]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/optimized_cipher.c
CHG:forget the "base"..
[proxmark3-svn] / armsrc / optimized_cipher.c
... / ...
CommitLineData
1/*****************************************************************************
2 * WARNING
3 *
4 * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
5 *
6 * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
7 * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
8 * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
9 *
10 * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
11 *
12 *****************************************************************************
13 *
14 * This file is part of loclass. It is a reconstructon of the cipher engine
15 * used in iClass, and RFID techology.
16 *
17 * The implementation is based on the work performed by
18 * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
19 * Milosch Meriac in the paper "Dismantling IClass".
20 *
21 * Copyright (C) 2014 Martin Holst Swende
22 *
23 * This is free software: you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License version 2 as published
25 * by the Free Software Foundation.
26 *
27 * This file is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
31 *
32 * You should have received a copy of the GNU General Public License
33 * along with loclass. If not, see <http://www.gnu.org/licenses/>.
34 *
35 *
36 *
37 ****************************************************************************/
38
39/**
40
41 This file contains an optimized version of the MAC-calculation algorithm. Some measurements on
42 a std laptop showed it runs in about 1/3 of the time:
43
44 Std: 0.428962
45 Opt: 0.151609
46
47 Additionally, it is self-reliant, not requiring e.g. bitstreams from the cipherutils, thus can
48 be easily dropped into a code base.
49
50 The optimizations have been performed in the following steps:
51 * Parameters passed by reference instead of by value.
52 * Iteration instead of recursion, un-nesting recursive loops into for-loops.
53 * Handling of bytes instead of individual bits, for less shuffling and masking
54 * Less creation of "objects", structs, and instead reuse of alloc:ed memory
55 * Inlining some functions via #define:s
56
57 As a consequence, this implementation is less generic. Also, I haven't bothered documenting this.
58 For a thorough documentation, check out the MAC-calculation within cipher.c instead.
59
60 -- MHS 2015
61**/
62
63#include "optimized_cipher.h"
64
65#define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t))
66
67#define opt_B(s) (((s->b >> 6) ^ (s->b >> 5) ^ (s->b >> 4) ^ (s->b)) & 0x1)
68
69#define opt__select(x,y,r) (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
70 |(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
71 |(1 & (((r & ~(r << 2)) >> 4) ^ ((r & (r << 2)) >> 3) ^ r ^ x))
72
73/*
74 * Some background on the expression above can be found here...
75uint8_t xopt__select(bool x, bool y, uint8_t r)
76{
77 uint8_t r_ls2 = r << 2;
78 uint8_t r_and_ls2 = r & r_ls2;
79 uint8_t r_or_ls2 = r | r_ls2;
80
81 //r: r0 r1 r2 r3 r4 r5 r6 r7
82 //r_ls2: r2 r3 r4 r5 r6 r7 0 0
83 // z0
84 // z1
85
86// uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
87 uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
88
89// uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; // <-- original
90 uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1);
91
92// uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // <-- original
93 uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x;
94
95 return (z0 & 4) | (z1 & 2) | (z2 & 1);
96}
97*/
98
99void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
100{
101
102 uint8_t Tt = 1 & opt_T(s);
103
104 successor->t = (s->t >> 1);
105 successor->t |= (Tt ^ (s->r >> 7 & 0x1) ^ (s->r >> 3 & 0x1)) << 15;
106
107 successor->b = s->b >> 1;
108 successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
109
110 successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ;
111 successor->l = successor->r+s->r;
112
113}
114
115void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes)
116{
117 State x2;
118 int i;
119 uint8_t head = 0;
120 for(i =0 ; i < length ; i++)
121 {
122 head = 1 & (in[i] >> 7);
123 opt_successor(k,s,head,&x2);
124
125 head = 1 & (in[i] >> 6);
126 opt_successor(k,&x2,head,s);
127
128 head = 1 & (in[i] >> 5);
