
1120 | resp = resp2; respLen = resp2Len; //order = 2; | |
1121 | respdata = response2; | |
1122 | respsize = sizeof(response2); | |
1123 | //DbpString("Reader requests anticollission CSN:"); | |
1124 | } else if(receivedCmd[0] == 0x81) { | |
1125 | // Reader selects anticollission CSN. | |
1126 | // Tag sends the corresponding real CSN | |
1127 | resp = resp3; respLen = resp3Len; //order = 3; | |
1128 | respdata = response3; | |
1129 | respsize = sizeof(response3); | |
1130 | //DbpString("Reader selects anticollission CSN:"); | |
1131 | } else if(receivedCmd[0] == 0x88) { | |
1132 | // Read e-purse (88 02) | |
1133 | resp = resp4; respLen = resp4Len; //order = 4; | |
1134 | respdata = response4; | |
1135 | respsize = sizeof(response4); | |
1136 | LED_B_ON(); | |
1137 | } else if(receivedCmd[0] == 0x05) { | |
1138 | // Reader random and reader MAC!!! | |
1139 | // Lets store this ;-) | |
1140 | /* | |
1141 | Dbprintf(" CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1142 | response3[0], response3[1], response3[2], | |
1143 | response3[3], response3[4], response3[5], | |
1144 | response3[6], response3[7]); | |
1145 | */ | |
1146 | Dbprintf("READER AUTH (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1147 | len, | |
1148 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1149 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1150 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1151 | ||
1152 | // Do not respond | |
1153 | // We do not know what to answer, so lets keep quit | |
1154 | resp = resp1; respLen = 0; //order = 5; | |
1155 | respdata = NULL; | |
1156 | respsize = 0; | |
1157 | } else if(receivedCmd[0] == 0x00 && len == 1) { | |
1158 | // Reader ends the session | |
1159 | resp = resp1; respLen = 0; //order = 0; | |
1160 | respdata = NULL; | |
1161 | respsize = 0; | |
1162 | } else { | |
1163 | // Never seen this command before | |
1164 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1165 | len, | |
1166 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1167 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1168 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1169 | // Do not respond | |
1170 | resp = resp1; respLen = 0; //order = 0; | |
1171 | respdata = NULL; | |
1172 | respsize = 0; | |
1173 | } | |
1174 | ||
1175 | if(cmdsRecvd > 999) { | |
1176 | DbpString("1000 commands later..."); | |
1177 | break; | |
1178 | } | |
1179 | else { | |
1180 | cmdsRecvd++; | |
1181 | } | |
1182 | ||
1183 | if(respLen > 0) { | |
1184 | SendIClassAnswer(resp, respLen, 21); | |
1185 | } | |
1186 | ||
1187 | if (tracing) { | |
1188 | LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE); | |
1189 | if (respdata != NULL) { | |
1190 | LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE); | |
1191 | } | |
1192 | if(traceLen > TRACE_SIZE) { | |
1193 | DbpString("Trace full"); | |
1194 | break; | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1199 | } | |
1200 | ||
1201 | Dbprintf("%x", cmdsRecvd); | |
1202 | LED_A_OFF(); | |
1203 | LED_B_OFF(); | |
1204 | } | |
1205 | ||
1206 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) | |
1207 | { | |
1208 | int i = 0, d=0;//, u = 0, d = 0; | |
1209 | uint8_t b = 0; | |
1210 | ||
1211 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); | |
1212 | ||
1213 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1214 | FpgaSetupSsc(); | |
1215 | while(!BUTTON_PRESS()) { | |
1216 | if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ | |
1217 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1218 | } | |
1219 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ | |
1220 | b = 0x00; | |
1221 | if(d < delay) { | |
1222 | d++; | |
1223 | } | |
1224 | else { | |
1225 | if( i < respLen){ | |
1226 | b = resp[i]; | |
1227 | //Hack | |
1228 | //b = 0xAC; | |
1229 | } | |
1230 | i++; | |
1231 | } | |
1232 | AT91C_BASE_SSC->SSC_THR = b; | |
1233 | } | |
1234 | ||
1235 | if (i > respLen +4) break; | |
1236 | } | |
1237 | ||
1238 | return 0; | |
1239 | } | |
