]>
Commit | Line | Data |
---|---|---|
1 | /* crapto1.c\r | |
2 | \r | |
3 | This program is free software; you can redistribute it and/or\r | |
4 | modify it under the terms of the GNU General Public License\r | |
5 | as published by the Free Software Foundation; either version 2\r | |
6 | of the License, or (at your option) any later version.\r | |
7 | \r | |
8 | This program is distributed in the hope that it will be useful,\r | |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of\r | |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r | |
11 | GNU General Public License for more details.\r | |
12 | \r | |
13 | You should have received a copy of the GNU General Public License\r | |
14 | along with this program; if not, write to the Free Software\r | |
15 | Foundation, Inc., 51 Franklin Street, Fifth Floor,\r | |
16 | Boston, MA 02110-1301, US$\r | |
17 | \r | |
18 | Copyright (C) 2008-2008 bla <blapost@gmail.com>\r | |
19 | */\r | |
20 | #include "crapto1.h"\r | |
21 | #include <stdlib.h>\r | |
22 | \r | |
23 | #if !defined LOWMEM && defined __GNUC__\r | |
24 | static uint8_t filterlut[1 << 20];\r | |
25 | static void __attribute__((constructor)) fill_lut()\r | |
26 | {\r | |
27 | uint32_t i;\r | |
28 | for(i = 0; i < 1 << 20; ++i)\r | |
29 | filterlut[i] = filter(i);\r | |
30 | }\r | |
31 | #define filter(x) (filterlut[(x) & 0xfffff])\r | |
32 | #endif\r | |
33 | \r | |
34 | \r | |
35 | \r | |
36 | typedef struct bucket {\r | |
37 | uint32_t *head;\r | |
38 | uint32_t *bp;\r | |
39 | } bucket_t;\r | |
40 | \r | |
41 | typedef bucket_t bucket_array_t[2][0x100];\r | |
42 | \r | |
43 | typedef struct bucket_info {\r | |
44 | struct {\r | |
45 | uint32_t *head, *tail;\r | |
46 | } bucket_info[2][0x100];\r | |
47 | uint32_t numbuckets;\r | |
48 | } bucket_info_t;\r | |
49 | \r | |
50 | \r | |
51 | static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,\r | |
52 | uint32_t* const ostart, uint32_t* const ostop,\r | |
53 | bucket_info_t *bucket_info, bucket_array_t bucket)\r | |
54 | {\r | |
55 | uint32_t *p1, *p2;\r | |
56 | uint32_t *start[2];\r | |
57 | uint32_t *stop[2];\r | |
58 | \r | |
59 | start[0] = estart;\r | |
60 | stop[0] = estop;\r | |
61 | start[1] = ostart;\r | |
62 | stop[1] = ostop;\r | |
63 | \r | |
64 | // init buckets to be empty\r | |
65 | for (uint32_t i = 0; i < 2; i++) {\r | |
66 | for (uint32_t j = 0x00; j <= 0xff; j++) {\r | |
67 | bucket[i][j].bp = bucket[i][j].head;\r | |
68 | }\r | |
69 | }\r | |
70 | \r | |
71 | // sort the lists into the buckets based on the MSB (contribution bits)\r | |
72 | for (uint32_t i = 0; i < 2; i++) { \r | |
73 | for (p1 = start[i]; p1 <= stop[i]; p1++) {\r | |
74 | uint32_t bucket_index = (*p1 & 0xff000000) >> 24;\r | |
75 | *(bucket[i][bucket_index].bp++) = *p1;\r | |
76 | }\r | |
77 | }\r | |
78 | \r | |
79 | \r | |
80 | // write back intersecting buckets as sorted list.\r | |
81 | // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.\r | |
82 | uint32_t nonempty_bucket;\r | |
83 | for (uint32_t i = 0; i < 2; i++) {\r | |
84 | p1 = start[i];\r | |
85 | nonempty_bucket = 0;\r | |
86 | for (uint32_t j = 0x00; j <= 0xff; j++) {\r | |
87 | if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only\r | |
88 | bucket_info->bucket_info[i][nonempty_bucket].head = p1;\r | |
89 | for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);\r | |
90 | bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;\r | |
91 | nonempty_bucket++;\r | |
92 | }\r | |
93 | }\r | |
94 | bucket_info->numbuckets = nonempty_bucket;\r | |
95 | }\r | |
96 | }\r | |
97 | \r | |
98 | \r | |
