]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // LEGIC RF simulation code | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "string.h" | |
15 | ||
16 | #include "legicrf.h" | |
17 | #include "legic_prng.h" | |
18 | #include "crc.h" | |
19 | ||
20 | static struct legic_frame { | |
21 | int bits; | |
22 | uint32_t data; | |
23 | } current_frame; | |
24 | ||
25 | static enum { | |
26 | STATE_DISCON, | |
27 | STATE_IV, | |
28 | STATE_CON, | |
29 | } legic_state; | |
30 | ||
31 | static crc_t legic_crc; | |
32 | static int legic_read_count; | |
33 | static uint32_t legic_prng_bc; | |
34 | static uint32_t legic_prng_iv; | |
35 | ||
36 | static int legic_phase_drift; | |
37 | static int legic_frame_drift; | |
38 | static int legic_reqresp_drift; | |
39 | ||
40 | AT91PS_TC timer; | |
41 | AT91PS_TC prng_timer; | |
42 | ||
43 | static void setup_timer(void) | |
44 | { | |
45 | /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging | |
46 | * this it won't be terribly accurate but should be good enough. | |
47 | */ | |
48 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
49 | timer = AT91C_BASE_TC1; | |
50 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
51 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; | |
52 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
53 | ||
54 | /* | |
55 | * Set up Timer 2 to use for measuring time between frames in | |
56 | * tag simulation mode. Runs 4x faster as Timer 1 | |
57 | */ | |
58 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); | |
59 | prng_timer = AT91C_BASE_TC2; | |
60 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
61 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
62 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
63 | } | |
64 | ||
65 | /* At TIMER_CLOCK3 (MCK/32) */ | |
66 | #define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */ | |
67 | #define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */ | |
68 | #define RWD_TIME_PAUSE 30 /* 20us */ | |
69 | #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ | |
70 | #define TAG_TIME_BIT 150 /* 100us for every bit */ | |
71 | #define TAG_TIME_WAIT 490 /* time from RWD frame end to tag frame start, experimentally determined */ | |
72 | ||
73 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ | |
74 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
75 | ||
76 | #define SESSION_IV 0x55 | |
77 | #define OFFSET_LOG 1024 | |
78 | ||
79 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
80 | ||
81 | /* Generate Keystream */ | |
82 | static uint32_t get_key_stream(int skip, int count) | |
83 | { | |
84 | uint32_t key=0; int i; | |
85 | ||
86 | /* Use int to enlarge timer tc to 32bit */ | |
87 | legic_prng_bc += prng_timer->TC_CV; | |
88 | prng_timer->TC_CCR = AT91C_TC_SWTRG; | |
89 | ||
90 | /* If skip == -1, forward prng time based */ | |
91 | if(skip == -1) { | |
92 | i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ | |
93 | i -= legic_prng_count(); /* substract cycles of finished frames */ | |
94 | i -= count; /* substract current frame length, rewidn to bedinning */ | |
95 | legic_prng_forward(i); | |
96 | } else { | |
97 | legic_prng_forward(skip); | |
98 | } | |
99 | ||
100 | /* Write Time Data into LOG */ | |
101 | uint8_t *BigBuf = BigBuf_get_addr(); | |
102 | i = (count == 6) ? -1 : legic_read_count; | |
103 | ||
104 | BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); | |
105 | BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; | |
106 | BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; | |
107 | BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; | |
108 | BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; | |
109 | BigBuf[OFFSET_LOG+384+i] = count; | |
110 | ||
111 | /* Generate KeyStream */ | |
112 | for(i=0; i<count; i++) { | |
113 | key |= legic_prng_get_bit() << i; | |
114 | legic_prng_forward(1); | |
115 | } | |
116 | return key; | |
117 | } | |
118 | ||
119 | /* Send a frame in tag mode, the FPGA must have been set up by | |
120 | * LegicRfSimulate | |
121 | */ | |
122 | static void frame_send_tag(uint16_t response, int bits, int crypt) | |
123 | { | |
124 | /* Bitbang the response */ | |
125 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
126 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
127 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
128 | ||
129 | /* Use time to crypt frame */ | |
130 | if(crypt) { | |
131 | legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ | |
132 | int i; int key = 0; | |
133 | for(i=0; i<bits; i++) { | |
134 | key |= legic_prng_get_bit() << i; | |
135 | legic_prng_forward(1); | |
136 | } | |
137 | //Dbprintf("key = 0x%x", key); | |
138 | response = response ^ key; | |
139 | } | |
140 | ||
141 | /* Wait for the frame start */ | |
142 | while(timer->TC_CV < (TAG_TIME_WAIT - 30)) ; | |
143 | ||
144 | int i; | |
145 | for(i=0; i<bits; i++) { | |
146 | int nextbit = timer->TC_CV + TAG_TIME_BIT; | |
147 | int bit = response & 1; | |
148 | response = response >> 1; | |
149 | if(bit) | |
150 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
151 | else | |
152 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
153 | ||
154 | while(timer->TC_CV < nextbit) ; | |
155 | } | |
156 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
157 | } | |
158 | ||
159 | /* Send a frame in reader mode, the FPGA must have been set up by | |
160 | * LegicRfReader | |
161 | */ | |
162 | static void frame_send_rwd(uint32_t data, int bits) | |
163 | { | |
164 | /* Start clock */ | |
165 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
166 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
167 | ||
168 | int i; | |
169 | for(i=0; i<bits; i++) { | |
170 | int starttime = timer->TC_CV; | |
171 | int pause_end = starttime + RWD_TIME_PAUSE, bit_end; | |
172 | int bit = data & 1; | |
173 | data = data >> 1; | |
174 | ||
175 | if(bit ^ legic_prng_get_bit()) | |
176 | bit_end = starttime + RWD_TIME_1; | |
177 | else | |
178 | bit_end = starttime + RWD_TIME_0; | |
179 | ||
180 | ||
181 | /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is | |
182 | * RWD_TIME_x, where x is the bit to be transmitted */ | |
183 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
184 | while(timer->TC_CV < pause_end) ; | |
185 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
186 | legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */ | |
187 | ||
188 | while(timer->TC_CV < bit_end); | |
189 | } | |
190 | ||
191 | /* One final pause to mark the end of the frame */ | |
192 | int pause_end = timer->TC_CV + RWD_TIME_PAUSE; | |
193 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
194 | while(timer->TC_CV < pause_end) ; | |
195 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
196 | ||
197 | ||
