]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011 | |
3 | // Gerhard de Koning Gans - May 2008 | |
4 | // Hagen Fritsch - June 2010 | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // Routines to support ISO 14443 type A. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "string.h" | |
17 | ||
18 | #include "iso14443crc.h" | |
19 | #include "iso14443a.h" | |
20 | #include "crapto1.h" | |
21 | #include "mifareutil.h" | |
22 | ||
23 | static uint8_t *trace = (uint8_t *) BigBuf; | |
24 | static int traceLen = 0; | |
25 | static int rsamples = 0; | |
26 | static int tracing = TRUE; | |
27 | static uint32_t iso14a_timeout; | |
28 | ||
29 | // CARD TO READER - manchester | |
30 | // Sequence D: 11110000 modulation with subcarrier during first half | |
31 | // Sequence E: 00001111 modulation with subcarrier during second half | |
32 | // Sequence F: 00000000 no modulation with subcarrier | |
33 | // READER TO CARD - miller | |
34 | // Sequence X: 00001100 drop after half a period | |
35 | // Sequence Y: 00000000 no drop | |
36 | // Sequence Z: 11000000 drop at start | |
37 | #define SEC_D 0xf0 | |
38 | #define SEC_E 0x0f | |
39 | #define SEC_F 0x00 | |
40 | #define SEC_X 0x0c | |
41 | #define SEC_Y 0x00 | |
42 | #define SEC_Z 0xc0 | |
43 | ||
44 | static const uint8_t OddByteParity[256] = { | |
45 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
48 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
49 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
50 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
51 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
52 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
53 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
54 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
55 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
56 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
57 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
58 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
59 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
60 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
61 | }; | |
62 | ||
63 | uint8_t trigger = 0; | |
64 | void iso14a_set_trigger(int enable) { | |
65 | trigger = enable; | |
66 | } | |
67 | ||
68 | void iso14a_clear_tracelen(void) { | |
69 | traceLen = 0; | |
70 | } | |
71 | void iso14a_set_tracing(int enable) { | |
72 | tracing = enable; | |
73 | } | |
74 | ||
75 | //----------------------------------------------------------------------------- | |
76 | // Generate the parity value for a byte sequence | |
77 | // | |
78 | //----------------------------------------------------------------------------- | |
79 | byte_t oddparity (const byte_t bt) | |
80 | { | |
81 | return OddByteParity[bt]; | |
82 | } | |
83 | ||
84 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) | |
85 | { | |
86 | int i; | |
87 | uint32_t dwPar = 0; | |
88 | ||
89 | // Generate the encrypted data | |
90 | for (i = 0; i < iLen; i++) { | |
91 | // Save the encrypted parity bit | |
92 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); | |
93 | } | |
94 | return dwPar; | |
95 | } | |
96 | ||
97 | void AppendCrc14443a(uint8_t* data, int len) | |
98 | { | |
99 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
100 | } | |
101 | ||
102 | int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) | |
103 | { | |
104 | // Return when trace is full | |
105 | if (traceLen >= TRACE_LENGTH) return FALSE; | |
106 | ||
107 | // Trace the random, i'm curious | |
108 | rsamples += iSamples; | |
109 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
110 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
111 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
112 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
113 | if (!bReader) { | |
114 | trace[traceLen - 1] |= 0x80; | |
115 | } | |
116 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
117 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
118 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
119 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
120 | trace[traceLen++] = iLen; | |
121 | memcpy(trace + traceLen, btBytes, iLen); | |
122 | traceLen += iLen; | |
123 | return TRUE; | |
124 | } | |
125 | ||
126 | //----------------------------------------------------------------------------- | |
127 | // The software UART that receives commands from the reader, and its state | |
128 | // variables. | |
129 | //----------------------------------------------------------------------------- | |
130 | static struct { | |
131 | enum { | |
132 | STATE_UNSYNCD, | |
133 | STATE_START_OF_COMMUNICATION, | |
134 | STATE_MILLER_X, | |
135 | STATE_MILLER_Y, | |
136 | STATE_MILLER_Z, | |
137 | STATE_ERROR_WAIT | |
138 | } state; | |
139 | uint16_t shiftReg; | |
140 | int bitCnt; | |
141 | int byteCnt; | |
142 | int byteCntMax; | |
143 | int posCnt; | |
144 | int syncBit; | |
145 | int parityBits; | |
146 | int samples; | |
147 | int highCnt; | |
148 | int bitBuffer; | |
149 | enum { | |
150 | DROP_NONE, | |
151 | DROP_FIRST_HALF, | |
152 | DROP_SECOND_HALF | |
153 | } drop; | |
154 | uint8_t *output; | |
155 | } Uart; | |
156 | ||
157 | static RAMFUNC int MillerDecoding(int bit) | |
158 | { | |
159 | int error = 0; | |
160 | int bitright; | |
161 | ||
162 | if(!Uart.bitBuffer) { | |
163 | Uart.bitBuffer = bit ^ 0xFF0; | |
164 | return FALSE; | |
165 | } | |
166 | else { | |
167 | Uart.bitBuffer <<= 4; | |
168 | Uart.bitBuffer ^= bit; | |
169 | } | |
170 | ||
171 | int EOC = FALSE; | |
172 | ||
173 | if(Uart.state != STATE_UNSYNCD) { | |
174 | Uart.posCnt++; | |
175 | ||
176 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
177 | bit = 0x00; | |
178 | } | |
179 | else { | |
180 | bit = 0x01; | |
181 | } | |
182 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
183 | bitright = 0x00; | |
184 | } | |
185 | else { | |
186 | bitright = 0x01; | |
187 | } | |
188 | if(bit != bitright) { bit = bitright; } | |
189 | ||
190 | if(Uart.posCnt == 1) { | |
191 | // measurement first half bitperiod | |
192 | if(!bit) { | |
193 | Uart.drop = DROP_FIRST_HALF; | |
194 | } | |
195 | } | |
196 | else { | |
197 | // measurement second half bitperiod | |
198 | if(!bit & (Uart.drop == DROP_NONE)) { | |
199 | Uart.drop = DROP_SECOND_HALF; | |
200 | } | |
201 | else if(!bit) { | |
202 | // measured a drop in first and second half | |
203 | // which should not be possible | |
204 | Uart.state = STATE_ERROR_WAIT; | |
205 | error = 0x01; | |
206 | } | |
207 | ||
208 | Uart.posCnt = 0; | |
209 | ||
210 | switch(Uart.state) { | |
211 | case STATE_START_OF_COMMUNICATION: | |
212 | Uart.shiftReg = 0; | |
213 | if(Uart.drop == DROP_SECOND_HALF) { | |
214 | // error, should not happen in SOC | |
215 | Uart.state = STATE_ERROR_WAIT; | |
216 | error = 0x02; | |
217 | } | |
218 | else { | |
219 | // correct SOC | |
220 | Uart.state = STATE_MILLER_Z; | |
221 | } | |
222 | break; | |
223 | ||
224 | case STATE_MILLER_Z: | |
225 | Uart.bitCnt++; | |
226 | Uart.shiftReg >>= 1; | |
227 | if(Uart.drop == DROP_NONE) { | |
228 | // logic '0' followed by sequence Y | |
229 | // end of communication | |
230 | Uart.state = STATE_UNSYNCD; | |
231 | EOC = TRUE; | |
232 | } | |
233 | // if(Uart.drop == DROP_FIRST_HALF) { | |
234 | // Uart.state = STATE_MILLER_Z; stay the same | |
235 | // we see a logic '0' } | |
236 | if(Uart.drop == DROP_SECOND_HALF) { | |
237 | // we see a logic '1' | |
238 | Uart.shiftReg |= 0x100; | |
239 | Uart.state = STATE_MILLER_X; | |
240 | } | |
241 | break; | |
242 | ||
243 | case STATE_MILLER_X: | |
244 | Uart.shiftReg >>= 1; | |
245 | if(Uart.drop == DROP_NONE) { | |
246 | // sequence Y, we see a '0' | |
247 | Uart.state = STATE_MILLER_Y; | |
248 | Uart.bitCnt++; | |
249 | } | |
250 | if(Uart.drop == DROP_FIRST_HALF) { | |
251 | // Would be STATE_MILLER_Z | |
252 | // but Z does not follow X, so error | |
253 | Uart.state = STATE_ERROR_WAIT; | |
254 | error = 0x03; | |
255 | } | |
256 | if(Uart.drop == DROP_SECOND_HALF) { | |
257 | // We see a '1' and stay in state X | |
258 | Uart.shiftReg |= 0x100; | |
259 | Uart.bitCnt++; | |
260 | } | |
261 | break; | |
262 | ||
263 | case STATE_MILLER_Y: | |
264 | Uart.bitCnt++; | |
265 | Uart.shiftReg >>= 1; | |
266 | if(Uart.drop == DROP_NONE) { | |
267 | // logic '0' followed by sequence Y | |
268 | // end of communication | |
269 | Uart.state = STATE_UNSYNCD; | |
270 | EOC = TRUE; | |
271 | } | |
272 | if(Uart.drop == DROP_FIRST_HALF) { | |
273 | // we see a '0' | |
274 | Uart.state = STATE_MILLER_Z; | |
275 | } | |
276 | if(Uart.drop == DROP_SECOND_HALF) { | |
277 | // We see a '1' and go to state X | |
278 | Uart.shiftReg |= 0x100; | |
279 | Uart.state = STATE_MILLER_X; | |
280 | } | |
281 | break; | |
282 | ||
283 | case STATE_ERROR_WAIT: | |
284 | // That went wrong. Now wait for at least two bit periods | |
285 | // and try to sync again | |
286 | if(Uart.drop == DROP_NONE) { | |
287 | Uart.highCnt = 6; | |
288 | Uart.state = STATE_UNSYNCD; | |
289 | } | |
290 | break; | |
291 | ||
292 | default: | |
293 | Uart.state = STATE_UNSYNCD; | |
294 | Uart.highCnt = 0; | |
295 | break; | |
296 | } | |
297 | ||
298 | Uart.drop = DROP_NONE; | |
299 | ||
300 | // should have received at least one whole byte... | |
301 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { | |
302 | return TRUE; | |
303 | } | |
304 | ||
305 | if(Uart.bitCnt == 9) { | |
306 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
307 | Uart.byteCnt++; | |
308 | ||
309 | Uart.parityBits <<= 1; | |
310 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); | |
311 | ||
312 | if(EOC) { | |
313 | // when End of Communication received and | |
314 | // all data bits processed.. | |
315 | return TRUE; | |
316 | } | |
317 | Uart.bitCnt = 0; | |
318 | } | |
319 | ||
320 | /*if(error) { | |
321 | Uart.output[Uart.byteCnt] = 0xAA; | |
322 | Uart.byteCnt++; | |
323 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
324 | Uart.byteCnt++; | |