99 | static void quicksort(uint32_t* const start, uint32_t* const stop)\r | |
100 | {\r | |
101 | uint32_t *it = start + 1, *rit = stop;\r | |
102 | \r | |
103 | if(it > rit)\r | |
104 | return;\r | |
105 | \r | |
106 | while(it < rit)\r | |
107 | if(*it <= *start)\r | |
108 | ++it;\r | |
109 | else if(*rit > *start)\r | |
110 | --rit;\r | |
111 | else\r | |
112 | *it ^= (*it ^= *rit, *rit ^= *it);\r | |
113 | \r | |
114 | if(*rit >= *start)\r | |
115 | --rit;\r | |
116 | if(rit != start)\r | |
117 | *rit ^= (*rit ^= *start, *start ^= *rit);\r | |
118 | \r | |
119 | quicksort(start, rit - 1);\r | |
120 | quicksort(rit + 1, stop);\r | |
121 | }\r | |
122 | \r | |
123 | \r | |
124 | /** binsearch\r | |
125 | * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r | |
126 | */\r | |
127 | static inline uint32_t*\r | |
128 | binsearch(uint32_t *start, uint32_t *stop)\r | |
129 | {\r | |
130 | uint32_t mid, val = *stop & 0xff000000;\r | |
131 | while(start != stop)\r | |
132 | if(start[mid = (stop - start) >> 1] > val)\r | |
133 | stop = &start[mid];\r | |
134 | else\r | |
135 | start += mid + 1;\r | |
136 | \r | |
137 | return start;\r | |
138 | }\r | |
139 | \r | |
140 | /** update_contribution\r | |
141 | * helper, calculates the partial linear feedback contributions and puts in MSB\r | |
142 | */\r | |
143 | static inline void\r | |
144 | update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r | |
145 | {\r | |
146 | uint32_t p = *item >> 25;\r | |
147 | \r | |
148 | p = p << 1 | parity(*item & mask1);\r | |
149 | p = p << 1 | parity(*item & mask2);\r | |
150 | *item = p << 24 | (*item & 0xffffff);\r | |
151 | }\r | |
152 | \r | |
153 | /** extend_table\r | |
154 | * using a bit of the keystream extend the table of possible lfsr states\r | |
155 | */\r | |
156 | static inline void\r | |
157 | extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r | |
158 | {\r | |
159 | in <<= 24;\r | |
160 | \r | |
161 | for(uint32_t *p = tbl; p <= *end; p++) {\r | |
162 | *p <<= 1;\r | |
163 | if(filter(*p) != filter(*p | 1)) { // replace\r | |
164 | *p |= filter(*p) ^ bit;\r | |
165 | update_contribution(p, m1, m2);\r | |
166 | *p ^= in;\r | |
167 | } else if(filter(*p) == bit) { // insert\r | |
168 | *++*end = p[1];\r | |
169 | p[1] = p[0] | 1;\r | |
170 | update_contribution(p, m1, m2);\r | |
171 | *p++ ^= in;\r | |
172 | update_contribution(p, m1, m2);\r | |
173 | *p ^= in;\r | |
174 | } else { // drop\r | |
175 | *p-- = *(*end)--;\r | |
176 | } \r | |
177 | }\r | |
178 | \r | |
179 | }\r | |
180 | \r | |
181 | \r | |
182 | /** extend_table_simple\r | |
183 | * using a bit of the keystream extend the table of possible lfsr states\r | |
184 | */\r | |
185 | static inline void\r | |
186 | extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r | |
187 | {\r | |
188 | for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) \r | |
189 | if(filter(*tbl) ^ filter(*tbl | 1)) { // replace\r | |
190 | *tbl |= filter(*tbl) ^ bit;\r | |
191 | } else if(filter(*tbl) == bit) { // insert\r | |
192 | *++*end = *++tbl;\r | |
193 | *tbl = tbl[-1] | 1;\r | |
194 | } else // drop\r | |
195 | *tbl-- = *(*end)--;\r | |
196 | }\r | |
197 | \r | |
198 | \r | |
199 | /** recover\r | |
200 | * recursively narrow down the search space, 4 bits of keystream at a time\r | |
201 | */\r | |
202 | static struct Crypto1State*\r | |
203 | recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r | |
204 | uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r | |
205 | struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)\r | |
206 | {\r | |