129 opt_successor(k,s,head,&x2);
130
131 head = 1 & (in[i] >> 4);
132 opt_successor(k,&x2,head,s);
133
134 head = 1 & (in[i] >> 3);
135 opt_successor(k,s,head,&x2);
136
137 head = 1 & (in[i] >> 2);
138 opt_successor(k,&x2,head,s);
139
140 head = 1 & (in[i] >> 1);
141 opt_successor(k,s,head,&x2);
142
143 head = 1 & in[i];
144 opt_successor(k,&x2,head,s);
145
146 }
147 //For tag MAC, an additional 32 zeroes
148 if(add32Zeroes)
149 for(i =0 ; i < 16 ; i++)
150 {
151 opt_successor(k,s,0,&x2);
152 opt_successor(k,&x2,0,s);
153 }
154}
155
156void opt_output(const uint8_t* k,State* s, uint8_t *buffer)
157{
158 uint8_t times = 0;
159 uint8_t bout = 0;
160 State temp = {0,0,0,0};
161 for( ; times < 4 ; times++)
162 {
163 bout =0;
164 bout |= (s->r & 0x4) << 5;
165 opt_successor(k,s,0,&temp);
166 bout |= (temp.r & 0x4) << 4;
167 opt_successor(k,&temp,0,s);
168 bout |= (s->r & 0x4) << 3;
169 opt_successor(k,s,0,&temp);
170 bout |= (temp.r & 0x4) << 2;
171 opt_successor(k,&temp,0,s);
172 bout |= (s->r & 0x4) << 1;
173 opt_successor(k,s,0,&temp);
174 bout |= (temp.r & 0x4) ;
175 opt_successor(k,&temp,0,s);
176 bout |= (s->r & 0x4) >> 1;
177 opt_successor(k,s,0,&temp);
178 bout |= (temp.r & 0x4) >> 2;
179 opt_successor(k,&temp,0,s);
180 buffer[times] = bout;
181 }
182
183}
184
185void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
186{
187 State _init = {
188 ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
189 ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
190 0x4c, // b
191 0xE012 // t
192 };
193
194 opt_suc(k,&_init,input,12, false);
195 //printf("\noutp ");
196 opt_output(k,&_init, out);
197}
198uint8_t rev_byte(uint8_t b) {
199 b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
200 b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
201 b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
202 return b;
203}
204void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
205{
206 uint8_t i;
207 for( i =0; i< len ; i++)
208 dest[i] = rev_byte(src[i]);
209}
210
211void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
212{
213 static uint8_t cc_nr[12];
214
215 opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12);
216 uint8_t dest []= {0,0,0,0,0,0,0,0};
217 opt_MAC(div_key_p,cc_nr, dest);
218 //The output MAC must also be reversed
219 opt_reverse_arraybytecpy(mac, dest,4);
220 return;
221}
222void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
223{
224 static uint8_t cc_nr[8+4+4];
225 opt_reverse_arraybytecpy(cc_nr, cc_p,12);
226 State _init = {
227 ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
228 ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
229 0x4c, // b
230 0xE012 // t
231 };
232 opt_suc(div_key_p,&_init,cc_nr, 12,true);
233 uint8_t dest []= {0,0,0,0};
234 opt_output(div_key_p,&_init, dest);
235 //The output MAC must also be reversed
236 opt_reverse_arraybytecpy(mac, dest,4);
237 return;
238
239}
240/**
241 * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
242 * two functions, since the first 8 bytes are known, we can pre-calculate the state
243 * reached after feeding CC to the cipher.
244 * @param cc_p
245 * @param div_key_p
246 * @return the cipher state
247 */
248State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
249{
250 static uint8_t cc_nr[8];
251 opt_reverse_arraybytecpy(cc_nr, cc_p,8);
252 State _init = {
253 ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
254 ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
255 0x4c, // b
256 0xE012 // t
257 };
258 opt_suc(div_key_p,&_init,cc_nr, 8,false);
259 return _init;
260}
261/**
262 * The second part of the tag MAC calculation, since the CC is already calculated into the state,
263 * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
264 * MAC response.
265 * @param _init - precalculated cipher state
266 * @param nr - the reader challenge
267 * @param mac - where to store the MAC
268 * @param div_key_p - the key to use
269 */
270void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p)
271{
272 static uint8_t _nr [4];
273 opt_reverse_arraybytecpy(_nr, nr, 4);
274 opt_suc(div_key_p,&_init,_nr, 4, true);
275 //opt_suc(div_key_p,&_init,nr, 4, false);
276 uint8_t dest []= {0,0,0,0};
277 opt_output(div_key_p,&_init, dest);
278 //The output MAC must also be reversed
279 opt_reverse_arraybytecpy(mac, dest,4);
280 return;
281}
Impressum, Datenschutz