325 | Uart.output[Uart.byteCnt] = 0xAA; | |
326 | Uart.byteCnt++; | |
327 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
328 | Uart.byteCnt++; | |
329 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
330 | Uart.byteCnt++; | |
331 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
332 | Uart.byteCnt++; | |
333 | Uart.output[Uart.byteCnt] = 0xAA; | |
334 | Uart.byteCnt++; | |
335 | return TRUE; | |
336 | }*/ | |
337 | } | |
338 | ||
339 | } | |
340 | else { | |
341 | bit = Uart.bitBuffer & 0xf0; | |
342 | bit >>= 4; | |
343 | bit ^= 0x0F; | |
344 | if(bit) { | |
345 | // should have been high or at least (4 * 128) / fc | |
346 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
347 | if(Uart.highCnt == 8) { | |
348 | // we went low, so this could be start of communication | |
349 | // it turns out to be safer to choose a less significant | |
350 | // syncbit... so we check whether the neighbour also represents the drop | |
351 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
352 | Uart.syncBit = bit & 8; | |
353 | Uart.samples = 3; | |
354 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
355 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
356 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
357 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
358 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
359 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
360 | Uart.syncBit = 8; | |
361 | ||
362 | // the first half bit period is expected in next sample | |
363 | Uart.posCnt = 0; | |
364 | Uart.samples = 3; | |
365 | } | |
366 | } | |
367 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
368 | ||
369 | Uart.syncBit <<= 4; | |
370 | Uart.state = STATE_START_OF_COMMUNICATION; | |
371 | Uart.drop = DROP_FIRST_HALF; | |
372 | Uart.bitCnt = 0; | |
373 | Uart.byteCnt = 0; | |
374 | Uart.parityBits = 0; | |
375 | error = 0; | |
376 | } | |
377 | else { | |
378 | Uart.highCnt = 0; | |
379 | } | |
380 | } | |
381 | else { | |
382 | if(Uart.highCnt < 8) { | |
383 | Uart.highCnt++; | |
384 | } | |
385 | } | |
386 | } | |
387 | ||
388 | return FALSE; | |
389 | } | |
390 | ||
391 | //============================================================================= | |
392 | // ISO 14443 Type A - Manchester | |
393 | //============================================================================= | |
394 | ||
395 | static struct { | |
396 | enum { | |
397 | DEMOD_UNSYNCD, | |
398 | DEMOD_START_OF_COMMUNICATION, | |
399 | DEMOD_MANCHESTER_D, | |
400 | DEMOD_MANCHESTER_E, | |
401 | DEMOD_MANCHESTER_F, | |
402 | DEMOD_ERROR_WAIT | |
403 | } state; | |
404 | int bitCount; | |
405 | int posCount; | |
406 | int syncBit; | |
407 | int parityBits; | |
408 | uint16_t shiftReg; | |
409 | int buffer; | |
410 | int buff; | |
411 | int samples; | |
412 | int len; | |
413 | enum { | |
414 | SUB_NONE, | |
415 | SUB_FIRST_HALF, | |
416 | SUB_SECOND_HALF | |
417 | } sub; | |
418 | uint8_t *output; | |
419 | } Demod; | |
420 | ||
421 | static RAMFUNC int ManchesterDecoding(int v) | |
422 | { | |
423 | int bit; | |
424 | int modulation; | |
425 | int error = 0; | |
426 | ||
427 | if(!Demod.buff) { | |
428 | Demod.buff = 1; | |
429 | Demod.buffer = v; | |
430 | return FALSE; | |
431 | } | |
432 | else { | |
433 | bit = Demod.buffer; | |
434 | Demod.buffer = v; | |
435 | } | |
436 | ||
437 | if(Demod.state==DEMOD_UNSYNCD) { | |
438 | Demod.output[Demod.len] = 0xfa; | |
439 | Demod.syncBit = 0; | |
440 | //Demod.samples = 0; | |
441 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
442 | ||
443 | if(bit & 0x08) { | |
444 | Demod.syncBit = 0x08; | |
445 | } | |
446 | ||
447 | if(bit & 0x04) { | |
448 | if(Demod.syncBit) { | |
449 | bit <<= 4; | |
450 | } | |
451 | Demod.syncBit = 0x04; | |
452 | } | |
453 | ||
454 | if(bit & 0x02) { | |
455 | if(Demod.syncBit) { | |
456 | bit <<= 2; | |
457 | } | |
458 | Demod.syncBit = 0x02; | |
459 | } | |
460 | ||
461 | if(bit & 0x01 && Demod.syncBit) { | |
462 | Demod.syncBit = 0x01; | |
463 | } | |
464 | ||
465 | if(Demod.syncBit) { | |
466 | Demod.len = 0; | |
467 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
468 | Demod.sub = SUB_FIRST_HALF; | |
469 | Demod.bitCount = 0; | |
470 | Demod.shiftReg = 0; | |
471 | Demod.parityBits = 0; | |
472 | Demod.samples = 0; | |
473 | if(Demod.posCount) { | |
474 | if(trigger) LED_A_OFF(); | |
475 | switch(Demod.syncBit) { | |
476 | case 0x08: Demod.samples = 3; break; | |
477 | case 0x04: Demod.samples = 2; break; | |
478 | case 0x02: Demod.samples = 1; break; | |
479 | case 0x01: Demod.samples = 0; break; | |
480 | } | |
481 | } | |
482 | error = 0; | |
483 | } | |
484 | } | |
485 | else { | |
486 | //modulation = bit & Demod.syncBit; | |
487 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
488 | ||
489 | Demod.samples += 4; | |
490 | ||
491 | if(Demod.posCount==0) { | |
492 | Demod.posCount = 1; | |
493 | if(modulation) { | |
494 | Demod.sub = SUB_FIRST_HALF; | |
495 | } | |
496 | else { | |
497 | Demod.sub = SUB_NONE; | |
498 | } | |
499 | } | |
500 | else { | |
501 | Demod.posCount = 0; | |
502 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
503 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
504 | Demod.state = DEMOD_ERROR_WAIT; | |
505 | Demod.output[Demod.len] = 0xaa; | |
506 | error = 0x01; | |
507 | } | |
508 | } | |
509 | else if(modulation) { | |
510 | Demod.sub = SUB_SECOND_HALF; | |
511 | } | |
512 | ||
513 | switch(Demod.state) { | |
514 | case DEMOD_START_OF_COMMUNICATION: | |
515 | if(Demod.sub == SUB_FIRST_HALF) { | |
516 | Demod.state = DEMOD_MANCHESTER_D; | |
517 | } | |
518 | else { | |
519 | Demod.output[Demod.len] = 0xab; | |
520 | Demod.state = DEMOD_ERROR_WAIT; | |
521 | error = 0x02; | |
522 | } | |
523 | break; | |
524 | ||
525 | case DEMOD_MANCHESTER_D: | |
526 | case DEMOD_MANCHESTER_E: | |
527 | if(Demod.sub == SUB_FIRST_HALF) { | |
528 | Demod.bitCount++; | |
529 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
530 | Demod.state = DEMOD_MANCHESTER_D; | |
531 | } | |
532 | else if(Demod.sub == SUB_SECOND_HALF) { | |
533 | Demod.bitCount++; | |
534 | Demod.shiftReg >>= 1; | |
535 | Demod.state = DEMOD_MANCHESTER_E; | |
536 | } | |
537 | else { | |
538 | Demod.state = DEMOD_MANCHESTER_F; | |
539 | } | |
540 | break; | |
541 | ||
542 | case DEMOD_MANCHESTER_F: | |
543 | // Tag response does not need to be a complete byte! | |
544 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
545 | if(Demod.bitCount > 0) { | |
546 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
547 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
548 | Demod.len++; | |
549 | // No parity bit, so just shift a 0 | |
550 | Demod.parityBits <<= 1; | |
551 | } | |
552 | ||
553 | Demod.state = DEMOD_UNSYNCD; | |
554 | return TRUE; | |
555 | } | |
556 | else { | |
557 | Demod.output[Demod.len] = 0xad; | |
558 | Demod.state = DEMOD_ERROR_WAIT; | |
559 | error = 0x03; | |
560 | } | |
561 | break; | |
562 | ||
563 | case DEMOD_ERROR_WAIT: | |
564 | Demod.state = DEMOD_UNSYNCD; | |
565 | break; | |
566 | ||
567 | default: | |
568 | Demod.output[Demod.len] = 0xdd; | |
569 | Demod.state = DEMOD_UNSYNCD; | |
570 | break; | |
571 | } | |
572 | ||
573 | if(Demod.bitCount>=9) { | |
574 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
575 | Demod.len++; | |
576 | ||
577 | Demod.parityBits <<= 1; | |
578 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
579 | ||
580 | Demod.bitCount = 0; | |
581 | Demod.shiftReg = 0; | |
582 | } | |
583 | ||
584 | /*if(error) { | |
585 | Demod.output[Demod.len] = 0xBB; | |
586 | Demod.len++; | |
587 | Demod.output[Demod.len] = error & 0xFF; | |
588 | Demod.len++; | |
589 | Demod.output[Demod.len] = 0xBB; | |
590 | Demod.len++; | |
591 | Demod.output[Demod.len] = bit & 0xFF; | |
592 | Demod.len++; | |
593 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
594 | Demod.len++; | |
595 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
596 | Demod.len++; | |
597 | Demod.output[Demod.len] = 0xBB; | |
598 | Demod.len++; | |
599 | return TRUE; | |
600 | }*/ | |
601 | ||
602 | } | |
603 | ||
604 | } // end (state != UNSYNCED) | |
605 | ||
606 | return FALSE; | |
607 | } | |
608 | ||
609 | //============================================================================= | |
610 | // Finally, a `sniffer' for ISO 14443 Type A | |
611 | // Both sides of communication! | |
612 | //============================================================================= | |
613 | ||
614 | //----------------------------------------------------------------------------- | |
615 | // Record the sequence of commands sent by the reader to the tag, with | |
616 | // triggering so that we start recording at the point that the tag is moved | |
617 | // near the reader. | |
618 | //----------------------------------------------------------------------------- | |
619 | void RAMFUNC SnoopIso14443a(void) | |
620 | { | |
621 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values | |
622 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values | |
623 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values | |
624 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values | |
625 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values | |
626 | ||
627 | // We won't start recording the frames that we acquire until we trigger; | |
628 | // a good trigger condition to get started is probably when we see a | |
629 | // response from the tag. | |
630 | int triggered = FALSE; // FALSE to wait first for card | |
631 | ||
632 | // The command (reader -> tag) that we're receiving. | |
633 | // The length of a received command will in most cases be no more than 18 bytes. | |
634 | // So 32 should be enough! | |
635 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
636 | // The response (tag -> reader) that we're receiving. | |
637 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
638 | ||
639 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
640 | // into trace, along with its length and other annotations. | |