207 | uint32_t *o, *e;\r | |
208 | bucket_info_t bucket_info;\r | |
209 | \r | |
210 | if(rem == -1) {\r | |
211 | for(e = e_head; e <= e_tail; ++e) {\r | |
212 | *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r | |
213 | for(o = o_head; o <= o_tail; ++o, ++sl) {\r | |
214 | sl->even = *o;\r | |
215 | sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r | |
216 | }\r | |
217 | }\r | |
218 | sl->odd = sl->even = 0;\r | |
219 | return sl;\r | |
220 | }\r | |
221 | \r | |
222 | for(uint32_t i = 0; i < 4 && rem--; i++) {\r | |
223 | extend_table(o_head, &o_tail, (oks >>= 1) & 1,\r | |
224 | LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);\r | |
225 | if(o_head > o_tail)\r | |
226 | return sl;\r | |
227 | \r | |
228 | extend_table(e_head, &e_tail, (eks >>= 1) & 1,\r | |
229 | LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);\r | |
230 | if(e_head > e_tail)\r | |
231 | return sl;\r | |
232 | }\r | |
233 | \r | |
234 | bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);\r | |
235 | \r | |
236 | for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {\r | |
237 | sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,\r | |
238 | bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,\r | |
239 | rem, sl, in, bucket);\r | |
240 | }\r | |
241 | \r | |
242 | return sl;\r | |
243 | }\r | |
244 | /** lfsr_recovery\r | |
245 | * recover the state of the lfsr given 32 bits of the keystream\r | |
246 | * additionally you can use the in parameter to specify the value\r | |
247 | * that was fed into the lfsr at the time the keystream was generated\r | |
248 | */\r | |
249 | struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r | |
250 | {\r | |
251 | struct Crypto1State *statelist;\r | |
252 | uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r | |
253 | uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r | |
254 | int i;\r | |
255 | \r | |
256 | // split the keystream into an odd and even part\r | |
257 | for(i = 31; i >= 0; i -= 2)\r | |
258 | oks = oks << 1 | BEBIT(ks2, i);\r | |
259 | for(i = 30; i >= 0; i -= 2)\r | |
260 | eks = eks << 1 | BEBIT(ks2, i);\r | |
261 | \r | |
262 | odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r | |
263 | even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r | |
264 | statelist = malloc(sizeof(struct Crypto1State) << 18);\r | |
265 | if(!odd_tail-- || !even_tail-- || !statelist) {\r | |
266 | goto out;\r | |
267 | }\r | |
268 | statelist->odd = statelist->even = 0;\r | |
269 | \r | |
270 | // allocate memory for out of place bucket_sort\r | |
271 | bucket_array_t bucket;\r | |
272 | for (uint32_t i = 0; i < 2; i++)\r | |
273 | for (uint32_t j = 0; j <= 0xff; j++) {\r | |
274 | bucket[i][j].head = malloc(sizeof(uint32_t)<<14);\r | |
275 | if (!bucket[i][j].head) {\r | |
276 | goto out;\r | |
277 | }\r | |
278 | }\r | |
279 | \r | |
280 | \r | |
281 | // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream\r | |
282 | for(i = 1 << 20; i >= 0; --i) {\r | |
283 | if(filter(i) == (oks & 1))\r | |
284 | *++odd_tail = i;\r | |
285 | if(filter(i) == (eks & 1))\r | |
286 | *++even_tail = i;\r | |
287 | }\r | |
288 | \r | |
289 | // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):\r | |
290 | for(i = 0; i < 4; i++) {\r | |
291 | extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r | |
292 | extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r | |
293 | }\r | |
294 | \r | |
295 | // the statelists now contain all states which could have generated the last 10 Bits of the keystream.\r | |
296 | // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"\r | |