198 | /* Reset the timer, to measure time until the start of the tag frame */ | |
199 | timer->TC_CCR = AT91C_TC_SWTRG; | |
200 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
201 | } | |
202 | ||
203 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
204 | * timer must have been set up by LegicRfReader and frame_send_rwd. | |
205 | * | |
206 | * The LEGIC RF protocol from card to reader does not include explicit | |
207 | * frame start/stop information or length information. The reader must | |
208 | * know beforehand how many bits it wants to receive. (Notably: a card | |
209 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
210 | * | |
211 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but | |
212 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
213 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
214 | * for edges. Count the edges in each bit interval. If they are approximately | |
215 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
216 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
217 | * timer that's still running from frame_send_rwd in order to get a synchronization | |
218 | * with the frame that we just sent. | |
219 | * | |
220 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
221 | * the range is severely reduced (and you'll probably also need a good antenna). | |
222 | * So this should be fixed some time in the future for a proper receiver. | |
223 | */ | |
224 | static void frame_receive_rwd(struct legic_frame * const f, int bits, int crypt) | |
225 | { | |
226 | uint32_t the_bit = 1; /* Use a bitmask to save on shifts */ | |
227 | uint32_t data=0; | |
228 | int i, old_level=0, edges=0; | |
229 | int next_bit_at = TAG_TIME_WAIT; | |
230 | ||
231 | if(bits > 32) { | |
232 | bits = 32; | |
233 | } | |
234 | ||
235 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
236 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
237 | ||
238 | /* we have some time now, precompute the cipher | |
239 | * since we cannot compute it on the fly while reading */ | |
240 | legic_prng_forward(2); | |
241 | ||
242 | if(crypt) { | |
243 | for(i=0; i<bits; i++) { | |
244 | data |= legic_prng_get_bit() << i; | |
245 | legic_prng_forward(1); | |
246 | } | |
247 | } | |
248 | ||
249 | while(timer->TC_CV < next_bit_at) ; | |
250 | ||
251 | next_bit_at += TAG_TIME_BIT; | |
252 | ||
253 | for(i=0; i<bits; i++) { | |
254 | edges = 0; | |
255 | while(timer->TC_CV < next_bit_at) { | |
256 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
257 | if(level != old_level) | |
258 | edges++; | |
259 | old_level = level; | |
260 | } | |
261 | next_bit_at += TAG_TIME_BIT; | |
262 | ||
263 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
264 | data ^= the_bit; | |
265 | } | |
266 | the_bit <<= 1; | |
267 | } | |
268 | ||
269 | f->data = data; | |
270 | f->bits = bits; | |
271 | ||
272 | /* Reset the timer, to synchronize the next frame */ | |
273 | timer->TC_CCR = AT91C_TC_SWTRG; | |
274 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
275 | } | |
276 | ||
277 | static void frame_append_bit(struct legic_frame * const f, int bit) | |
278 | { | |
279 | if (f->bits >= 31) | |
280 | return; /* Overflow, won't happen */ | |
281 | ||
282 | f->data |= (bit << f->bits); | |
283 | f->bits++; | |
284 | } | |
285 | ||
286 | static void frame_clean(struct legic_frame * const f) | |
287 | { | |
288 | f->data = 0; | |
289 | f->bits = 0; | |
290 | } | |
291 | ||
292 | static uint32_t perform_setup_phase_rwd(int iv) | |
293 | { | |
294 | ||
295 | /* Switch on carrier and let the tag charge for 1ms */ | |
296 | AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; | |
297 | SpinDelay(1); | |
298 | ||
299 | legic_prng_init(0); /* no keystream yet */ | |
300 | frame_send_rwd(iv, 7); | |
301 | legic_prng_init(iv); | |
302 | ||
303 | frame_clean(¤t_frame); | |
304 | frame_receive_rwd(¤t_frame, 6, 1); | |
305 | legic_prng_forward(1); /* we wait anyways */ | |
306 | while(timer->TC_CV < 387) ; /* ~ 258us */ | |
307 | frame_send_rwd(0x19, 6); | |
308 | ||
309 | return current_frame.data; | |
310 | } | |
311 | ||
312 | static void LegicCommonInit(void) { | |
313 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
314 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
315 | FpgaSetupSsc(); | |
316 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); | |
317 | ||
318 | /* Bitbang the transmitter */ | |
319 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
320 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
321 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
322 | ||
323 | setup_timer(); | |
324 | ||
325 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
326 | } | |
327 | ||
328 | /* Switch off carrier, make sure tag is reset */ | |
329 | static void switch_off_tag_rwd(void) | |
330 | { | |
331 | AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; | |
332 | SpinDelay(10); | |
333 | WDT_HIT(); | |
334 | } | |
335 | /* calculate crc for a legic command */ | |
336 | static int LegicCRC(int byte_index, int value, int cmd_sz) { | |
337 | crc_clear(&legic_crc); | |
338 | crc_update(&legic_crc, 1, 1); /* CMD_READ */ | |
339 | crc_update(&legic_crc, byte_index, cmd_sz-1); | |
340 | crc_update(&legic_crc, value, 8); | |
341 | return crc_finish(&legic_crc); | |
342 | } | |
343 | ||
344 | int legic_read_byte(int byte_index, int cmd_sz) { | |
345 | int byte; | |
346 | ||
347 | legic_prng_forward(4); /* we wait anyways */ | |
348 | while(timer->TC_CV < 387) ; /* ~ 258us + 100us*delay */ | |
349 | ||
350 | frame_send_rwd(1 | (byte_index << 1), cmd_sz); | |
351 | frame_clean(¤t_frame); | |
352 | ||
353 | frame_receive_rwd(¤t_frame, 12, 1); | |
354 | ||
355 | byte = current_frame.data & 0xff; | |
356 | ||
357 | if( LegicCRC(byte_index, byte, cmd_sz) != (current_frame.data >> 8) ) { | |
358 | Dbprintf("!!! crc mismatch: expected %x but got %x !!!", | |
359 | LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz), | |
360 | current_frame.data >> 8); | |
361 | return -1; | |
362 | } | |
363 | ||
364 | return byte; | |
365 | } | |
366 | ||
367 | /* legic_write_byte() is not included, however it's trivial to implement | |
368 | * and here are some hints on what remains to be done: | |
369 | * | |
370 | * * assemble a write_cmd_frame with crc and send it | |
371 | * * wait until the tag sends back an ACK ('1' bit unencrypted) | |
372 | * * forward the prng based on the timing | |
373 | */ | |
374 | //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { | |
375 | int legic_write_byte(int byte, int addr, int addr_sz) { | |
376 | //do not write UID, CRC | |
377 | if(addr <= 0x04) { | |
378 | return 0; | |
379 | } | |
380 | //== send write command ============================== | |
381 | crc_clear(&legic_crc); | |