641 | //uint8_t *trace = (uint8_t *)BigBuf; | |
642 | ||
643 | traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011 | |
644 | ||
645 | // The DMA buffer, used to stream samples from the FPGA | |
646 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
647 | int lastRxCounter; | |
648 | int8_t *upTo; | |
649 | int smpl; | |
650 | int maxBehindBy = 0; | |
651 | ||
652 | // Count of samples received so far, so that we can include timing | |
653 | // information in the trace buffer. | |
654 | int samples = 0; | |
655 | int rsamples = 0; | |
656 | ||
657 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
658 | ||
659 | // Set up the demodulator for tag -> reader responses. | |
660 | Demod.output = receivedResponse; | |
661 | Demod.len = 0; | |
662 | Demod.state = DEMOD_UNSYNCD; | |
663 | ||
664 | // Setup for the DMA. | |
665 | FpgaSetupSsc(); | |
666 | upTo = dmaBuf; | |
667 | lastRxCounter = DMA_BUFFER_SIZE; | |
668 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
669 | ||
670 | // And the reader -> tag commands | |
671 | memset(&Uart, 0, sizeof(Uart)); | |
672 | Uart.output = receivedCmd; | |
673 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
674 | Uart.state = STATE_UNSYNCD; | |
675 | ||
676 | // And put the FPGA in the appropriate mode | |
677 | // Signal field is off with the appropriate LED | |
678 | LED_D_OFF(); | |
679 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
680 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
681 | ||
682 | ||
683 | // And now we loop, receiving samples. | |
684 | for(;;) { | |
685 | LED_A_ON(); | |
686 | WDT_HIT(); | |
687 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
688 | (DMA_BUFFER_SIZE-1); | |
689 | if(behindBy > maxBehindBy) { | |
690 | maxBehindBy = behindBy; | |
691 | if(behindBy > 400) { | |
692 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
693 | goto done; | |
694 | } | |
695 | } | |
696 | if(behindBy < 1) continue; | |
697 | ||
698 | LED_A_OFF(); | |
699 | smpl = upTo[0]; | |
700 | upTo++; | |
701 | lastRxCounter -= 1; | |
702 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
703 | upTo -= DMA_BUFFER_SIZE; | |
704 | lastRxCounter += DMA_BUFFER_SIZE; | |
705 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
706 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
707 | } | |
708 | ||
709 | samples += 4; | |
710 | if(MillerDecoding((smpl & 0xF0) >> 4)) { | |
711 | rsamples = samples - Uart.samples; | |
712 | LED_C_ON(); | |
713 | if(triggered) { | |
714 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
715 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
716 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
717 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
718 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); | |
719 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); | |
720 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); | |
721 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); | |
722 | trace[traceLen++] = Uart.byteCnt; | |
723 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); | |
724 | traceLen += Uart.byteCnt; | |
725 | if(traceLen > TRACE_LENGTH) break; | |
726 | } | |
727 | /* And ready to receive another command. */ | |
728 | Uart.state = STATE_UNSYNCD; | |
729 | /* And also reset the demod code, which might have been */ | |
730 | /* false-triggered by the commands from the reader. */ | |
731 | Demod.state = DEMOD_UNSYNCD; | |
732 | LED_B_OFF(); | |
733 | } | |
734 | ||
735 | if(ManchesterDecoding(smpl & 0x0F)) { | |
736 | rsamples = samples - Demod.samples; | |
737 | LED_B_ON(); | |
738 | ||
739 | // timestamp, as a count of samples | |
740 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
741 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
742 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
743 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); | |
744 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); | |
745 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); | |
746 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); | |
747 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); | |
748 | // length | |
749 | trace[traceLen++] = Demod.len; | |
750 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
751 | traceLen += Demod.len; | |
752 | if(traceLen > TRACE_LENGTH) break; | |
753 | ||
754 | triggered = TRUE; | |
755 | ||
756 | // And ready to receive another response. | |
757 | memset(&Demod, 0, sizeof(Demod)); | |
758 | Demod.output = receivedResponse; | |
759 | Demod.state = DEMOD_UNSYNCD; | |
760 | LED_C_OFF(); | |
761 | } | |
762 | ||
763 | if(BUTTON_PRESS()) { | |
764 | DbpString("cancelled_a"); | |
765 | goto done; | |
766 | } | |
767 | } | |
768 | ||
769 | DbpString("COMMAND FINISHED"); | |
770 | ||
771 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
772 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
773 | ||
774 | done: | |
775 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
776 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
777 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
778 | LED_A_OFF(); | |
779 | LED_B_OFF(); | |
780 | LED_C_OFF(); | |
781 | LED_D_OFF(); | |
782 | } | |
783 | ||
784 | //----------------------------------------------------------------------------- | |
785 | // Prepare tag messages | |
786 | //----------------------------------------------------------------------------- | |
787 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) | |
788 | { | |
789 | int i; | |
790 | ||
791 | ToSendReset(); | |
792 | ||
793 | // Correction bit, might be removed when not needed | |
794 | ToSendStuffBit(0); | |
795 | ToSendStuffBit(0); | |
796 | ToSendStuffBit(0); | |
797 | ToSendStuffBit(0); | |
798 | ToSendStuffBit(1); // 1 | |
799 | ToSendStuffBit(0); | |
800 | ToSendStuffBit(0); | |
801 | ToSendStuffBit(0); | |
802 | ||
803 | // Send startbit | |
804 | ToSend[++ToSendMax] = SEC_D; | |
805 | ||
806 | for(i = 0; i < len; i++) { | |
807 | int j; | |
808 | uint8_t b = cmd[i]; | |
809 | ||
810 | // Data bits | |
811 | for(j = 0; j < 8; j++) { | |
812 | if(b & 1) { | |
813 | ToSend[++ToSendMax] = SEC_D; | |
814 | } else { | |
815 | ToSend[++ToSendMax] = SEC_E; | |
816 | } | |
817 | b >>= 1; | |
818 | } | |
819 | ||
820 | // Get the parity bit | |
821 | if ((dwParity >> i) & 0x01) { | |
822 | ToSend[++ToSendMax] = SEC_D; | |
823 | } else { | |
824 | ToSend[++ToSendMax] = SEC_E; | |
825 | } | |
826 | } | |
827 | ||
828 | // Send stopbit | |
829 | ToSend[++ToSendMax] = SEC_F; | |
830 | ||
831 | // Convert from last byte pos to length | |
832 | ToSendMax++; | |
833 | } | |
834 | ||
835 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ | |
836 | CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); | |
837 | } | |
838 | ||
839 | //----------------------------------------------------------------------------- | |
840 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 | |
841 | //----------------------------------------------------------------------------- | |
842 | static void CodeStrangeAnswerAsTag() | |
843 | { | |
844 | int i; | |
845 | ||
846 | ToSendReset(); | |
847 | ||
848 | // Correction bit, might be removed when not needed | |
849 | ToSendStuffBit(0); | |
850 | ToSendStuffBit(0); | |
851 | ToSendStuffBit(0); | |
852 | ToSendStuffBit(0); | |
853 | ToSendStuffBit(1); // 1 | |
854 | ToSendStuffBit(0); | |
855 | ToSendStuffBit(0); | |
856 | ToSendStuffBit(0); | |
857 | ||
858 | // Send startbit | |
859 | ToSend[++ToSendMax] = SEC_D; | |
860 | ||
861 | // 0 | |
862 | ToSend[++ToSendMax] = SEC_E; | |
863 | ||
864 | // 0 | |
865 | ToSend[++ToSendMax] = SEC_E; | |
866 | ||
867 | // 1 | |
868 | ToSend[++ToSendMax] = SEC_D; | |
869 | ||
870 | // Send stopbit | |
871 | ToSend[++ToSendMax] = SEC_F; | |
872 | ||
873 | // Flush the buffer in FPGA!! | |
874 | for(i = 0; i < 5; i++) { | |
875 | ToSend[++ToSendMax] = SEC_F; | |
876 | } | |
877 | ||
878 | // Convert from last byte pos to length | |
879 | ToSendMax++; | |
880 | } | |
881 | ||
882 | static void Code4bitAnswerAsTag(uint8_t cmd) | |
883 | { | |
884 | int i; | |
885 | ||
886 | ToSendReset(); | |
887 | ||
888 | // Correction bit, might be removed when not needed | |
889 | ToSendStuffBit(0); | |
890 | ToSendStuffBit(0); | |
891 | ToSendStuffBit(0); | |
892 | ToSendStuffBit(0); | |
893 | ToSendStuffBit(1); // 1 | |
894 | ToSendStuffBit(0); | |
895 | ToSendStuffBit(0); | |
896 | ToSendStuffBit(0); | |
897 | ||
898 | // Send startbit | |
899 | ToSend[++ToSendMax] = SEC_D; | |
900 | ||
901 | uint8_t b = cmd; | |
902 | for(i = 0; i < 4; i++) { | |
903 | if(b & 1) { | |
904 | ToSend[++ToSendMax] = SEC_D; | |
905 | } else { | |
906 | ToSend[++ToSendMax] = SEC_E; | |
907 | } | |
908 | b >>= 1; | |
909 | } | |
910 | ||
911 | // Send stopbit | |
912 | ToSend[++ToSendMax] = SEC_F; | |
913 | ||
914 | // Flush the buffer in FPGA!! | |
915 | for(i = 0; i < 5; i++) { | |
916 | ToSend[++ToSendMax] = SEC_F; | |
917 | } | |
918 | ||
919 | // Convert from last byte pos to length | |
920 | ToSendMax++; | |
921 | } | |
922 | ||
923 | //----------------------------------------------------------------------------- | |
924 | // Wait for commands from reader | |
925 | // Stop when button is pressed | |
926 | // Or return TRUE when command is captured | |
927 | //----------------------------------------------------------------------------- | |
928 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) | |
929 | { | |
930 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
931 | // only, since we are receiving, not transmitting). | |
932 | // Signal field is off with the appropriate LED | |
933 | LED_D_OFF(); | |
934 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
935 | ||
936 | // Now run a `software UART' on the stream of incoming samples. | |
937 | Uart.output = received; | |
938 | Uart.byteCntMax = maxLen; | |
939 | Uart.state = STATE_UNSYNCD; | |
940 | ||
941 | for(;;) { | |
942 | WDT_HIT(); | |