297 | // parameter into account.\r | |
298 | \r | |
299 | in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping\r | |
300 | \r | |
301 | recover(odd_head, odd_tail, oks,\r | |
302 | even_head, even_tail, eks, 11, statelist, in << 1, bucket);\r | |
303 | \r | |
304 | \r | |
305 | out:\r | |
306 | free(odd_head);\r | |
307 | free(even_head);\r | |
308 | for (uint32_t i = 0; i < 2; i++)\r | |
309 | for (uint32_t j = 0; j <= 0xff; j++)\r | |
310 | free(bucket[i][j].head);\r | |
311 | \r | |
312 | return statelist;\r | |
313 | }\r | |
314 | \r | |
315 | static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r | |
316 | 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r | |
317 | 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r | |
318 | static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r | |
319 | 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r | |
320 | 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r | |
321 | 0x7EC7EE90, 0x7F63F748, 0x79117020};\r | |
322 | static const uint32_t T1[] = {\r | |
323 | 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r | |
324 | 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r | |
325 | 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r | |
326 | 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r | |
327 | static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r | |
328 | 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r | |
329 | 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r | |
330 | 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r | |
331 | 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r | |
332 | 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r | |
333 | static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r | |
334 | static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r | |
335 | /** Reverse 64 bits of keystream into possible cipher states\r | |
336 | * Variation mentioned in the paper. Somewhat optimized version\r | |
337 | */\r | |
338 | struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r | |
339 | {\r | |
340 | struct Crypto1State *statelist, *sl;\r | |
341 | uint8_t oks[32], eks[32], hi[32];\r | |
342 | uint32_t low = 0, win = 0;\r | |
343 | uint32_t *tail, table[1 << 16];\r | |
344 | int i, j;\r | |
345 | \r | |
346 | sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r | |
347 | if(!sl)\r | |
348 | return 0;\r | |
349 | sl->odd = sl->even = 0;\r | |
350 | \r | |
351 | for(i = 30; i >= 0; i -= 2) {\r | |
352 | oks[i >> 1] = BIT(ks2, i ^ 24);\r | |
353 | oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r | |
354 | }\r | |
355 | for(i = 31; i >= 0; i -= 2) {\r | |
356 | eks[i >> 1] = BIT(ks2, i ^ 24);\r | |
357 | eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r | |
358 | }\r | |
359 | \r | |
360 | for(i = 0xfffff; i >= 0; --i) {\r | |
361 | if (filter(i) != oks[0])\r | |
362 | continue;\r | |
363 | \r | |
364 | *(tail = table) = i;\r | |
365 | for(j = 1; tail >= table && j < 29; ++j)\r | |
366 | extend_table_simple(table, &tail, oks[j]);\r | |
367 | \r | |
368 | if(tail < table)\r | |
369 | continue;\r | |
370 | \r | |
371 | for(j = 0; j < 19; ++j)\r | |
372 | low = low << 1 | parity(i & S1[j]);\r | |
373 | for(j = 0; j < 32; ++j)\r | |
374 | hi[j] = parity(i & T1[j]);\r | |
375 | \r | |
376 | for(; tail >= table; --tail) {\r | |
377 | for(j = 0; j < 3; ++j) {\r | |
378 | *tail = *tail << 1;\r | |
379 | *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r | |
380 | if(filter(*tail) != oks[29 + j])\r | |
381 | goto continue2;\r | |
382 | }\r | |
383 | \r | |