1240 | ||
1241 | /// THE READER CODE | |
1242 | ||
1243 | //----------------------------------------------------------------------------- | |
1244 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1245 | //----------------------------------------------------------------------------- | |
1246 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) | |
1247 | { | |
1248 | int c; | |
1249 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1250 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1251 | FpgaSetupSsc(); | |
1252 | ||
1253 | if (wait) | |
1254 | if(*wait < 10) | |
1255 | *wait = 10; | |
1256 | ||
1257 | for(c = 0; c < *wait;) { | |
1258 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1259 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1260 | c++; | |
1261 | } | |
1262 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1263 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1264 | (void)r; | |
1265 | } | |
1266 | WDT_HIT(); | |
1267 | } | |
1268 | ||
1269 | uint8_t sendbyte; | |
1270 | bool firstpart = TRUE; | |
1271 | c = 0; | |
1272 | for(;;) { | |
1273 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1274 | ||
1275 | // DOUBLE THE SAMPLES! | |
1276 | if(firstpart) { | |
1277 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1278 | } | |
1279 | else { | |
1280 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1281 | c++; | |
1282 | } | |
1283 | if(sendbyte == 0xff) { | |
1284 | sendbyte = 0xfe; | |
1285 | } | |
1286 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1287 | firstpart = !firstpart; | |
1288 | ||
1289 | if(c >= len) { | |
1290 | break; | |
1291 | } | |
1292 | } | |
1293 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1294 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1295 | (void)r; | |
1296 | } | |
1297 | WDT_HIT(); | |
1298 | } | |
1299 | if (samples) *samples = (c + *wait) << 3; | |
1300 | } | |
1301 | ||
1302 | ||
1303 | //----------------------------------------------------------------------------- | |
1304 | // Prepare iClass reader command to send to FPGA | |
1305 | //----------------------------------------------------------------------------- | |
1306 | void CodeIClassCommand(const uint8_t * cmd, int len) | |
1307 | { | |
1308 | int i, j, k; | |
1309 | uint8_t b; | |
1310 | ||
1311 | ToSendReset(); | |
1312 | ||
1313 | // Start of Communication: 1 out of 4 | |
1314 | ToSend[++ToSendMax] = 0xf0; | |
1315 | ToSend[++ToSendMax] = 0x00; | |
1316 | ToSend[++ToSendMax] = 0x0f; | |
1317 | ToSend[++ToSendMax] = 0x00; | |
1318 | ||
1319 | // Modulate the bytes | |
1320 | for (i = 0; i < len; i++) { | |
1321 | b = cmd[i]; | |
1322 | for(j = 0; j < 4; j++) { | |
1323 | for(k = 0; k < 4; k++) { | |
1324 | if(k == (b & 3)) { | |
1325 | ToSend[++ToSendMax] = 0x0f; | |
1326 | } | |
1327 | else { | |
1328 | ToSend[++ToSendMax] = 0x00; | |
1329 | } | |
1330 | } | |
1331 | b >>= 2; | |
1332 | } | |
1333 | } | |
1334 | ||
1335 | // End of Communication | |
1336 | ToSend[++ToSendMax] = 0x00; | |
1337 | ToSend[++ToSendMax] = 0x00; | |
1338 | ToSend[++ToSendMax] = 0xf0; | |
1339 | ToSend[++ToSendMax] = 0x00; | |
1340 | ||
1341 | // Convert from last character reference to length | |
1342 | ToSendMax++; | |
1343 | } | |
1344 | ||
1345 | void ReaderTransmitIClass(uint8_t* frame, int len) | |
1346 | { | |
1347 | int wait = 0; | |
1348 | int samples = 0; | |
1349 | int par = 0; | |
1350 | ||
1351 | // This is tied to other size changes | |
1352 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1353 | CodeIClassCommand(frame,len); | |
1354 | ||
1355 | // Select the card | |
1356 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1357 | if(trigger) | |
1358 | LED_A_ON(); | |
1359 | ||
1360 | // Store reader command in buffer | |
1361 | if (tracing) LogTrace(frame,len,rsamples,par,TRUE); | |
1362 | } | |
1363 | ||
1364 | //----------------------------------------------------------------------------- | |
1365 | // Wait a certain time for tag response | |