943 | ||
944 | if(BUTTON_PRESS()) return FALSE; | |
945 | ||
946 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
947 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
948 | } | |
949 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
950 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
951 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
952 | *len = Uart.byteCnt; | |
953 | return TRUE; | |
954 | } | |
955 | if(MillerDecoding(b & 0x0f)) { | |
956 | *len = Uart.byteCnt; | |
957 | return TRUE; | |
958 | } | |
959 | } | |
960 | } | |
961 | } | |
962 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); | |
963 | ||
964 | //----------------------------------------------------------------------------- | |
965 | // Main loop of simulated tag: receive commands from reader, decide what | |
966 | // response to send, and send it. | |
967 | //----------------------------------------------------------------------------- | |
968 | void SimulateIso14443aTag(int tagType, int TagUid) | |
969 | { | |
970 | // This function contains the tag emulation | |
971 | ||
972 | // Prepare protocol messages | |
973 | // static const uint8_t cmd1[] = { 0x26 }; | |
974 | // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg | |
975 | // | |
976 | static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me | |
977 | // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me | |
978 | ||
979 | // UID response | |
980 | // static const uint8_t cmd2[] = { 0x93, 0x20 }; | |
981 | //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg | |
982 | ||
983 | // my desfire | |
984 | static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips | |
985 | ||
986 | ||
987 | // When reader selects us during cascade1 it will send cmd3 | |
988 | //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) | |
989 | uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) | |
990 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
991 | ||
992 | // send cascade2 2nd half of UID | |
993 | static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck | |
994 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID | |
995 | ||
996 | // When reader selects us during cascade2 it will send cmd3a | |
997 | //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) | |
998 | uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) | |
999 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1000 | ||
1001 | static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
1002 | ||
1003 | uint8_t *resp; | |
1004 | int respLen; | |
1005 | ||
1006 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes | |
1007 | // This will need | |
1008 | // 144 data bits (18 * 8) | |
1009 | // 18 parity bits | |
1010 | // 2 Start and stop | |
1011 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
1012 | // 1 just for the case | |
1013 | // ----------- + | |
1014 | // 166 | |
1015 | // | |
1016 | // 166 bytes, since every bit that needs to be send costs us a byte | |
1017 | // | |
1018 | ||
1019 | // Respond with card type | |
1020 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); | |
1021 | int resp1Len; | |
1022 | ||
1023 | // Anticollision cascade1 - respond with uid | |
1024 | uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); | |
1025 | int resp2Len; | |
1026 | ||
1027 | // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1028 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 | |
1029 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); | |
1030 | int resp2aLen; | |
1031 | ||
1032 | // Acknowledge select - cascade 1 | |
1033 | uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); | |
1034 | int resp3Len; | |
1035 | ||
1036 | // Acknowledge select - cascade 2 | |
1037 | uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); | |
1038 | int resp3aLen; | |
1039 | ||
1040 | // Response to a read request - not implemented atm | |
1041 | uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); | |
1042 | int resp4Len; | |
1043 | ||
1044 | // Authenticate response - nonce | |
1045 | uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); | |
1046 | int resp5Len; | |
1047 | ||
1048 | uint8_t *receivedCmd = (uint8_t *)BigBuf; | |
1049 | int len; | |
1050 | ||
1051 | int i; | |
1052 | int u; | |
1053 | uint8_t b; | |
1054 | ||
1055 | // To control where we are in the protocol | |
1056 | int order = 0; | |
1057 | int lastorder; | |
1058 | ||
1059 | // Just to allow some checks | |
1060 | int happened = 0; | |
1061 | int happened2 = 0; | |
1062 | ||
1063 | int cmdsRecvd = 0; | |
1064 | ||
1065 | int fdt_indicator; | |
1066 | ||
1067 | memset(receivedCmd, 0x44, 400); | |
1068 | ||
1069 | // Prepare the responses of the anticollision phase | |
1070 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1071 | ||
1072 | // Answer to request | |
1073 | CodeIso14443aAsTag(response1, sizeof(response1)); | |
1074 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1075 | ||
1076 | // Send our UID (cascade 1) | |
1077 | CodeIso14443aAsTag(response2, sizeof(response2)); | |
1078 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1079 | ||
1080 | // Answer to select (cascade1) | |
1081 | CodeIso14443aAsTag(response3, sizeof(response3)); | |
1082 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1083 | ||
1084 | // Send the cascade 2 2nd part of the uid | |
1085 | CodeIso14443aAsTag(response2a, sizeof(response2a)); | |
1086 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; | |
1087 | ||
1088 | // Answer to select (cascade 2) | |
1089 | CodeIso14443aAsTag(response3a, sizeof(response3a)); | |
1090 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; | |
1091 | ||
1092 | // Strange answer is an example of rare message size (3 bits) | |
1093 | CodeStrangeAnswerAsTag(); | |
1094 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1095 | ||
1096 | // Authentication answer (random nonce) | |
1097 | CodeIso14443aAsTag(response5, sizeof(response5)); | |
1098 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; | |
1099 | ||
1100 | // We need to listen to the high-frequency, peak-detected path. | |
1101 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1102 | FpgaSetupSsc(); | |
1103 | ||
1104 | cmdsRecvd = 0; | |
1105 | ||
1106 | LED_A_ON(); | |
1107 | for(;;) { | |
1108 | ||
1109 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { | |
1110 | DbpString("button press"); | |
1111 | break; | |
1112 | } | |
1113 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated | |
1114 | // Okay, look at the command now. | |
1115 | lastorder = order; | |
1116 | i = 1; // first byte transmitted | |
1117 | if(receivedCmd[0] == 0x26) { | |
1118 | // Received a REQUEST | |
1119 | resp = resp1; respLen = resp1Len; order = 1; | |
1120 | //DbpString("Hello request from reader:"); | |
1121 | } else if(receivedCmd[0] == 0x52) { | |
1122 | // Received a WAKEUP | |
1123 | resp = resp1; respLen = resp1Len; order = 6; | |
1124 | // //DbpString("Wakeup request from reader:"); | |
1125 | ||
1126 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision | |
1127 | // Received request for UID (cascade 1) | |
1128 | resp = resp2; respLen = resp2Len; order = 2; | |
1129 | // DbpString("UID (cascade 1) request from reader:"); | |
1130 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1131 | ||
1132 | ||
1133 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision | |
1134 | // Received request for UID (cascade 2) | |
1135 | resp = resp2a; respLen = resp2aLen; order = 20; | |
1136 | // DbpString("UID (cascade 2) request from reader:"); | |
1137 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1138 | ||
1139 | ||
1140 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select | |
1141 | // Received a SELECT | |
1142 | resp = resp3; respLen = resp3Len; order = 3; | |
1143 | // DbpString("Select (cascade 1) request from reader:"); | |
1144 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1145 | ||
1146 | ||
1147 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select | |
1148 | // Received a SELECT | |
1149 | resp = resp3a; respLen = resp3aLen; order = 30; | |
1150 | // DbpString("Select (cascade 2) request from reader:"); | |
1151 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1152 | ||
1153 | ||
1154 | } else if(receivedCmd[0] == 0x30) { | |
1155 | // Received a READ | |
1156 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing | |
1157 | Dbprintf("Read request from reader: %x %x %x", | |
1158 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1159 | ||
1160 | ||
1161 | } else if(receivedCmd[0] == 0x50) { | |
1162 | // Received a HALT | |
1163 | resp = resp1; respLen = 0; order = 5; // Do nothing | |
1164 | DbpString("Reader requested we HALT!:"); | |
1165 | ||
1166 | } else if(receivedCmd[0] == 0x60) { | |
1167 | // Received an authentication request | |
1168 | resp = resp5; respLen = resp5Len; order = 7; | |
1169 | Dbprintf("Authenticate request from reader: %x %x %x", | |
1170 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1171 | ||
1172 | } else if(receivedCmd[0] == 0xE0) { | |
1173 | // Received a RATS request | |
1174 | resp = resp1; respLen = 0;order = 70; | |
1175 | Dbprintf("RATS request from reader: %x %x %x", | |
1176 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1177 | } else { | |
1178 | // Never seen this command before | |
1179 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1180 | len, | |
1181 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1182 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1183 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1184 | // Do not respond | |
1185 | resp = resp1; respLen = 0; order = 0; | |
1186 | } | |
1187 | ||
1188 | // Count number of wakeups received after a halt | |
1189 | if(order == 6 && lastorder == 5) { happened++; } | |
1190 | ||
1191 | // Count number of other messages after a halt | |
1192 | if(order != 6 && lastorder == 5) { happened2++; } | |
1193 | ||
1194 | // Look at last parity bit to determine timing of answer | |