382 | crc_update(&legic_crc, 0, 1); /* CMD_WRITE */ | |
383 | crc_update(&legic_crc, addr, addr_sz); | |
384 | crc_update(&legic_crc, byte, 8); | |
385 | ||
386 | uint32_t crc = crc_finish(&legic_crc); | |
387 | uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC | |
388 | |(byte <<(addr_sz+1)) //Data | |
389 | |(addr <<1) //Address | |
390 | |(0x00 <<0)); //CMD = W | |
391 | uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd | |
392 | ||
393 | legic_prng_forward(4); /* we wait anyways */ | |
394 | while(timer->TC_CV < 387) ; /* ~ 258us */ | |
395 | frame_send_rwd(cmd, cmd_sz); | |
396 | ||
397 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
398 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
399 | ||
400 | //== wait for ack ==================================== | |
401 | int t, old_level=0, edges=0; | |
402 | int next_bit_at =0; | |
403 | while(timer->TC_CV < 387) ; /* ~ 258us */ | |
404 | for(t=0; t<80; t++) { | |
405 | edges = 0; | |
406 | next_bit_at += TAG_TIME_BIT; | |
407 | while(timer->TC_CV < next_bit_at) { | |
408 | int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
409 | if(level != old_level) { | |
410 | edges++; | |
411 | } | |
412 | old_level = level; | |
413 | } | |
414 | if(edges > 20 && edges < 60) { /* expected are 42 edges */ | |
415 | int t = timer->TC_CV; | |
416 | int c = t/TAG_TIME_BIT; | |
417 | timer->TC_CCR = AT91C_TC_SWTRG; | |
418 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
419 | legic_prng_forward(c-1); | |
420 | return 0; | |
421 | } | |
422 | } | |
423 | timer->TC_CCR = AT91C_TC_SWTRG; | |
424 | while(timer->TC_CV > 1) ; /* Wait till the clock has reset */ | |
425 | return -1; | |
426 | } | |
427 | ||
428 | int LegicRfReader(int offset, int bytes) { | |
429 | ||
430 | // ice_legic_setup(); | |
431 | // ice_legic_select_card(); | |
432 | // return 0; | |
433 | ||
434 | int byte_index=0, cmd_sz=0, card_sz=0; | |
435 | ||
436 | LegicCommonInit(); | |
437 | ||
438 | uint8_t *BigBuf = BigBuf_get_addr(); | |
439 | memset(BigBuf, 0, 1024); | |
440 | ||
441 | DbpString("setting up legic card"); | |
442 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); | |
443 | switch_off_tag_rwd(); //we lose to mutch time with dprintf | |
444 | switch(tag_type) { | |
445 | case 0x0d: | |
446 | DbpString("MIM22 card found, reading card ..."); | |
447 | cmd_sz = 6; | |
448 | card_sz = 22; | |
449 | break; | |
450 | case 0x1d: | |
451 | DbpString("MIM256 card found, reading card ..."); | |
452 | cmd_sz = 9; | |
453 | card_sz = 256; | |
454 | break; | |
455 | case 0x3d: | |
456 | DbpString("MIM1024 card found, reading card ..."); | |
457 | cmd_sz = 11; | |
458 | card_sz = 1024; | |
459 | break; | |
460 | default: | |
461 | Dbprintf("Unknown card format: %x",tag_type); | |
462 | return -1; | |
463 | } | |
464 | if(bytes == -1) | |
465 | bytes = card_sz; | |
466 | ||
467 | if(bytes+offset >= card_sz) | |
468 | bytes = card_sz-offset; | |
469 | ||
470 | perform_setup_phase_rwd(SESSION_IV); | |
471 | ||
472 | LED_B_ON(); | |
473 | while(byte_index < bytes) { | |
474 | int r = legic_read_byte(byte_index+offset, cmd_sz); | |
475 | if(r == -1 ||BUTTON_PRESS()) { | |
476 | DbpString("operation aborted"); | |
477 | switch_off_tag_rwd(); | |
478 | LED_B_OFF(); | |
479 | LED_C_OFF(); | |
480 | return -1; | |
481 | } | |
482 | BigBuf[byte_index] = r; | |
483 | WDT_HIT(); | |
484 | byte_index++; | |
485 | if (byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
486 | } | |
487 | LED_B_OFF(); | |
488 | LED_C_OFF(); | |
489 | switch_off_tag_rwd(); | |
490 | Dbprintf("Card read, use 'hf legic decode' or"); | |
491 | Dbprintf("'data hexsamples %d' to view results", (bytes+7) & ~7); | |
492 | return 0; | |
493 | } | |
494 | ||
495 | /*int _LegicRfWriter(int bytes, int offset, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { | |
496 | int byte_index=0; | |
497 | ||
498 | LED_B_ON(); | |
499 | perform_setup_phase_rwd(SESSION_IV); | |
500 | //legic_prng_forward(2); | |
501 | while(byte_index < bytes) { | |
502 | int r; | |
503 | ||
504 | //check if the DCF should be changed | |
505 | if ( (offset == 0x05) && (bytes == 0x02) ) { | |
506 | //write DCF in reverse order (addr 0x06 before 0x05) | |
507 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
508 | //legic_prng_forward(1); | |
509 | if(r == 0) { | |
510 | byte_index++; | |
511 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); | |
512 | } | |
513 | //legic_prng_forward(1); | |
514 | } | |
515 | else { | |
516 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); | |
517 | } | |
518 | if((r != 0) || BUTTON_PRESS()) { | |
519 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
520 | switch_off_tag_rwd(); | |
521 | LED_B_OFF(); | |
522 | LED_C_OFF(); | |
523 | return -1; | |
524 | } | |
525 | ||
526 | WDT_HIT(); | |
527 | byte_index++; | |
528 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
529 | } | |
530 | LED_B_OFF(); | |
531 | LED_C_OFF(); | |
532 | DbpString("write successful"); | |
533 | return 0; | |
534 | }*/ | |
535 | ||
536 | void LegicRfWriter(int bytes, int offset) { | |
537 | int byte_index=0, addr_sz=0; | |
538 | uint8_t *BigBuf = BigBuf_get_addr(); | |
539 | ||
540 | LegicCommonInit(); | |
541 | ||
542 | DbpString("setting up legic card"); | |
543 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); | |
544 | switch_off_tag_rwd(); | |
545 | switch(tag_type) { | |
546 | case 0x0d: | |
547 | if(offset+bytes > 22) { | |
548 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes); | |
549 | return; | |
550 | } | |
551 | addr_sz = 5; | |
552 | Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); | |
553 | break; | |
554 | case 0x1d: | |
555 | if(offset+bytes > 0x100) { | |
556 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes); | |
557 | return; | |
558 | } | |
559 | addr_sz = 8; | |
560 | Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); | |
561 | break; | |
562 | case 0x3d: | |
563 | if(offset+bytes > 0x400) { | |
564 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes); | |
565 | return; | |
566 | } | |
567 | addr_sz = 10; | |
568 | Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes); | |
569 | break; | |
570 | default: | |
571 | Dbprintf("No or unknown card found, aborting"); | |
572 | return; | |
573 | } | |
574 | ||
575 | #if 1 | |
576 | LED_B_ON(); | |
577 | perform_setup_phase_rwd(SESSION_IV); | |
578 | ||
579 | while(byte_index < bytes) { | |
580 | int r; | |
581 | ||
582 | //check if the DCF should be changed | |
583 | if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) { | |
584 | //write DCF in reverse order (addr 0x06 before 0x05) | |
585 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); | |
586 | ||
587 | // write second byte on success... | |
588 | if(r == 0) { | |