384 | for(j = 0; j < 19; ++j)\r | |
385 | win = win << 1 | parity(*tail & S2[j]);\r | |
386 | \r | |
387 | win ^= low;\r | |
388 | for(j = 0; j < 32; ++j) {\r | |
389 | win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r | |
390 | if(filter(win) != eks[j])\r | |
391 | goto continue2;\r | |
392 | }\r | |
393 | \r | |
394 | *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r | |
395 | sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r | |
396 | sl->even = win;\r | |
397 | ++sl;\r | |
398 | sl->odd = sl->even = 0;\r | |
399 | continue2:;\r | |
400 | }\r | |
401 | }\r | |
402 | return statelist;\r | |
403 | }\r | |
404 | \r | |
405 | /** lfsr_rollback_bit\r | |
406 | * Rollback the shift register in order to get previous states\r | |
407 | */\r | |
408 | void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r | |
409 | {\r | |
410 | int out;\r | |
411 | \r | |
412 | s->odd &= 0xffffff;\r | |
413 | s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);\r | |
414 | \r | |
415 | out = s->even & 1;\r | |
416 | out ^= LF_POLY_EVEN & (s->even >>= 1);\r | |
417 | out ^= LF_POLY_ODD & s->odd;\r | |
418 | out ^= !!in;\r | |
419 | out ^= filter(s->odd) & !!fb;\r | |
420 | \r | |
421 | s->even |= parity(out) << 23;\r | |
422 | }\r | |
423 | /** lfsr_rollback_byte\r | |
424 | * Rollback the shift register in order to get previous states\r | |
425 | */\r | |
426 | void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r | |
427 | {\r | |
428 | int i;\r | |
429 | for (i = 7; i >= 0; --i)\r | |
430 | lfsr_rollback_bit(s, BEBIT(in, i), fb);\r | |
431 | }\r | |
432 | /** lfsr_rollback_word\r | |
433 | * Rollback the shift register in order to get previous states\r | |
434 | */\r | |
435 | void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r | |
436 | {\r | |
437 | int i;\r | |
438 | for (i = 31; i >= 0; --i)\r | |
439 | lfsr_rollback_bit(s, BEBIT(in, i), fb);\r | |
440 | }\r | |
441 | \r | |
442 | /** nonce_distance\r | |
443 | * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r | |
444 | */\r | |
445 | static uint16_t *dist = 0;\r | |
446 | int nonce_distance(uint32_t from, uint32_t to)\r | |
447 | {\r | |
448 | uint16_t x, i;\r | |
449 | if(!dist) {\r | |
450 | dist = malloc(2 << 16);\r | |
451 | if(!dist)\r | |
452 | return -1;\r | |
453 | for (x = i = 1; i; ++i) {\r | |
454 | dist[(x & 0xff) << 8 | x >> 8] = i;\r | |
455 | x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r | |
456 | }\r | |
457 | }\r | |
458 | return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r | |
459 | }\r | |
460 | \r | |
461 | \r | |
462 | static uint32_t fastfwd[2][8] = {\r | |
463 | { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r | |
464 | { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r | |
465 | \r | |
466 | \r | |
467 | /** lfsr_prefix_ks\r | |
468 | *\r | |
469 | * Is an exported helper function from the common prefix attack\r | |
470 | * Described in the "dark side" paper. It returns an -1 terminated array\r | |
471 | * of possible partial(21 bit) secret state.\r | |
472 | * The required keystream(ks) needs to contain the keystream that was used to\r | |
473 | * encrypt the NACK which is observed when varying only the 4 last bits of Nr\r | |
474 | * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r | |
475 | */\r | |
476 | uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r | |
477 | {\r | |
478 | uint32_t *candidates = malloc(4 << 21);\r | |
479 | uint32_t c, entry;\r | |
480 | int size, i;\r | |
481 | \r | |
482 | if(!candidates)\r | |
483 | return 0;\r | |
484 | \r | |
485 | size = (1 << 21) - 1;\r | |