1195 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { | |
1196 | // 1236, so correction bit needed | |
1197 | i = 0; | |
1198 | } | |
1199 | ||
1200 | memset(receivedCmd, 0x44, 32); | |
1201 | ||
1202 | if(cmdsRecvd > 999) { | |
1203 | DbpString("1000 commands later..."); | |
1204 | break; | |
1205 | } | |
1206 | else { | |
1207 | cmdsRecvd++; | |
1208 | } | |
1209 | ||
1210 | if(respLen <= 0) continue; | |
1211 | //---------------------------- | |
1212 | u = 0; | |
1213 | b = 0x00; | |
1214 | fdt_indicator = FALSE; | |
1215 | ||
1216 | EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52); | |
1217 | /* // Modulate Manchester | |
1218 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1219 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1220 | FpgaSetupSsc(); | |
1221 | ||
1222 | // ### Transmit the response ### | |
1223 | u = 0; | |
1224 | b = 0x00; | |
1225 | fdt_indicator = FALSE; | |
1226 | for(;;) { | |
1227 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1228 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1229 | (void)b; | |
1230 | } | |
1231 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1232 | if(i > respLen) { | |
1233 | b = 0x00; | |
1234 | u++; | |
1235 | } else { | |
1236 | b = resp[i]; | |
1237 | i++; | |
1238 | } | |
1239 | AT91C_BASE_SSC->SSC_THR = b; | |
1240 | ||
1241 | if(u > 4) { | |
1242 | break; | |
1243 | } | |
1244 | } | |
1245 | if(BUTTON_PRESS()) { | |
1246 | break; | |
1247 | } | |
1248 | } | |
1249 | */ | |
1250 | } | |
1251 | ||
1252 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1253 | LED_A_OFF(); | |
1254 | } | |
1255 | ||
1256 | //----------------------------------------------------------------------------- | |
1257 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1258 | //----------------------------------------------------------------------------- | |
1259 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) | |
1260 | { | |
1261 | int c; | |
1262 | ||
1263 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1264 | ||
1265 | if (wait) | |
1266 | if(*wait < 10) | |
1267 | *wait = 10; | |
1268 | ||
1269 | for(c = 0; c < *wait;) { | |
1270 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1271 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1272 | c++; | |
1273 | } | |
1274 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1275 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1276 | (void)r; | |
1277 | } | |
1278 | WDT_HIT(); | |
1279 | } | |
1280 | ||
1281 | c = 0; | |
1282 | for(;;) { | |
1283 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1284 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1285 | c++; | |
1286 | if(c >= len) { | |
1287 | break; | |
1288 | } | |
1289 | } | |
1290 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1291 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1292 | (void)r; | |
1293 | } | |
1294 | WDT_HIT(); | |
1295 | } | |
1296 | if (samples) *samples = (c + *wait) << 3; | |
1297 | } | |
1298 | ||
1299 | //----------------------------------------------------------------------------- | |
1300 | // Code a 7-bit command without parity bit | |
1301 | // This is especially for 0x26 and 0x52 (REQA and WUPA) | |
1302 | //----------------------------------------------------------------------------- | |
1303 | void ShortFrameFromReader(const uint8_t bt) | |
1304 | { | |
1305 | int j; | |
1306 | int last; | |
1307 | uint8_t b; | |
1308 | ||
1309 | ToSendReset(); | |
1310 | ||
1311 | // Start of Communication (Seq. Z) | |
1312 | ToSend[++ToSendMax] = SEC_Z; | |
1313 | last = 0; | |
1314 | ||
1315 | b = bt; | |
1316 | for(j = 0; j < 7; j++) { | |
1317 | if(b & 1) { | |
1318 | // Sequence X | |
1319 | ToSend[++ToSendMax] = SEC_X; | |
1320 | last = 1; | |
1321 | } else { | |
1322 | if(last == 0) { | |
1323 | // Sequence Z | |
1324 | ToSend[++ToSendMax] = SEC_Z; | |
1325 | } | |
1326 | else { | |
1327 | // Sequence Y | |
1328 | ToSend[++ToSendMax] = SEC_Y; | |
1329 | last = 0; | |
1330 | } | |
1331 | } | |
1332 | b >>= 1; | |
1333 | } | |
1334 | ||
1335 | // End of Communication | |
1336 | if(last == 0) { | |
1337 | // Sequence Z | |
1338 | ToSend[++ToSendMax] = SEC_Z; | |
1339 | } | |
1340 | else { | |
1341 | // Sequence Y | |
1342 | ToSend[++ToSendMax] = SEC_Y; | |
1343 | last = 0; | |
1344 | } | |
1345 | // Sequence Y | |
1346 | ToSend[++ToSendMax] = SEC_Y; | |
1347 | ||
1348 | // Just to be sure! | |
1349 | ToSend[++ToSendMax] = SEC_Y; | |
1350 | ToSend[++ToSendMax] = SEC_Y; | |
1351 | ToSend[++ToSendMax] = SEC_Y; | |
1352 | ||
1353 | // Convert from last character reference to length | |
1354 | ToSendMax++; | |
1355 | } | |
1356 | ||
1357 | //----------------------------------------------------------------------------- | |
1358 | // Prepare reader command to send to FPGA | |
1359 | // | |
1360 | //----------------------------------------------------------------------------- | |
1361 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1362 | { | |
1363 | int i, j; | |
1364 | int last; | |
1365 | uint8_t b; | |
1366 | ||
1367 | ToSendReset(); | |
1368 | ||
1369 | // Start of Communication (Seq. Z) | |
1370 | ToSend[++ToSendMax] = SEC_Z; | |
1371 | last = 0; | |
1372 | ||
1373 | // Generate send structure for the data bits | |
1374 | for (i = 0; i < len; i++) { | |
1375 | // Get the current byte to send | |
1376 | b = cmd[i]; | |
1377 | ||
1378 | for (j = 0; j < 8; j++) { | |
1379 | if (b & 1) { | |
1380 | // Sequence X | |
1381 | ToSend[++ToSendMax] = SEC_X; | |
1382 | last = 1; | |
1383 | } else { | |
1384 | if (last == 0) { | |
1385 | // Sequence Z | |
1386 | ToSend[++ToSendMax] = SEC_Z; | |
1387 | } else { | |
1388 | // Sequence Y | |
1389 | ToSend[++ToSendMax] = SEC_Y; | |
1390 | last = 0; | |
1391 | } | |
1392 | } | |
1393 | b >>= 1; | |
1394 | } | |
1395 | ||
1396 | // Get the parity bit | |
1397 | if ((dwParity >> i) & 0x01) { | |
1398 | // Sequence X | |
1399 | ToSend[++ToSendMax] = SEC_X; | |
1400 | last = 1; | |
1401 | } else { | |
1402 | if (last == 0) { | |
1403 | // Sequence Z | |
1404 | ToSend[++ToSendMax] = SEC_Z; | |
1405 | } else { | |
1406 | // Sequence Y | |
1407 | ToSend[++ToSendMax] = SEC_Y; | |
1408 | last = 0; | |
1409 | } | |
1410 | } | |
1411 | } | |
1412 | ||
1413 | // End of Communication | |
1414 | if (last == 0) { | |
1415 | // Sequence Z | |
1416 | ToSend[++ToSendMax] = SEC_Z; | |
1417 | } else { | |
1418 | // Sequence Y | |
1419 | ToSend[++ToSendMax] = SEC_Y; | |
1420 | last = 0; | |
1421 | } | |
1422 | // Sequence Y | |
1423 | ToSend[++ToSendMax] = SEC_Y; | |
1424 | ||
1425 | // Just to be sure! | |
1426 | ToSend[++ToSendMax] = SEC_Y; | |
1427 | ToSend[++ToSendMax] = SEC_Y; | |
1428 | ToSend[++ToSendMax] = SEC_Y; | |
1429 | ||
1430 | // Convert from last character reference to length | |
1431 | ToSendMax++; | |
1432 | } | |
1433 | ||
1434 | //----------------------------------------------------------------------------- | |
1435 | // Wait for commands from reader | |
1436 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1437 | // Or return 0 when command is captured | |
1438 | //----------------------------------------------------------------------------- | |
1439 | static int EmGetCmd(uint8_t *received, int *len, int maxLen) | |
1440 | { | |
1441 | *len = 0; | |
1442 | ||
1443 | uint32_t timer = 0, vtime = 0; | |
1444 | int analogCnt = 0; | |
1445 | int analogAVG = 0; | |
1446 | ||
1447 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1448 | // only, since we are receiving, not transmitting). | |
1449 | // Signal field is off with the appropriate LED | |
1450 | LED_D_OFF(); | |
1451 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1452 | ||
1453 | // Set ADC to read field strength | |
1454 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1455 | AT91C_BASE_ADC->ADC_MR = | |
1456 | ADC_MODE_PRESCALE(32) | | |
1457 | ADC_MODE_STARTUP_TIME(16) | | |
1458 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
1459 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1460 | // start ADC | |
1461 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1462 | ||
1463 | // Now run a 'software UART' on the stream of incoming samples. | |
1464 | Uart.output = received; | |
1465 | Uart.byteCntMax = maxLen; | |
1466 | Uart.state = STATE_UNSYNCD; | |
1467 | ||
1468 | for(;;) { | |
1469 | WDT_HIT(); | |
1470 | ||
1471 | if (BUTTON_PRESS()) return 1; | |
1472 | ||
1473 | // test if the field exists | |
1474 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1475 | analogCnt++; | |
1476 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1477 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1478 | if (analogCnt >= 32) { | |
1479 | if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1480 | vtime = GetTickCount(); | |
1481 | if (!timer) timer = vtime; | |
1482 | // 50ms no field --> card to idle state | |
1483 | if (vtime - timer > 50) return 2; | |
1484 | } else | |
1485 | if (timer) timer = 0; | |
1486 | analogCnt = 0; | |
1487 | analogAVG = 0; | |
1488 | } | |
1489 | } | |
1490 | // transmit none | |
1491 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1492 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1493 | } | |
1494 | // receive and test the miller decoding | |
1495 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1496 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1497 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
1498 | *len = Uart.byteCnt; | |
1499 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1500 | return 0; | |
1501 | } | |
1502 | if(MillerDecoding(b & 0x0f)) { | |
1503 | *len = Uart.byteCnt; | |
1504 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1505 | return 0; | |
1506 | } | |
1507 | } | |
1508 | } | |
1509 | } | |
1510 | ||
1511 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) | |
1512 | { | |
1513 | int i, u = 0; | |
1514 | uint8_t b = 0; | |
1515 | ||
1516 | // Modulate Manchester | |
1517 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1518 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1519 | FpgaSetupSsc(); | |