589 | byte_index++; | |
590 | r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz); | |
591 | } | |
592 | } | |
593 | else { | |
594 | r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz); | |
595 | } | |
596 | if((r != 0) || BUTTON_PRESS()) { | |
597 | Dbprintf("operation aborted @ 0x%03.3x", byte_index); | |
598 | switch_off_tag_rwd(); | |
599 | LED_B_OFF(); | |
600 | LED_C_OFF(); | |
601 | return; | |
602 | } | |
603 | ||
604 | WDT_HIT(); | |
605 | byte_index++; | |
606 | if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); | |
607 | } | |
608 | LED_B_OFF(); | |
609 | LED_C_OFF(); | |
610 | DbpString("write successful"); | |
611 | #else | |
612 | for(byte_index = -2; byte_index < 200; byte_index++) | |
613 | { | |
614 | Dbprintf("+ Try RndValue %d...", byte_index); | |
615 | if(_LegicRfWriter(bytes, offset, addr_sz, BigBuf, byte_index) == 0) | |
616 | break; | |
617 | } | |
618 | #endif | |
619 | ||
620 | } | |
621 | ||
622 | void LegicRfRawWriter(int offset, int byte) { | |
623 | int byte_index=0, addr_sz=0; | |
624 | ||
625 | LegicCommonInit(); | |
626 | ||
627 | DbpString("setting up legic card"); | |
628 | uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV); | |
629 | switch_off_tag_rwd(); | |
630 | switch(tag_type) { | |
631 | case 0x0d: | |
632 | if(offset > 22) { | |
633 | Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset); | |
634 | return; | |
635 | } | |
636 | addr_sz = 5; | |
637 | Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", offset, byte); | |
638 | break; | |
639 | case 0x1d: | |
640 | if(offset > 0x100) { | |
641 | Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset); | |
642 | return; | |
643 | } | |
644 | addr_sz = 8; | |
645 | Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", offset, byte); | |
646 | break; | |
647 | case 0x3d: | |
648 | if(offset > 0x400) { | |
649 | Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset); | |
650 | return; | |
651 | } | |
652 | addr_sz = 10; | |
653 | Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", offset, byte); | |
654 | break; | |
655 | default: | |
656 | Dbprintf("No or unknown card found, aborting"); | |
657 | return; | |
658 | } | |
659 | Dbprintf("integer value: %d offset: %d addr_sz: %d", byte, offset, addr_sz); | |
660 | LED_B_ON(); | |
661 | perform_setup_phase_rwd(SESSION_IV); | |
662 | //legic_prng_forward(2); | |
663 | ||
664 | int r = legic_write_byte(byte, offset, addr_sz); | |
665 | ||
666 | if((r != 0) || BUTTON_PRESS()) { | |
667 | Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r); | |
668 | switch_off_tag_rwd(); | |
669 | LED_B_OFF(); | |
670 | LED_C_OFF(); | |
671 | return; | |
672 | } | |
673 | ||
674 | LED_B_OFF(); | |
675 | LED_C_OFF(); | |
676 | DbpString("write successful"); | |
677 | } | |
678 | ||
679 | int timestamp; | |
680 | ||
681 | /* Handle (whether to respond) a frame in tag mode */ | |
682 | static void frame_handle_tag(struct legic_frame const * const f) | |
683 | { | |
684 | uint8_t *BigBuf = BigBuf_get_addr(); | |
685 | ||
686 | /* First Part of Handshake (IV) */ | |
687 | if(f->bits == 7) { | |
688 | if(f->data == SESSION_IV) { | |
689 | LED_C_ON(); | |
690 | prng_timer->TC_CCR = AT91C_TC_SWTRG; | |
691 | legic_prng_init(f->data); | |
692 | frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ | |
693 | legic_state = STATE_IV; | |
694 | legic_read_count = 0; | |
695 | legic_prng_bc = 0; | |
696 | legic_prng_iv = f->data; | |
697 | ||
698 | /* TIMEOUT */ | |
699 | timer->TC_CCR = AT91C_TC_SWTRG; | |
700 | while(timer->TC_CV > 1); | |
701 | while(timer->TC_CV < 280); | |
702 | return; | |
703 | } else if((prng_timer->TC_CV % 50) > 40) { | |
704 | legic_prng_init(f->data); | |
705 | frame_send_tag(0x3d, 6, 1); | |
706 | SpinDelay(20); | |
707 | return; | |
708 | } | |
709 | } | |
710 | ||
711 | /* 0x19==??? */ | |
712 | if(legic_state == STATE_IV) { | |
713 | if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) { | |
714 | legic_state = STATE_CON; | |
715 | ||
716 | /* TIMEOUT */ | |
717 | timer->TC_CCR = AT91C_TC_SWTRG; | |
718 | while(timer->TC_CV > 1); | |
719 | while(timer->TC_CV < 200); | |
720 | return; | |
721 | } else { | |
722 | legic_state = STATE_DISCON; | |
723 | LED_C_OFF(); | |
724 | Dbprintf("0x19 - Frame: %03.3x", f->data); | |
725 | return; | |
726 | } | |
727 | } | |
728 | ||
729 | /* Read */ | |
730 | if(f->bits == 11) { | |
731 | if(legic_state == STATE_CON) { | |
732 | int key = get_key_stream(-1, 11); //legic_phase_drift, 11); | |
733 | int addr = f->data ^ key; addr = addr >> 1; | |
734 | int data = BigBuf[addr]; | |
735 | int hash = LegicCRC(addr, data, 11) << 8; | |
736 | BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; | |
737 | legic_read_count++; | |
738 | ||
739 | //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); | |
740 | legic_prng_forward(legic_reqresp_drift); | |
741 | ||
742 | frame_send_tag(hash | data, 12, 1); | |
743 | ||
744 | /* SHORT TIMEOUT */ | |
745 | timer->TC_CCR = AT91C_TC_SWTRG; | |
746 | while(timer->TC_CV > 1); | |
747 | legic_prng_forward(legic_frame_drift); | |
748 | while(timer->TC_CV < 180); | |
749 | return; | |
750 | } | |
751 | } | |
752 | ||
753 | /* Write */ | |
754 | if(f->bits == 23) { | |
755 | int key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
756 | int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; | |
757 | int data = f->data ^ key; data = data >> 11; data = data & 0xff; | |
758 | ||
759 | /* write command */ | |
760 | legic_state = STATE_DISCON; | |
761 | LED_C_OFF(); | |
762 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
763 | return; | |
764 | } | |
765 | ||
766 | if(legic_state != STATE_DISCON) { | |
767 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
768 | int i; | |
769 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
770 | for(i = 0; i<legic_read_count; i++) { | |
771 | Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]); | |
772 | } | |
773 | ||
774 | for(i = -1; i<legic_read_count; i++) { | |
775 | uint32_t t; | |
776 | t = BigBuf[OFFSET_LOG+256+i*4]; | |
777 | t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8; | |
778 | t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16; | |
779 | t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24; | |
780 | ||
781 | Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", | |
782 | BigBuf[OFFSET_LOG+128+i], | |
783 | BigBuf[OFFSET_LOG+384+i], | |
784 | t); | |
785 | } | |
786 | } | |
787 | legic_state = STATE_DISCON; | |
788 | legic_read_count = 0; | |
789 | SpinDelay(10); | |
790 | LED_C_OFF(); | |
791 | return; | |
792 | } | |
793 | ||
794 | /* Read bit by bit untill full frame is received | |
795 | * Call to process frame end answer | |
796 | */ | |
797 | static void emit(int bit) | |
798 | { | |
799 | if(bit == -1) { | |