486 | for(i = 0; i <= size; ++i)\r | |
487 | candidates[i] = i;\r | |
488 | \r | |
489 | for(c = 0; c < 8; ++c)\r | |
490 | for(i = 0;i <= size; ++i) {\r | |
491 | entry = candidates[i] ^ fastfwd[isodd][c];\r | |
492 | \r | |
493 | if(filter(entry >> 1) == BIT(ks[c], isodd))\r | |
494 | if(filter(entry) == BIT(ks[c], isodd + 2))\r | |
495 | continue;\r | |
496 | \r | |
497 | candidates[i--] = candidates[size--];\r | |
498 | }\r | |
499 | \r | |
500 | candidates[size + 1] = -1;\r | |
501 | \r | |
502 | return candidates;\r | |
503 | }\r | |
504 | \r | |
505 | /** brute_top\r | |
506 | * helper function which eliminates possible secret states using parity bits\r | |
507 | */\r | |
508 | static struct Crypto1State*\r | |
509 | brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],\r | |
510 | uint32_t odd, uint32_t even, struct Crypto1State* sl)\r | |
511 | {\r | |
512 | struct Crypto1State s;\r | |
513 | uint32_t ks1, nr, ks2, rr, ks3, good, c;\r | |
514 | \r | |
515 | for(c = 0; c < 8; ++c) {\r | |
516 | s.odd = odd ^ fastfwd[1][c];\r | |
517 | s.even = even ^ fastfwd[0][c];\r | |
518 | \r | |
519 | lfsr_rollback_bit(&s, 0, 0);\r | |
520 | lfsr_rollback_bit(&s, 0, 0);\r | |
521 | lfsr_rollback_bit(&s, 0, 0);\r | |
522 | \r | |
523 | lfsr_rollback_word(&s, 0, 0);\r | |
524 | lfsr_rollback_word(&s, prefix | c << 5, 1);\r | |
525 | \r | |
526 | sl->odd = s.odd;\r | |
527 | sl->even = s.even;\r | |
528 | \r | |
529 | ks1 = crypto1_word(&s, prefix | c << 5, 1);\r | |
530 | ks2 = crypto1_word(&s,0,0);\r | |
531 | ks3 = crypto1_word(&s, 0,0);\r | |
532 | nr = ks1 ^ (prefix | c << 5);\r | |
533 | rr = ks2 ^ rresp;\r | |
534 | \r | |
535 | good = 1;\r | |
536 | good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r | |
537 | good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r | |
538 | good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r | |
539 | good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r | |
540 | good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);\r | |
541 | \r | |
542 | if(!good)\r | |
543 | return sl;\r | |
544 | }\r | |
545 | \r | |
546 | return ++sl;\r | |
547 | } \r | |
548 | \r | |
549 | \r | |
550 | /** lfsr_common_prefix\r | |
551 | * Implentation of the common prefix attack.\r | |
552 | * Requires the 28 bit constant prefix used as reader nonce (pfx)\r | |
553 | * The reader response used (rr)\r | |
554 | * The keystream used to encrypt the observed NACK's (ks)\r | |
555 | * The parity bits (par)\r | |
556 | * It returns a zero terminated list of possible cipher states after the\r | |
557 | * tag nonce was fed in\r | |
558 | */\r | |
559 | struct Crypto1State*\r | |
560 | lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])\r | |
561 | {\r | |
562 | struct Crypto1State *statelist, *s;\r | |
563 | uint32_t *odd, *even, *o, *e, top;\r | |
564 | \r | |
565 | odd = lfsr_prefix_ks(ks, 1);\r | |
566 | even = lfsr_prefix_ks(ks, 0);\r | |
567 | \r | |
568 | statelist = malloc((sizeof *statelist) << 20);\r | |
569 | if(!statelist || !odd || !even)\r | |
570 | return 0;\r | |
571 | \r | |
572 | \r | |
573 | s = statelist;\r | |
574 | for(o = odd; *o != 0xffffffff; ++o)\r | |
575 | for(e = even; *e != 0xffffffff; ++e)\r | |
576 | for(top = 0; top < 64; ++top) {\r | |
577 | *o = (*o & 0x1fffff) | (top << 21);\r | |
578 | *e = (*e & 0x1fffff) | (top >> 3) << 21;\r | |
579 | s = brute_top(pfx, rr, par, *o, *e, s);\r | |
580 | }\r | |
581 | \r | |
582 | s->odd = s->even = 0;\r | |
583 | \r | |
584 | free(odd);\r | |
585 | free(even);\r | |
586 | \r | |
587 | return statelist;\r | |
588 | }\r |