1520 | ||
1521 | // include correction bit | |
1522 | i = 1; | |
1523 | if((Uart.parityBits & 0x01) || correctionNeeded) { | |
1524 | // 1236, so correction bit needed | |
1525 | i = 0; | |
1526 | } | |
1527 | ||
1528 | // send cycle | |
1529 | for(;;) { | |
1530 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1531 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1532 | (void)b; | |
1533 | } | |
1534 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1535 | if(i > respLen) { | |
1536 | b = 0xff; // was 0x00 | |
1537 | u++; | |
1538 | } else { | |
1539 | b = resp[i]; | |
1540 | i++; | |
1541 | } | |
1542 | AT91C_BASE_SSC->SSC_THR = b; | |
1543 | ||
1544 | if(u > 4) break; | |
1545 | } | |
1546 | if(BUTTON_PRESS()) { | |
1547 | break; | |
1548 | } | |
1549 | } | |
1550 | ||
1551 | return 0; | |
1552 | } | |
1553 | ||
1554 | int EmSend4bitEx(uint8_t resp, int correctionNeeded){ | |
1555 | Code4bitAnswerAsTag(resp); | |
1556 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1557 | if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); | |
1558 | return res; | |
1559 | } | |
1560 | ||
1561 | int EmSend4bit(uint8_t resp){ | |
1562 | return EmSend4bitEx(resp, 0); | |
1563 | } | |
1564 | ||
1565 | int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ | |
1566 | CodeIso14443aAsTagPar(resp, respLen, par); | |
1567 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1568 | if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); | |
1569 | return res; | |
1570 | } | |
1571 | ||
1572 | int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ | |
1573 | return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); | |
1574 | } | |
1575 | ||
1576 | int EmSendCmd(uint8_t *resp, int respLen){ | |
1577 | return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); | |
1578 | } | |
1579 | ||
1580 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ | |
1581 | return EmSendCmdExPar(resp, respLen, 0, par); | |
1582 | } | |
1583 | ||
1584 | //----------------------------------------------------------------------------- | |
1585 | // Wait a certain time for tag response | |
1586 | // If a response is captured return TRUE | |
1587 | // If it takes to long return FALSE | |
1588 | //----------------------------------------------------------------------------- | |
1589 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1590 | { | |
1591 | // buffer needs to be 512 bytes | |
1592 | int c; | |
1593 | ||
1594 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1595 | // only, since we are receiving, not transmitting). | |
1596 | // Signal field is on with the appropriate LED | |
1597 | LED_D_ON(); | |
1598 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1599 | ||
1600 | // Now get the answer from the card | |
1601 | Demod.output = receivedResponse; | |
1602 | Demod.len = 0; | |
1603 | Demod.state = DEMOD_UNSYNCD; | |
1604 | ||
1605 | uint8_t b; | |
1606 | if (elapsed) *elapsed = 0; | |
1607 | ||
1608 | c = 0; | |
1609 | for(;;) { | |
1610 | WDT_HIT(); | |
1611 | ||
1612 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1613 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1614 | if (elapsed) (*elapsed)++; | |
1615 | } | |
1616 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1617 | if(c < iso14a_timeout) { c++; } else { return FALSE; } | |
1618 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1619 | if(ManchesterDecoding((b>>4) & 0xf)) { | |
1620 | *samples = ((c - 1) << 3) + 4; | |
1621 | return TRUE; | |
1622 | } | |
1623 | if(ManchesterDecoding(b & 0x0f)) { | |
1624 | *samples = c << 3; | |
1625 | return TRUE; | |
1626 | } | |
1627 | } | |
1628 | } | |
1629 | } | |
1630 | ||
1631 | void ReaderTransmitShort(const uint8_t* bt) | |
1632 | { | |
1633 | int wait = 0; | |
1634 | int samples = 0; | |
1635 | ||
1636 | ShortFrameFromReader(*bt); | |
1637 | ||
1638 | // Select the card | |
1639 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1640 | ||
1641 | // Store reader command in buffer | |
1642 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); | |
1643 | } | |
1644 | ||
1645 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) | |
1646 | { | |
1647 | int wait = 0; | |
1648 | int samples = 0; | |
1649 | ||
1650 | // This is tied to other size changes | |
1651 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1652 | CodeIso14443aAsReaderPar(frame,len,par); | |
1653 | ||
1654 | // Select the card | |
1655 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1656 | if(trigger) | |
1657 | LED_A_ON(); | |
1658 | ||
1659 | // Store reader command in buffer | |
1660 | if (tracing) LogTrace(frame,len,0,par,TRUE); | |
1661 | } | |
1662 | ||
1663 | ||
1664 | void ReaderTransmit(uint8_t* frame, int len) | |
1665 | { | |
1666 | // Generate parity and redirect | |
1667 | ReaderTransmitPar(frame,len,GetParity(frame,len)); | |
1668 | } | |
1669 | ||
1670 | int ReaderReceive(uint8_t* receivedAnswer) | |
1671 | { | |
1672 | int samples = 0; | |
1673 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1674 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1675 | if(samples == 0) return FALSE; | |
1676 | return Demod.len; | |
1677 | } | |
1678 | ||
1679 | int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr) | |
1680 | { | |
1681 | int samples = 0; | |
1682 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1683 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1684 | *parptr = Demod.parityBits; | |
1685 | if(samples == 0) return FALSE; | |
1686 | return Demod.len; | |
1687 | } | |
1688 | ||
1689 | /* performs iso14443a anticolision procedure | |
1690 | * fills the uid pointer unless NULL | |
1691 | * fills resp_data unless NULL */ | |
1692 | int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) { | |
1693 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP | |
1694 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1695 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1696 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
1697 | ||
1698 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1699 | ||
1700 | uint8_t sak = 0x04; // cascade uid | |
1701 | int cascade_level = 0; | |
1702 | ||
1703 | int len; | |
1704 | ||
1705 | // clear uid | |
1706 | memset(uid_ptr, 0, 8); | |
1707 | ||
1708 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1709 | ReaderTransmitShort(wupa); | |
1710 | // Receive the ATQA | |
1711 | if(!ReaderReceive(resp)) return 0; | |
1712 | ||
1713 | if(resp_data) | |
1714 | memcpy(resp_data->atqa, resp, 2); | |
1715 | ||
1716 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1717 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1718 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1719 | for(; sak & 0x04; cascade_level++) | |
1720 | { | |
1721 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1722 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1723 | ||
1724 | // SELECT_ALL | |
1725 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1726 | if (!ReaderReceive(resp)) return 0; | |
1727 | if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4); | |
1728 | ||
1729 | // calculate crypto UID | |
1730 | if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4); | |
1731 | ||
1732 | // Construct SELECT UID command | |
1733 | memcpy(sel_uid+2,resp,5); | |
1734 | AppendCrc14443a(sel_uid,7); | |
1735 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1736 | ||
1737 | // Receive the SAK | |
1738 | if (!ReaderReceive(resp)) return 0; | |
1739 | sak = resp[0]; | |
1740 | } | |
1741 | if(resp_data) { | |
1742 | resp_data->sak = sak; | |
1743 | resp_data->ats_len = 0; | |
1744 | } | |
1745 | //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3 | |
1746 | if (uid_ptr[0] == 0x88) { | |
1747 | memcpy(uid_ptr, uid_ptr + 1, 7); | |
1748 | uid_ptr[7] = 0; | |
1749 | } | |
1750 | ||
1751 | if( (sak & 0x20) == 0) | |
1752 | return 2; // non iso14443a compliant tag | |
1753 | ||
1754 | // Request for answer to select | |
1755 | if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!! | |
1756 | AppendCrc14443a(rats, 2); | |
1757 | ReaderTransmit(rats, sizeof(rats)); | |
1758 | ||
1759 | if (!(len = ReaderReceive(resp))) return 0; | |
1760 | ||
1761 | memcpy(resp_data->ats, resp, sizeof(resp_data->ats)); | |
1762 | resp_data->ats_len = len; | |
1763 | } | |
1764 | ||
1765 | return 1; | |
1766 | } | |
1767 | ||
1768 | void iso14443a_setup() { | |
1769 | // Setup SSC | |
1770 | FpgaSetupSsc(); | |
1771 | // Start from off (no field generated) | |
1772 | // Signal field is off with the appropriate LED | |
1773 | LED_D_OFF(); | |
1774 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1775 | SpinDelay(200); | |
1776 | ||
1777 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1778 | ||
1779 | // Now give it time to spin up. | |
1780 | // Signal field is on with the appropriate LED | |
1781 | LED_D_ON(); | |
1782 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1783 | SpinDelay(200); | |
1784 | ||
1785 | iso14a_timeout = 2048; //default | |
1786 | } | |
1787 | ||
1788 | int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { | |
1789 | uint8_t real_cmd[cmd_len+4]; | |
1790 | real_cmd[0] = 0x0a; //I-Block | |
1791 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards | |
1792 | memcpy(real_cmd+2, cmd, cmd_len); | |
1793 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1794 | ||
1795 | ReaderTransmit(real_cmd, cmd_len+4); | |
1796 | size_t len = ReaderReceive(data); | |
1797 | if(!len) | |
1798 | return -1; //DATA LINK ERROR | |
1799 | ||
1800 | return len; | |
1801 | } | |
1802 | ||
1803 | ||
1804 | //----------------------------------------------------------------------------- | |
1805 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1806 | // | |
1807 | //----------------------------------------------------------------------------- | |
1808 | void ReaderIso14443a(UsbCommand * c, UsbCommand * ack) | |
1809 | { | |
1810 | iso14a_command_t param = c->arg[0]; | |