800 | if(current_frame.bits <= 4) { | |
801 | frame_clean(¤t_frame); | |
802 | } else { | |
803 | frame_handle_tag(¤t_frame); | |
804 | frame_clean(¤t_frame); | |
805 | } | |
806 | WDT_HIT(); | |
807 | } else if(bit == 0) { | |
808 | frame_append_bit(¤t_frame, 0); | |
809 | } else if(bit == 1) { | |
810 | frame_append_bit(¤t_frame, 1); | |
811 | } | |
812 | } | |
813 | ||
814 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
815 | { | |
816 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
817 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
818 | * envelope waveform on DIN and should send our response on DOUT. | |
819 | * | |
820 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
821 | * measure the time between two rising edges on DIN, and no encoding on the | |
822 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
823 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
824 | * seems to be 300us-ish. | |
825 | */ | |
826 | ||
827 | if(phase < 0) { | |
828 | int i; | |
829 | for(i=0; i<=reqresp; i++) { | |
830 | legic_prng_init(SESSION_IV); | |
831 | Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame)); | |
832 | } | |
833 | return; | |
834 | } | |
835 | ||
836 | legic_phase_drift = phase; | |
837 | legic_frame_drift = frame; | |
838 | legic_reqresp_drift = reqresp; | |
839 | ||
840 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
841 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
842 | FpgaSetupSsc(); | |
843 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
844 | ||
845 | /* Bitbang the receiver */ | |
846 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
847 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
848 | ||
849 | setup_timer(); | |
850 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
851 | ||
852 | int old_level = 0; | |
853 | int active = 0; | |
854 | legic_state = STATE_DISCON; | |
855 | ||
856 | LED_B_ON(); | |
857 | DbpString("Starting Legic emulator, press button to end"); | |
858 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
859 | int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
860 | int time = timer->TC_CV; | |
861 | ||
862 | if(level != old_level) { | |
863 | if(level == 1) { | |
864 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
865 | if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
866 | /* 1 bit */ | |
867 | emit(1); | |
868 | active = 1; | |
869 | LED_A_ON(); | |
870 | } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
871 | /* 0 bit */ | |
872 | emit(0); | |
873 | active = 1; | |
874 | LED_A_ON(); | |
875 | } else if(active) { | |
876 | /* invalid */ | |
877 | emit(-1); | |
878 | active = 0; | |
879 | LED_A_OFF(); | |
880 | } | |
881 | } | |
882 | } | |
883 | ||
884 | if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { | |
885 | /* Frame end */ | |
886 | emit(-1); | |
887 | active = 0; | |
888 | LED_A_OFF(); | |
889 | } | |
890 | ||
891 | if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { | |
892 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
893 | } | |
894 | ||
895 | old_level = level; | |
896 | WDT_HIT(); | |
897 | } | |
898 | DbpString("Stopped"); | |
899 | LED_B_OFF(); | |
900 | LED_A_OFF(); | |
901 | LED_C_OFF(); | |
902 | } | |
903 | ||
904 | ||
905 | //----------------------------------------------------------------------------- | |
906 | //----------------------------------------------------------------------------- | |
907 | ||
908 | ||
909 | //----------------------------------------------------------------------------- | |
910 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
911 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
912 | // them yet, just leaves them ready to send in ToSend[]. | |
913 | //----------------------------------------------------------------------------- | |
914 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
915 | // { | |
916 | // int i; | |
917 | ||
918 | // ToSendReset(); | |
919 | ||
920 | // // Transmit a burst of ones, as the initial thing that lets the | |
921 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
922 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
923 | // // so I will too. | |
924 | // for(i = 0; i < 20; i++) { | |
925 | // ToSendStuffBit(1); | |
926 | // ToSendStuffBit(1); | |
927 | // ToSendStuffBit(1); | |
928 | // ToSendStuffBit(1); | |
929 | // } | |
930 | ||
931 | // // Send SOF. | |
932 | // for(i = 0; i < 10; i++) { | |
933 | // ToSendStuffBit(0); | |
934 | // ToSendStuffBit(0); | |
935 | // ToSendStuffBit(0); | |
936 | // ToSendStuffBit(0); | |
937 | // } | |
938 | // for(i = 0; i < 2; i++) { | |
939 | // ToSendStuffBit(1); | |
940 | // ToSendStuffBit(1); | |
941 | // ToSendStuffBit(1); | |
942 | // ToSendStuffBit(1); | |
943 | // } | |
944 | ||
945 | // for(i = 0; i < len; i++) { | |
946 | // int j; | |
947 | // uint8_t b = cmd[i]; | |
948 | ||
949 | // // Start bit | |
950 | // ToSendStuffBit(0); | |
951 | // ToSendStuffBit(0); | |
952 | // ToSendStuffBit(0); | |
953 | // ToSendStuffBit(0); | |
954 | ||
955 | // // Data bits | |
956 | // for(j = 0; j < 8; j++) { | |
957 | // if(b & 1) { | |
958 | // ToSendStuffBit(1); | |
959 | // ToSendStuffBit(1); | |
960 | // ToSendStuffBit(1); | |
961 | // ToSendStuffBit(1); | |
962 | // } else { | |
963 | // ToSendStuffBit(0); | |
964 | // ToSendStuffBit(0); | |
965 | // ToSendStuffBit(0); | |
966 | // ToSendStuffBit(0); | |
967 | // } | |
968 | // b >>= 1; | |
969 | // } | |
970 | ||
971 | // // Stop bit | |
972 | // ToSendStuffBit(1); | |
973 | // ToSendStuffBit(1); | |
974 | // ToSendStuffBit(1); | |
975 | // ToSendStuffBit(1); | |
976 | // } | |
977 | ||
978 | // // Send EOF. | |
979 | // for(i = 0; i < 10; i++) { | |
980 | // ToSendStuffBit(0); | |
981 | // ToSendStuffBit(0); | |
982 | // ToSendStuffBit(0); | |
983 | // ToSendStuffBit(0); | |
984 | // } | |
985 | // for(i = 0; i < 2; i++) { | |
986 | // ToSendStuffBit(1); | |
987 | // ToSendStuffBit(1); | |
988 | // ToSendStuffBit(1); | |
989 | // ToSendStuffBit(1); | |
990 | // } | |
991 | ||
992 | // // Convert from last byte pos to length | |
993 | // ToSendMax++; | |
994 | // } | |
995 | ||
996 | //----------------------------------------------------------------------------- | |
997 | // The software UART that receives commands from the reader, and its state | |
998 | // variables. | |
999 | //----------------------------------------------------------------------------- | |
1000 | static struct { | |
1001 | enum { | |
1002 | STATE_UNSYNCD, | |
1003 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1004 | STATE_AWAITING_START_BIT, | |
1005 | STATE_RECEIVING_DATA | |
1006 | } state; | |
1007 | uint16_t shiftReg; | |
1008 | int bitCnt; | |
1009 | int byteCnt; | |
1010 | int byteCntMax; | |
1011 | int posCnt; | |