1366 | // If a response is captured return TRUE | |
1367 | // If it takes too long return FALSE | |
1368 | //----------------------------------------------------------------------------- | |
1369 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1370 | { | |
1371 | // buffer needs to be 512 bytes | |
1372 | int c; | |
1373 | ||
1374 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1375 | // only, since we are receiving, not transmitting). | |
1376 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1377 | ||
1378 | // Now get the answer from the card | |
1379 | Demod.output = receivedResponse; | |
1380 | Demod.len = 0; | |
1381 | Demod.state = DEMOD_UNSYNCD; | |
1382 | ||
1383 | uint8_t b; | |
1384 | if (elapsed) *elapsed = 0; | |
1385 | ||
1386 | bool skip = FALSE; | |
1387 | ||
1388 | c = 0; | |
1389 | for(;;) { | |
1390 | WDT_HIT(); | |
1391 | ||
1392 | if(BUTTON_PRESS()) return FALSE; | |
1393 | ||
1394 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1395 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1396 | if (elapsed) (*elapsed)++; | |
1397 | } | |
1398 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1399 | if(c < timeout) { c++; } else { return FALSE; } | |
1400 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1401 | skip = !skip; | |
1402 | if(skip) continue; | |
1403 | /*if(ManchesterDecoding((b>>4) & 0xf)) { | |
1404 | *samples = ((c - 1) << 3) + 4; | |
1405 | return TRUE; | |
1406 | }*/ | |
1407 | if(ManchesterDecoding(b & 0x0f)) { | |
1408 | *samples = c << 3; | |
1409 | return TRUE; | |
1410 | } | |
1411 | } | |
1412 | } | |
1413 | } | |
1414 | ||
1415 | int ReaderReceiveIClass(uint8_t* receivedAnswer) | |
1416 | { | |
1417 | int samples = 0; | |
1418 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; | |
1419 | rsamples += samples; | |
1420 | if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE); | |
1421 | if(samples == 0) return FALSE; | |
1422 | return Demod.len; | |
1423 | } | |
1424 | ||
1425 | // Reader iClass Anticollission | |
1426 | void ReaderIClass(uint8_t arg0) { | |
1427 | uint8_t act_all[] = { 0x0a }; | |
1428 | uint8_t identify[] = { 0x0c }; | |
1429 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1430 | ||
1431 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1432 | ||
1433 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1434 | ||
1435 | // Reset trace buffer | |
1436 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
1437 | traceLen = 0; | |
1438 | ||
1439 | // Setup SSC | |
1440 | FpgaSetupSsc(); | |
1441 | // Start from off (no field generated) | |
1442 | // Signal field is off with the appropriate LED | |
1443 | LED_D_OFF(); | |
1444 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1445 | SpinDelay(200); | |
1446 | ||
1447 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1448 | ||
1449 | // Now give it time to spin up. | |
1450 | // Signal field is on with the appropriate LED | |
1451 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1452 | SpinDelay(200); | |
1453 | ||
1454 | LED_A_ON(); | |
1455 | ||
1456 | for(;;) { | |
1457 | ||
1458 | if(traceLen > TRACE_SIZE) { | |
1459 | DbpString("Trace full"); | |
1460 | break; | |
1461 | } | |
1462 | ||
1463 | if (BUTTON_PRESS()) break; | |
1464 | ||
1465 | // Send act_all | |
1466 | ReaderTransmitIClass(act_all, 1); | |
1467 | // Card present? | |
1468 | if(ReaderReceiveIClass(resp)) { | |
1469 | ReaderTransmitIClass(identify, 1); | |
1470 | if(ReaderReceiveIClass(resp) == 10) { | |
1471 | // Select card | |
1472 | memcpy(&select[1],resp,8); | |
1473 | ReaderTransmitIClass(select, sizeof(select)); | |
1474 | ||
1475 | if(ReaderReceiveIClass(resp) == 10) { | |
1476 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1477 | resp[0], resp[1], resp[2], | |
1478 | resp[3], resp[4], resp[5], | |
1479 | resp[6], resp[7]); | |
1480 | } | |
1481 | // Card selected, whats next... ;-) | |
1482 | } | |
1483 | } | |
1484 | WDT_HIT(); | |
1485 | } | |
1486 | ||
1487 | LED_A_OFF(); | |
1488 | } | |
1489 | ||
1490 |