1811 | uint8_t * cmd = c->d.asBytes; | |
1812 | size_t len = c->arg[1]; | |
1813 | ||
1814 | if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1); | |
1815 | ||
1816 | if(param & ISO14A_CONNECT) { | |
1817 | iso14443a_setup(); | |
1818 | ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL); | |
1819 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1820 | } | |
1821 | ||
1822 | if(param & ISO14A_SET_TIMEOUT) { | |
1823 | iso14a_timeout = c->arg[2]; | |
1824 | } | |
1825 | ||
1826 | if(param & ISO14A_SET_TIMEOUT) { | |
1827 | iso14a_timeout = c->arg[2]; | |
1828 | } | |
1829 | ||
1830 | if(param & ISO14A_APDU) { | |
1831 | ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes); | |
1832 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1833 | } | |
1834 | ||
1835 | if(param & ISO14A_RAW) { | |
1836 | if(param & ISO14A_APPEND_CRC) { | |
1837 | AppendCrc14443a(cmd,len); | |
1838 | len += 2; | |
1839 | } | |
1840 | ReaderTransmit(cmd,len); | |
1841 | ack->arg[0] = ReaderReceive(ack->d.asBytes); | |
1842 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1843 | } | |
1844 | ||
1845 | if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0); | |
1846 | ||
1847 | if(param & ISO14A_NO_DISCONNECT) | |
1848 | return; | |
1849 | ||
1850 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1851 | LEDsoff(); | |
1852 | } | |
1853 | //----------------------------------------------------------------------------- | |
1854 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1855 | // | |
1856 | //----------------------------------------------------------------------------- | |
1857 | void ReaderMifare(uint32_t parameter) | |
1858 | { | |
1859 | // Mifare AUTH | |
1860 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1861 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1862 | ||
1863 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1864 | traceLen = 0; | |
1865 | tracing = false; | |
1866 | ||
1867 | iso14443a_setup(); | |
1868 | ||
1869 | LED_A_ON(); | |
1870 | LED_B_OFF(); | |
1871 | LED_C_OFF(); | |
1872 | ||
1873 | byte_t nt_diff = 0; | |
1874 | LED_A_OFF(); | |
1875 | byte_t par = 0; | |
1876 | byte_t par_mask = 0xff; | |
1877 | byte_t par_low = 0; | |
1878 | int led_on = TRUE; | |
1879 | uint8_t uid[8]; | |
1880 | uint32_t cuid; | |
1881 | ||
1882 | tracing = FALSE; | |
1883 | byte_t nt[4] = {0,0,0,0}; | |
1884 | byte_t nt_attacked[4], nt_noattack[4]; | |
1885 | byte_t par_list[8] = {0,0,0,0,0,0,0,0}; | |
1886 | byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; | |
1887 | num_to_bytes(parameter, 4, nt_noattack); | |
1888 | int isOK = 0, isNULL = 0; | |
1889 | ||
1890 | while(TRUE) | |
1891 | { | |
1892 | LED_C_ON(); | |
1893 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1894 | SpinDelay(200); | |
1895 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1896 | LED_C_OFF(); | |
1897 | ||
1898 | // Test if the action was cancelled | |
1899 | if(BUTTON_PRESS()) { | |
1900 | break; | |
1901 | } | |
1902 | ||
1903 | if(!iso14443a_select_card(uid, NULL, &cuid)) continue; | |
1904 | ||
1905 | // Transmit MIFARE_CLASSIC_AUTH | |
1906 | ReaderTransmit(mf_auth, sizeof(mf_auth)); | |
1907 | ||
1908 | // Receive the (16 bit) "random" nonce | |
1909 | if (!ReaderReceive(receivedAnswer)) continue; | |
1910 | memcpy(nt, receivedAnswer, 4); | |
1911 | ||
1912 | // Transmit reader nonce and reader answer | |
1913 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par); | |
1914 | ||
1915 | // Receive 4 bit answer | |
1916 | if (ReaderReceive(receivedAnswer)) | |
1917 | { | |
1918 | if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue; | |
1919 | ||
1920 | isNULL = (nt_attacked[0] = 0) && (nt_attacked[1] = 0) && (nt_attacked[2] = 0) && (nt_attacked[3] = 0); | |
1921 | if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue; | |
1922 | ||
1923 | if (nt_diff == 0) | |
1924 | { | |
1925 | LED_A_ON(); | |
1926 | memcpy(nt_attacked, nt, 4); | |
1927 | par_mask = 0xf8; | |
1928 | par_low = par & 0x07; | |
1929 | } | |
1930 | ||
1931 | led_on = !led_on; | |
1932 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
1933 | par_list[nt_diff] = par; | |
1934 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; | |
1935 | ||
1936 | // Test if the information is complete | |
1937 | if (nt_diff == 0x07) { | |
1938 | isOK = 1; | |
1939 | break; | |
1940 | } | |
1941 | ||
1942 | nt_diff = (nt_diff + 1) & 0x07; | |
1943 | mf_nr_ar[3] = nt_diff << 5; | |
1944 | par = par_low; | |
1945 | } else { | |
1946 | if (nt_diff == 0) | |
1947 | { | |
1948 | par++; | |
1949 | } else { | |
1950 | par = (((par >> 3) + 1) << 3) | par_low; | |
1951 | } | |
1952 | } | |
1953 | } | |
1954 | ||
1955 | LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE); | |
1956 | LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); | |
1957 | LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); | |
1958 | ||
1959 | UsbCommand ack = {CMD_ACK, {isOK, 0, 0}}; | |
1960 | memcpy(ack.d.asBytes + 0, uid, 4); | |
1961 | memcpy(ack.d.asBytes + 4, nt, 4); | |
1962 | memcpy(ack.d.asBytes + 8, par_list, 8); | |
1963 | memcpy(ack.d.asBytes + 16, ks_list, 8); | |
1964 | ||
1965 | LED_B_ON(); | |
1966 | UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); | |
1967 | LED_B_OFF(); | |
1968 | ||
1969 | // Thats it... | |
1970 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1971 | LEDsoff(); | |
1972 | tracing = TRUE; | |
1973 | ||
1974 | if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED"); | |
1975 | } | |
1976 | ||
1977 | ||
1978 | //----------------------------------------------------------------------------- | |
1979 | // MIFARE 1K simulate. | |
1980 | // | |
1981 | //----------------------------------------------------------------------------- | |
1982 | void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) | |
1983 | { | |
1984 | int cardSTATE = MFEMUL_NOFIELD; | |
1985 | int _7BUID = 0; | |
1986 | int vHf = 0; // in mV | |
1987 | int nextCycleTimeout = 0; | |
1988 | int res; | |
1989 | // uint32_t timer = 0; | |
1990 | uint32_t selTimer = 0; | |
1991 | uint32_t authTimer = 0; | |
1992 | uint32_t par = 0; | |
1993 | int len = 0; | |
1994 | uint8_t cardWRBL = 0; | |
1995 | uint8_t cardAUTHSC = 0; | |
1996 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
1997 | uint32_t cardRn = 0; | |
1998 | uint32_t cardRr = 0; | |
1999 | uint32_t cuid = 0; | |
2000 | uint32_t rn_enc = 0; | |
2001 | uint32_t ans = 0; | |
2002 | uint32_t cardINTREG = 0; | |
2003 | uint8_t cardINTBLOCK = 0; | |
2004 | struct Crypto1State mpcs = {0, 0}; | |
2005 | struct Crypto1State *pcs; | |
2006 | pcs = &mpcs; | |
2007 | ||
2008 | uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); | |
2009 | uint8_t *response = eml_get_bigbufptr_sendbuf(); | |
2010 | ||
2011 | static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID | |
2012 | ||
2013 | static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
2014 | static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
2015 | ||
2016 | static uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
2017 | static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
2018 | ||
2019 | static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; | |
2020 | // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f}; | |
2021 | static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
2022 | ||
2023 | // clear trace | |
2024 | traceLen = 0; | |
2025 | tracing = true; | |
2026 | ||
2027 | // Authenticate response - nonce | |
2028 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); | |
2029 | ||
2030 | // get UID from emul memory | |
2031 | emlGetMemBt(receivedCmd, 7, 1); | |
2032 | _7BUID = !(receivedCmd[0] == 0x00); | |
2033 | if (!_7BUID) { // ---------- 4BUID | |
2034 | rATQA[0] = 0x04; | |
2035 | ||
2036 | emlGetMemBt(rUIDBCC1, 0, 4); | |
2037 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2038 | } else { // ---------- 7BUID | |
2039 | rATQA[0] = 0x44; | |
2040 | ||
2041 | rUIDBCC1[0] = 0x88; | |
2042 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
2043 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2044 | emlGetMemBt(rUIDBCC2, 3, 4); | |
2045 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; | |
2046 | } | |
2047 | ||
2048 | // -------------------------------------- test area | |
2049 | ||
2050 | // -------------------------------------- END test area | |
2051 | // start mkseconds counter | |
2052 | StartCountUS(); | |
2053 | ||
2054 | // We need to listen to the high-frequency, peak-detected path. | |
2055 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
2056 | FpgaSetupSsc(); | |
2057 | ||
2058 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
2059 | SpinDelay(200); | |
2060 | ||
2061 | if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID); | |
2062 | // calibrate mkseconds counter | |
2063 | GetDeltaCountUS(); | |
2064 | while (true) { | |
2065 | WDT_HIT(); | |
2066 | ||
2067 | if(BUTTON_PRESS()) { | |
2068 | break; | |
2069 | } | |
2070 | ||
2071 | // find reader field | |
2072 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
2073 | // can measure voltages up to 33000 mV | |
2074 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2075 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2076 | if (vHf > MF_MINFIELDV) { | |
2077 | cardSTATE_TO_IDLE(); | |
2078 | LED_A_ON(); | |
2079 | } | |
2080 | } | |
2081 | ||
2082 | if (cardSTATE != MFEMUL_NOFIELD) { | |
2083 | res = EmGetCmd(receivedCmd, &len, 100); // (+ nextCycleTimeout) | |
2084 | if (res == 2) { | |
2085 | cardSTATE = MFEMUL_NOFIELD; | |
2086 | LEDsoff(); | |
2087 | continue; | |
2088 | } | |
2089 | if(res) break; | |
2090 | } | |
2091 | ||
2092 | nextCycleTimeout = 0; | |
2093 | ||
2094 | // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]); | |
2095 | ||
2096 | if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication | |
2097 | // REQ or WUP request in ANY state and WUP in HALTED state | |
2098 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2099 | selTimer = GetTickCount(); | |