1012 | uint8_t *output; | |
1013 | } Uart; | |
1014 | ||
1015 | /* Receive & handle a bit coming from the reader. | |
1016 | * | |
1017 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1018 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1019 | * | |
1020 | * LED handling: | |
1021 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1022 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1023 | * | |
1024 | * Returns: true if we received a EOF | |
1025 | * false if we are still waiting for some more | |
1026 | */ | |
1027 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1028 | // { | |
1029 | // switch(Uart.state) { | |
1030 | // case STATE_UNSYNCD: | |
1031 | // if(!bit) { | |
1032 | // // we went low, so this could be the beginning of an SOF | |
1033 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1034 | // Uart.posCnt = 0; | |
1035 | // Uart.bitCnt = 0; | |
1036 | // } | |
1037 | // break; | |
1038 | ||
1039 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1040 | // Uart.posCnt++; | |
1041 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1042 | // if(bit) { | |
1043 | // if(Uart.bitCnt > 9) { | |
1044 | // // we've seen enough consecutive | |
1045 | // // zeros that it's a valid SOF | |
1046 | // Uart.posCnt = 0; | |
1047 | // Uart.byteCnt = 0; | |
1048 | // Uart.state = STATE_AWAITING_START_BIT; | |
1049 | // LED_A_ON(); // Indicate we got a valid SOF | |
1050 | // } else { | |
1051 | // // didn't stay down long enough | |
1052 | // // before going high, error | |
1053 | // Uart.state = STATE_UNSYNCD; | |
1054 | // } | |
1055 | // } else { | |
1056 | // // do nothing, keep waiting | |
1057 | // } | |
1058 | // Uart.bitCnt++; | |
1059 | // } | |
1060 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1061 | // if(Uart.bitCnt > 12) { | |
1062 | // // Give up if we see too many zeros without | |
1063 | // // a one, too. | |
1064 | // LED_A_OFF(); | |
1065 | // Uart.state = STATE_UNSYNCD; | |
1066 | // } | |
1067 | // break; | |
1068 | ||
1069 | // case STATE_AWAITING_START_BIT: | |
1070 | // Uart.posCnt++; | |
1071 | // if(bit) { | |
1072 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1073 | // // stayed high for too long between | |
1074 | // // characters, error | |
1075 | // Uart.state = STATE_UNSYNCD; | |
1076 | // } | |
1077 | // } else { | |
1078 | // // falling edge, this starts the data byte | |
1079 | // Uart.posCnt = 0; | |
1080 | // Uart.bitCnt = 0; | |
1081 | // Uart.shiftReg = 0; | |
1082 | // Uart.state = STATE_RECEIVING_DATA; | |
1083 | // } | |
1084 | // break; | |
1085 | ||
1086 | // case STATE_RECEIVING_DATA: | |
1087 | // Uart.posCnt++; | |
1088 | // if(Uart.posCnt == 2) { | |
1089 | // // time to sample a bit | |
1090 | // Uart.shiftReg >>= 1; | |
1091 | // if(bit) { | |
1092 | // Uart.shiftReg |= 0x200; | |
1093 | // } | |
1094 | // Uart.bitCnt++; | |
1095 | // } | |
1096 | // if(Uart.posCnt >= 4) { | |
1097 | // Uart.posCnt = 0; | |
1098 | // } | |
1099 | // if(Uart.bitCnt == 10) { | |
1100 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1101 | // { | |
1102 | // // this is a data byte, with correct | |
1103 | // // start and stop bits | |
1104 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1105 | // Uart.byteCnt++; | |
1106 | ||
1107 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1108 | // // Buffer overflowed, give up | |
1109 | // LED_A_OFF(); | |
1110 | // Uart.state = STATE_UNSYNCD; | |
1111 | // } else { | |
1112 | // // so get the next byte now | |
1113 | // Uart.posCnt = 0; | |
1114 | // Uart.state = STATE_AWAITING_START_BIT; | |
1115 | // } | |
1116 | // } else if (Uart.shiftReg == 0x000) { | |
1117 | // // this is an EOF byte | |
1118 | // LED_A_OFF(); // Finished receiving | |
1119 | // Uart.state = STATE_UNSYNCD; | |
1120 | // if (Uart.byteCnt != 0) { | |
1121 | // return TRUE; | |
1122 | // } | |
1123 | // } else { | |
1124 | // // this is an error | |
1125 | // LED_A_OFF(); | |
1126 | // Uart.state = STATE_UNSYNCD; | |
1127 | // } | |
1128 | // } | |
1129 | // break; | |
1130 | ||
1131 | // default: | |
1132 | // LED_A_OFF(); | |
1133 | // Uart.state = STATE_UNSYNCD; | |
1134 | // break; | |
1135 | // } | |
1136 | ||
1137 | // return FALSE; | |
1138 | // } | |
1139 | ||
1140 | ||
1141 | static void UartReset() | |
1142 | { | |
1143 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
1144 | Uart.state = STATE_UNSYNCD; | |
1145 | Uart.byteCnt = 0; | |
1146 | Uart.bitCnt = 0; | |
1147 | Uart.posCnt = 0; | |
1148 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); | |
1149 | } | |
1150 | ||
1151 | // static void UartInit(uint8_t *data) | |
1152 | // { | |
1153 | // Uart.output = data; | |
1154 | // UartReset(); | |
1155 | // } | |
1156 | ||
1157 | //============================================================================= | |
1158 | // An LEGIC reader. We take layer two commands, code them | |
1159 | // appropriately, and then send them to the tag. We then listen for the | |
1160 | // tag's response, which we leave in the buffer to be demodulated on the | |
1161 | // PC side. | |
1162 | //============================================================================= | |
1163 | ||
1164 | static struct { | |
1165 | enum { | |
1166 | DEMOD_UNSYNCD, | |
1167 | DEMOD_PHASE_REF_TRAINING, | |
1168 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1169 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1170 | DEMOD_AWAITING_START_BIT, | |
1171 | DEMOD_RECEIVING_DATA | |
1172 | } state; | |
1173 | int bitCount; | |
1174 | int posCount; | |
1175 | int thisBit; | |
1176 | uint16_t shiftReg; | |
1177 | uint8_t *output; | |
1178 | int len; | |
1179 | int sumI; | |
1180 | int sumQ; | |
1181 | } Demod; | |
1182 | ||
1183 | /* | |
1184 | * Handles reception of a bit from the tag | |
1185 | * | |
1186 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1187 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1188 | * | |
1189 | * LED handling: | |
1190 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1191 | * LED C -> OFF once we have received EOF or are unsynced | |
1192 | * | |
1193 | * Returns: true if we received a EOF | |
1194 | * false if we are still waiting for some more | |
1195 | * | |
1196 | */ | |
1197 | ||
1198 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
1199 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
1200 | #endif | |
1201 | ||
1202 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1203 | #ifndef CHECK_FOR_SUBCARRIER | |
1204 | # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } | |
1205 | #endif | |
1206 | ||
1207 | // The soft decision on the bit uses an estimate of just the | |
1208 | // quadrant of the reference angle, not the exact angle. | |
1209 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
1210 | #define MAKE_SOFT_DECISION() { \ | |
1211 | if(Demod.sumI > 0) \ | |
1212 | v = ci; \ | |
1213 | else \ | |
1214 | v = -ci; \ | |
1215 | \ | |
1216 | if(Demod.sumQ > 0) \ | |
1217 | v += cq; \ | |
1218 | else \ | |
1219 | v -= cq; \ | |
1220 | \ | |
1221 | } | |
1222 | ||
1223 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1224 | { | |
1225 | int v = 0; | |
1226 | int ai = ABS(ci); | |
1227 | int aq = ABS(cq); | |
1228 | int halfci = (ai >> 1); | |
1229 | int halfcq = (aq >> 1); | |
1230 | ||
1231 | switch(Demod.state) { | |
1232 | case DEMOD_UNSYNCD: | |
1233 | ||
1234 | CHECK_FOR_SUBCARRIER() | |
1235 | ||
1236 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1237 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1238 | Demod.sumI = ci; | |
1239 | Demod.sumQ = cq; | |
1240 | Demod.posCount = 1; | |
1241 | } | |
1242 | break; | |
1243 | ||
1244 | case DEMOD_PHASE_REF_TRAINING: | |
1245 | if(Demod.posCount < 8) { | |
1246 | ||
1247 | CHECK_FOR_SUBCARRIER() | |
1248 | ||
1249 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1250 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1251 | // note: synchronization time > 80 1/fs | |
1252 | Demod.sumI += ci; | |
1253 | Demod.sumQ += cq; | |
1254 | ++Demod.posCount; | |
1255 | } else { | |
1256 | // subcarrier lost | |
1257 | Demod.state = DEMOD_UNSYNCD; | |
1258 | } | |
1259 | } else { | |
1260 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1261 | } | |
1262 | break; | |
1263 | ||
1264 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1265 | ||
1266 | MAKE_SOFT_DECISION() | |
1267 | ||
1268 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1269 | // logic '0' detected | |
1270 | if (v <= 0) { | |
1271 | ||
1272 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1273 | ||
1274 | // start of SOF sequence | |
1275 | Demod.posCount = 0; | |
1276 | } else { | |
1277 | // maximum length of TR1 = 200 1/fs | |
1278 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1279 | } | |
1280 | ++Demod.posCount; | |
1281 | break; | |
1282 | ||
1283 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1284 | ++Demod.posCount; | |
1285 | ||
1286 | MAKE_SOFT_DECISION() | |
1287 | ||
1288 | if(v > 0) { | |
1289 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1290 | if(Demod.posCount < 10*2) { | |
1291 | Demod.state = DEMOD_UNSYNCD; | |
1292 | } else { | |
1293 | LED_C_ON(); // Got SOF | |
1294 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1295 | Demod.posCount = 0; | |
1296 | Demod.len = 0; | |
1297 | } | |
1298 | } else { | |
1299 | // low phase of SOF too long (> 12 etu) | |
1300 | if(Demod.posCount > 13*2) { | |
1301 | Demod.state = DEMOD_UNSYNCD; | |
1302 | LED_C_OFF(); | |
1303 | } | |
1304 | } | |
1305 | break; | |
1306 | ||
1307 | case DEMOD_AWAITING_START_BIT: | |
1308 | ++Demod.posCount; | |
1309 | ||
1310 | MAKE_SOFT_DECISION() | |
1311 | ||
1312 | if(v > 0) { | |
1313 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1314 | if(Demod.posCount > 3*2) { | |
1315 | Demod.state = DEMOD_UNSYNCD; | |
1316 | LED_C_OFF(); | |
1317 | } | |
1318 | } else { | |
1319 | // start bit detected | |
1320 | Demod.bitCount = 0; | |
1321 | Demod.posCount = 1; // this was the first half | |
1322 | Demod.thisBit = v; | |
1323 | Demod.shiftReg = 0; | |
1324 | Demod.state = DEMOD_RECEIVING_DATA; | |
1325 | } | |
1326 | break; | |
1327 | ||
1328 | case DEMOD_RECEIVING_DATA: | |
1329 | ||
1330 | MAKE_SOFT_DECISION() | |
1331 | ||
1332 | if(Demod.posCount == 0) { | |
1333 | // first half of bit | |
1334 | Demod.thisBit = v; | |
1335 | Demod.posCount = 1; | |
1336 | } else { | |
1337 | // second half of bit | |
1338 | Demod.thisBit += v; | |
1339 | Demod.shiftReg >>= 1; | |
1340 | // logic '1' | |
1341 | if(Demod.thisBit > 0) | |
1342 | Demod.shiftReg |= 0x200; | |
1343 | ||
1344 | ++Demod.bitCount; | |
1345 | ||
1346 | if(Demod.bitCount == 10) { | |
1347 | ||
1348 | uint16_t s = Demod.shiftReg; | |
1349 | ||
1350 | if((s & 0x200) && !(s & 0x001)) { | |
1351 | // stop bit == '1', start bit == '0' | |
1352 | uint8_t b = (s >> 1); | |
1353 | Demod.output[Demod.len] = b; | |
1354 | ++Demod.len; | |
1355 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1356 | } else { | |
1357 | Demod.state = DEMOD_UNSYNCD; | |
1358 | LED_C_OFF(); | |
1359 | ||
1360 | if(s == 0x000) { | |
1361 | // This is EOF (start, stop and all data bits == '0' | |
1362 | return TRUE; | |
1363 | } | |
1364 | } | |
1365 | } | |
1366 | Demod.posCount = 0; | |
1367 | } | |
1368 | break; | |
1369 | ||
1370 | default: | |
1371 | Demod.state = DEMOD_UNSYNCD; | |
1372 | LED_C_OFF(); | |
1373 | break; | |
1374 | } | |
1375 | return FALSE; | |
1376 | } | |
1377 | ||
1378 | // Clear out the state of the "UART" that receives from the tag. | |
1379 | static void DemodReset() { | |
1380 | Demod.len = 0; | |
1381 | Demod.state = DEMOD_UNSYNCD; | |
1382 | Demod.posCount = 0; | |
1383 | Demod.sumI = 0; | |
1384 | Demod.sumQ = 0; | |
1385 | Demod.bitCount = 0; | |
1386 | Demod.thisBit = 0; | |
1387 | Demod.shiftReg = 0; | |
1388 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
1389 | } | |
1390 | ||
1391 | static void DemodInit(uint8_t *data) { | |
1392 | Demod.output = data; | |
1393 | DemodReset(); | |
1394 | } | |
1395 | ||
1396 | /* | |
1397 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1398 | * quiet: set to 'TRUE' to disable debug output | |
1399 | */ | |
1400 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1401 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1402 | { | |
1403 | int max = 0; | |
1404 | bool gotFrame = FALSE; | |
1405 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1406 | int ci, cq, samples = 0; | |
1407 | ||
1408 | BigBuf_free(); | |
1409 | ||
1410 | // And put the FPGA in the appropriate mode | |
1411 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1412 | ||
1413 | // The response (tag -> reader) that we're receiving. | |
1414 | // Set up the demodulator for tag -> reader responses. | |
1415 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1416 | ||
1417 | // The DMA buffer, used to stream samples from the FPGA | |
1418 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1419 | int8_t *upTo = dmaBuf; | |
1420 | ||
1421 | // Setup and start DMA. | |
1422 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1423 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1424 | return; | |
1425 | } | |
1426 | ||
1427 | // Signal field is ON with the appropriate LED: | |
1428 | LED_D_ON(); | |
1429 | for(;;) { | |
1430 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1431 | if(behindBy > max) max = behindBy; | |
1432 | ||
1433 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1434 | ci = upTo[0]; | |
1435 | cq = upTo[1]; | |
1436 | upTo += 2; | |