2100 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2101 | cardSTATE = MFEMUL_SELECT1; | |
2102 | ||
2103 | // init crypto block | |
2104 | LED_B_OFF(); | |
2105 | LED_C_OFF(); | |
2106 | crypto1_destroy(pcs); | |
2107 | cardAUTHKEY = 0xff; | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | switch (cardSTATE) { | |
2112 | case MFEMUL_NOFIELD:{ | |
2113 | break; | |
2114 | } | |
2115 | case MFEMUL_HALTED:{ | |
2116 | break; | |
2117 | } | |
2118 | case MFEMUL_IDLE:{ | |
2119 | break; | |
2120 | } | |
2121 | case MFEMUL_SELECT1:{ | |
2122 | // select all | |
2123 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
2124 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); | |
2125 | break; | |
2126 | } | |
2127 | ||
2128 | // select card | |
2129 | if (len == 9 && | |
2130 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
2131 | if (!_7BUID) | |
2132 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2133 | else | |
2134 | EmSendCmd(rSAK1, sizeof(rSAK1)); | |
2135 | ||
2136 | cuid = bytes_to_num(rUIDBCC1, 4); | |
2137 | if (!_7BUID) { | |
2138 | cardSTATE = MFEMUL_WORK; | |
2139 | LED_B_ON(); | |
2140 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2141 | break; | |
2142 | } else { | |
2143 | cardSTATE = MFEMUL_SELECT2; | |
2144 | break; | |
2145 | } | |
2146 | } | |
2147 | ||
2148 | break; | |
2149 | } | |
2150 | case MFEMUL_SELECT2:{ | |
2151 | if (!len) break; | |
2152 | ||
2153 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { | |
2154 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); | |
2155 | break; | |
2156 | } | |
2157 | ||
2158 | // select 2 card | |
2159 | if (len == 9 && | |
2160 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2161 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2162 | ||
2163 | cuid = bytes_to_num(rUIDBCC2, 4); | |
2164 | cardSTATE = MFEMUL_WORK; | |
2165 | LED_B_ON(); | |
2166 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); | |
2167 | break; | |
2168 | } | |
2169 | ||
2170 | // i guess there is a command). go into the work state. | |
2171 | if (len != 4) break; | |
2172 | cardSTATE = MFEMUL_WORK; | |
2173 | goto lbWORK; | |
2174 | } | |
2175 | case MFEMUL_AUTH1:{ | |
2176 | if (len == 8) { | |
2177 | // --- crypto | |
2178 | rn_enc = bytes_to_num(receivedCmd, 4); | |
2179 | cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1); | |
2180 | cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0); | |
2181 | // test if auth OK | |
2182 | if (cardRr != prng_successor(nonce, 64)){ | |
2183 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64)); | |
2184 | cardSTATE_TO_IDLE(); | |
2185 | break; | |
2186 | } | |
2187 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2188 | num_to_bytes(ans, 4, rAUTH_AT); | |
2189 | // --- crypto | |
2190 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2191 | cardSTATE = MFEMUL_AUTH2; | |
2192 | } else { | |
2193 | cardSTATE_TO_IDLE(); | |
2194 | } | |
2195 | if (cardSTATE != MFEMUL_AUTH2) break; | |
2196 | } | |
2197 | case MFEMUL_AUTH2:{ | |
2198 | LED_C_ON(); | |
2199 | cardSTATE = MFEMUL_WORK; | |
2200 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); | |
2201 | break; | |
2202 | } | |
2203 | case MFEMUL_WORK:{ | |
2204 | lbWORK: if (len == 0) break; | |
2205 | ||
2206 | if (cardAUTHKEY == 0xff) { | |
2207 | // first authentication | |
2208 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2209 | authTimer = GetTickCount(); | |
2210 | ||
2211 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2212 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2213 | ||
2214 | // --- crypto | |
2215 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2216 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2217 | num_to_bytes(nonce, 4, rAUTH_AT); | |
2218 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2219 | // --- crypto | |
2220 | ||
2221 | // last working revision | |
2222 | // EmSendCmd14443aRaw(resp1, resp1Len, 0); | |
2223 | // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true); | |
2224 | ||
2225 | cardSTATE = MFEMUL_AUTH1; | |
2226 | nextCycleTimeout = 10; | |
2227 | break; | |
2228 | } | |
2229 | } else { | |
2230 | // decrypt seqence | |
2231 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2232 | ||
2233 | // nested authentication | |
2234 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2235 | authTimer = GetTickCount(); | |
2236 | ||
2237 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2238 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2239 | ||
2240 | // --- crypto | |
2241 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2242 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2243 | num_to_bytes(ans, 4, rAUTH_AT); | |
2244 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2245 | // --- crypto | |
2246 | ||
2247 | cardSTATE = MFEMUL_AUTH1; | |
2248 | nextCycleTimeout = 10; | |
2249 | break; | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued | |
2254 | // BUT... ACK --> NACK | |
2255 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2256 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2257 | break; | |
2258 | } | |
2259 | ||
2260 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2261 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2262 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2263 | break; | |
2264 | } | |
2265 | ||
2266 | // read block | |
2267 | if (len == 4 && receivedCmd[0] == 0x30) { | |
2268 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2269 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2270 | break; | |
2271 | } | |
2272 | emlGetMem(response, receivedCmd[1], 1); | |
2273 | AppendCrc14443a(response, 16); | |
2274 | mf_crypto1_encrypt(pcs, response, 18, &par); | |
2275 | EmSendCmdPar(response, 18, par); | |
2276 | break; | |
2277 | } | |
2278 | ||
2279 | // write block | |
2280 | if (len == 4 && receivedCmd[0] == 0xA0) { | |
2281 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2282 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2283 | break; | |
2284 | } | |
2285 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2286 | nextCycleTimeout = 50; | |
2287 | cardSTATE = MFEMUL_WRITEBL2; | |
2288 | cardWRBL = receivedCmd[1]; | |
2289 | break; | |
2290 | } | |
2291 | ||
2292 | // works with cardINTREG | |
2293 | ||
2294 | // increment, decrement, restore | |
2295 | if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) { | |
2296 | if (receivedCmd[1] >= 16 * 4 || | |
2297 | receivedCmd[1] / 4 != cardAUTHSC || | |
2298 | emlCheckValBl(receivedCmd[1])) { | |
2299 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2300 | break; | |
2301 | } | |
2302 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2303 | if (receivedCmd[0] == 0xC1) | |
2304 | cardSTATE = MFEMUL_INTREG_INC; | |
2305 | if (receivedCmd[0] == 0xC0) | |
2306 | cardSTATE = MFEMUL_INTREG_DEC; | |
2307 | if (receivedCmd[0] == 0xC2) | |
2308 | cardSTATE = MFEMUL_INTREG_REST; | |
2309 | cardWRBL = receivedCmd[1]; | |
2310 | ||
2311 | break; | |
2312 | } | |
2313 | ||
2314 | ||
2315 | // transfer | |
2316 | if (len == 4 && receivedCmd[0] == 0xB0) { | |
2317 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2318 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2319 | break; | |
2320 | } | |
2321 | ||
2322 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) | |
2323 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2324 | else | |
2325 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2326 | ||
2327 | break; | |
2328 | } | |
2329 | ||
2330 | // halt | |
2331 | if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) { | |
2332 | LED_B_OFF(); | |
2333 | LED_C_OFF(); | |
2334 | cardSTATE = MFEMUL_HALTED; | |
2335 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
2336 | break; | |
2337 | } | |
2338 | ||
2339 | // command not allowed | |
2340 | if (len == 4) { | |
2341 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2342 | break; | |
2343 | } | |
2344 | ||
2345 | // case break | |
2346 | break; | |
2347 | } | |
2348 | case MFEMUL_WRITEBL2:{ | |
2349 | if (len == 18){ | |
2350 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2351 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2352 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2353 | cardSTATE = MFEMUL_WORK; | |
2354 | break; | |
2355 | } else { | |
2356 | cardSTATE_TO_IDLE(); | |
2357 | break; | |
2358 | } | |
2359 | break; | |
2360 | } | |
2361 | ||
2362 | case MFEMUL_INTREG_INC:{ | |
2363 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2364 | memcpy(&ans, receivedCmd, 4); | |
2365 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2366 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2367 | cardSTATE_TO_IDLE(); | |
2368 | break; | |
2369 | } | |
2370 | cardINTREG = cardINTREG + ans; | |
2371 | cardSTATE = MFEMUL_WORK; | |
2372 | break; | |
2373 | } | |
2374 | case MFEMUL_INTREG_DEC:{ | |
2375 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2376 | memcpy(&ans, receivedCmd, 4); | |
2377 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2378 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2379 | cardSTATE_TO_IDLE(); | |
2380 | break; | |
2381 | } | |
2382 | cardINTREG = cardINTREG - ans; | |
2383 | cardSTATE = MFEMUL_WORK; | |
2384 | break; | |
2385 | } | |
2386 | case MFEMUL_INTREG_REST:{ | |
2387 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2388 | memcpy(&ans, receivedCmd, 4); | |
2389 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2390 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2391 | cardSTATE_TO_IDLE(); | |
2392 | break; | |
2393 | } | |
2394 | cardSTATE = MFEMUL_WORK; | |
2395 | break; | |
2396 | } | |
2397 | ||
2398 | } | |
2399 | ||
2400 | } | |
2401 | ||
2402 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2403 | LEDsoff(); | |
2404 | ||
2405 | // add trace trailer | |
2406 | memset(rAUTH_NT, 0x44, 4); | |
2407 | LogTrace(rAUTH_NT, 4, 0, 0, TRUE); | |
2408 | ||
2409 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); | |
2410 | } |