1437 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1438 | upTo = dmaBuf; | |
1439 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1440 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1441 | } | |
1442 | lastRxCounter -= 2; | |
1443 | if(lastRxCounter <= 0) | |
1444 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1445 | ||
1446 | samples += 2; | |
1447 | ||
1448 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1449 | if ( gotFrame ) | |
1450 | break; | |
1451 | } | |
1452 | ||
1453 | if(samples > n || gotFrame) | |
1454 | break; | |
1455 | } | |
1456 | ||
1457 | FpgaDisableSscDma(); | |
1458 | ||
1459 | if (!quiet && Demod.len == 0) { | |
1460 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1461 | max, | |
1462 | samples, | |
1463 | gotFrame, | |
1464 | Demod.len, | |
1465 | Demod.sumI, | |
1466 | Demod.sumQ | |
1467 | ); | |
1468 | } | |
1469 | ||
1470 | //Tracing | |
1471 | if (Demod.len > 0) { | |
1472 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1473 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1474 | } | |
1475 | } | |
1476 | //----------------------------------------------------------------------------- | |
1477 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1478 | //----------------------------------------------------------------------------- | |
1479 | static void TransmitForLegic(void) | |
1480 | { | |
1481 | int c; | |
1482 | ||
1483 | FpgaSetupSsc(); | |
1484 | ||
1485 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1486 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1487 | ||
1488 | // Signal field is ON with the appropriate Red LED | |
1489 | LED_D_ON(); | |
1490 | ||
1491 | // Signal we are transmitting with the Green LED | |
1492 | LED_B_ON(); | |
1493 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1494 | ||
1495 | for(c = 0; c < 10;) { | |
1496 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1497 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1498 | c++; | |
1499 | } | |
1500 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1501 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1502 | (void)r; | |
1503 | } | |
1504 | WDT_HIT(); | |
1505 | } | |
1506 | ||
1507 | c = 0; | |
1508 | for(;;) { | |
1509 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1510 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1511 | legic_prng_forward(1); // forward the lfsr | |
1512 | c++; | |
1513 | if(c >= ToSendMax) { | |
1514 | break; | |
1515 | } | |
1516 | } | |
1517 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1518 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1519 | (void)r; | |
1520 | } | |
1521 | WDT_HIT(); | |
1522 | } | |
1523 | LED_B_OFF(); | |
1524 | } | |
1525 | ||
1526 | ||
1527 | //----------------------------------------------------------------------------- | |
1528 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1529 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1530 | //----------------------------------------------------------------------------- | |
1531 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
1532 | { | |
1533 | int i, j; | |
1534 | uint8_t b; | |
1535 | ||
1536 | ToSendReset(); | |
1537 | ||
1538 | // Send SOF | |
1539 | for(i = 0; i < 7; i++) | |
1540 | ToSendStuffBit(1); | |
1541 | ||
1542 | ||
1543 | for(i = 0; i < cmdlen; i++) { | |
1544 | // Start bit | |
1545 | ToSendStuffBit(0); | |
1546 | ||
1547 | // Data bits | |
1548 | b = cmd[i]; | |
1549 | for(j = 0; j < bits; j++) { | |
1550 | if(b & 1) { | |
1551 | ToSendStuffBit(1); | |
1552 | } else { | |
1553 | ToSendStuffBit(0); | |
1554 | } | |
1555 | b >>= 1; | |
1556 | } | |
1557 | } | |
1558 | ||
1559 | // Convert from last character reference to length | |
1560 | ++ToSendMax; | |
1561 | } | |
1562 | ||
1563 | /** | |
1564 | Convenience function to encode, transmit and trace Legic comms | |
1565 | **/ | |
1566 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
1567 | { | |
1568 | CodeLegicBitsAsReader(cmd, cmdlen, bits); | |
1569 | TransmitForLegic(); | |
1570 | if (tracing) { | |
1571 | uint8_t parity[1] = {0x00}; | |
1572 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); | |
1573 | } | |
1574 | } | |
1575 | ||
1576 | int ice_legic_select_card() | |
1577 | { | |
1578 | //int cmd_size=0, card_size=0; | |
1579 | uint8_t wakeup[] = { 0x7F }; | |
1580 | uint8_t getid[] = {0x19}; | |
1581 | ||
1582 | legic_prng_init(SESSION_IV); | |
1583 | ||
1584 | // first, wake up the tag, 7bits | |
1585 | CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7); | |
1586 | ||
1587 | GetSamplesForLegicDemod(1000, TRUE); | |
1588 | ||
1589 | // frame_clean(¤t_frame); | |
1590 | //frame_receive_rwd(¤t_frame, 6, 1); | |
1591 | ||
1592 | legic_prng_forward(1); /* we wait anyways */ | |
1593 | ||
1594 | //while(timer->TC_CV < 387) ; /* ~ 258us */ | |
1595 | //frame_send_rwd(0x19, 6); | |
1596 | CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8); | |
1597 | GetSamplesForLegicDemod(1000, TRUE); | |
1598 | ||
1599 | //if (Demod.len < 14) return 2; | |
1600 | Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len); | |
1601 | ||
1602 | switch(Demod.output[0]) { | |
1603 | case 0x1d: | |
1604 | DbpString("MIM 256 card found"); | |
1605 | // cmd_size = 9; | |
1606 | // card_size = 256; | |
1607 | break; | |
1608 | case 0x3d: | |
1609 | DbpString("MIM 1024 card found"); | |
1610 | // cmd_size = 11; | |
1611 | // card_size = 1024; | |
1612 | break; | |
1613 | default: | |
1614 | return -1; | |
1615 | } | |
1616 | ||
1617 | // if(bytes == -1) | |
1618 | // bytes = card_size; | |
1619 | ||
1620 | // if(bytes + offset >= card_size) | |
1621 | // bytes = card_size - offset; | |
1622 | ||
1623 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1624 | set_tracing(FALSE); | |
1625 | return 1; | |
1626 | } | |
1627 | ||
1628 | // Set up LEGIC communication | |
1629 | void ice_legic_setup() { | |
1630 | ||
1631 | // standard things. | |
1632 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1633 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1634 | clear_trace(); | |
1635 | set_tracing(TRUE); | |
1636 | DemodReset(); | |
1637 | UartReset(); | |
1638 | ||
1639 | // Set up the synchronous serial port | |
1640 | FpgaSetupSsc(); | |
1641 | ||
1642 | // connect Demodulated Signal to ADC: | |
1643 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1644 | ||
1645 | // Signal field is on with the appropriate LED | |
1646 | LED_D_ON(); | |
1647 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1648 | SpinDelay(200); | |
1649 | // Start the timer | |
1650 | //StartCountSspClk(); | |
1651 | ||
1652 | // initalize CRC | |
1653 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1654 | ||
1655 | // initalize prng | |
1656 | legic_prng_init(0); | |
1657 | } |