| 1 | /* poly.c |
| 2 | * Greg Cook, 26/Jul/2016 |
| 3 | */ |
| 4 | |
| 5 | /* CRC RevEng: arbitrary-precision CRC calculator and algorithm finder |
| 6 | * Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015, 2016 Gregory Cook |
| 7 | * |
| 8 | * This file is part of CRC RevEng. |
| 9 | * |
| 10 | * CRC RevEng is free software: you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation, either version 3 of the License, or |
| 13 | * (at your option) any later version. |
| 14 | * |
| 15 | * CRC RevEng is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with CRC RevEng. If not, see <https://www.gnu.org/licenses/>. |
| 22 | */ |
| 23 | |
| 24 | /* 2016-06-27: pcmp() shortcut returns 0 when pointers identical |
| 25 | * 2015-07-29: discard leading $, &, 0x from argument to strtop() |
| 26 | * 2015-04-03: added direct mode to strtop() |
| 27 | * 2014-01-11: added LOFS(), RNDUP() |
| 28 | * 2013-09-16: SIZE(), IDX(), OFS() macros bitshift if BMP_POF2 |
| 29 | * 2013-02-07: conditional non-2^n fix, pmpar() return mask constant type |
| 30 | * 2013-01-17: fixed pfirst(), plast() for non-2^n BMP_BIT |
| 31 | * 2012-07-16: added pident() |
| 32 | * 2012-05-23: added pmpar() |
| 33 | * 2012-03-03: internal lookup tables stored better |
| 34 | * 2012-03-02: fixed full-width masking in filtop() |
| 35 | * 2011-09-06: added prevch() |
| 36 | * 2011-08-27: fixed zero test in piter() |
| 37 | * 2011-01-17: fixed ANSI C warnings, uses bmp_t type |
| 38 | * 2011-01-15: palloc() and praloc() gracefully handle lengths slightly |
| 39 | * less than ULONG_MAX |
| 40 | * 2011-01-15: strtop() error on invalid argument. pkchop() special case |
| 41 | * when argument all zeroes |
| 42 | * 2011-01-14: added pkchop() |
| 43 | * 2011-01-04: fixed bogus final length calculation in wide pcrc() |
| 44 | * 2011-01-02: faster, more robust prcp() |
| 45 | * 2011-01-01: commented functions, full const declarations, all-LUT rev() |
| 46 | * 2010-12-26: renamed CRC RevEng |
| 47 | * 2010-12-18: removed pmods(), finished pcrc(), added piter() |
| 48 | * 2010-12-17: roughed out pcrc(). difficult, etiam aberat musa heri :( |
| 49 | * 2010-12-15: added psnorm(), psncmp(); optimised pnorm(); fix to praloc() |
| 50 | * 2010-12-14: strtop() resets count between passes |
| 51 | * 2010-12-12: added pright() |
| 52 | * 2010-12-11: filtop won't read more than length bits |
| 53 | * 2010-12-10: finished filtop. 26 public functions |
| 54 | * 2010-12-05: finished strtop, pxsubs; unit tests |
| 55 | * 2010-12-02: project started |
| 56 | */ |
| 57 | |
| 58 | /* Note: WELL-FORMED poly_t objects have a valid bitmap pointer pointing |
| 59 | * to a malloc()-ed array of at least as many bits as stated in its |
| 60 | * length field. Any poly_t with a length of 0 is also a WELL-FORMED |
| 61 | * poly_t (whatever value the bitmap pointer has.) |
| 62 | * All poly_t objects passed to and from functions must be WELL-FORMED |
| 63 | * unless otherwise stated. |
| 64 | * |
| 65 | * CLEAN (or CANONICAL) poly_t objects are WELL-FORMED objects in which |
| 66 | * all spare bits in the bitmap word containing the last bit are zero. |
| 67 | * (Any excess allocated words will not be accessed.) |
| 68 | * |
| 69 | * SEMI-NORMALISED poly_t objects are CLEAN objects in which the last |
| 70 | * bit, at position (length - 1), is one. |
| 71 | * |
| 72 | * NORMALISED poly_t objects are SEMI-NORMALISED objects in which the |
| 73 | * first bit is one. |
| 74 | * |
| 75 | * pfree() should be called on every poly_t object (including |
| 76 | * those returned by functions) after its last use. |
| 77 | * As always, free() should be called on every malloc()-ed string after |
| 78 | * its last use. |
| 79 | */ |
| 80 | |
| 81 | #include <limits.h> |
| 82 | #include <stdio.h> |
| 83 | #include <stdlib.h> |
| 84 | #include "reveng.h" |
| 85 | |
| 86 | static bmp_t getwrd(const poly_t poly, unsigned long iter); |
| 87 | static bmp_t rev(bmp_t accu, int bits); |
| 88 | static void prhex(char **spp, bmp_t bits, int flags, int bperhx); |
| 89 | |
| 90 | static const poly_t pzero = PZERO; |
| 91 | |
| 92 | /* word number (0..m-1) of var'th bit (0..n-1) */ |
| 93 | #if BMP_POF2 >= 5 |
| 94 | # define IDX(var) ((var) >> BMP_POF2) |
| 95 | #else |
| 96 | # define IDX(var) ((var) / BMP_BIT) |
| 97 | #endif |
| 98 | |
| 99 | /* size of polynomial with var bits */ |
| 100 | #if BMP_POF2 >= 5 |
| 101 | # define SIZE(var) ((BMP_BIT - 1UL + (var)) >> BMP_POF2) |
| 102 | #else |
| 103 | # define SIZE(var) ((BMP_BIT - 1UL + (var)) / BMP_BIT) |
| 104 | #endif |
| 105 | |
| 106 | /* polynomial length rounded up to BMP_BIT */ |
| 107 | #ifdef BMP_POF2 |
| 108 | # define RNDUP(var) (~(BMP_BIT - 1UL) & (BMP_BIT - 1UL + (var))) |
| 109 | #else |
| 110 | # define RNDUP(var) ((BMP_BIT - (var) % BMP_BIT) % BMP_BIT + (var)) |
| 111 | #endif |
| 112 | |
| 113 | /* bit offset (0..BMP_BIT-1, 0 = LSB) of var'th bit (0..n-1) */ |
| 114 | #ifdef BMP_POF2 |
| 115 | # define OFS(var) ((int) ((BMP_BIT - 1UL) & ~(var))) |
| 116 | #else |
| 117 | # define OFS(var) ((int) (BMP_BIT - 1UL - (var) % BMP_BIT)) |
| 118 | #endif |
| 119 | |
| 120 | /* bit offset (0..BMP_BIT-1, 0 = MSB) of var'th bit (0..n-1) */ |
| 121 | #ifdef BMP_POF2 |
| 122 | # define LOFS(var) ((int) ((BMP_BIT - 1UL) & (var))) |
| 123 | #else |
| 124 | # define LOFS(var) ((int) ((var) % BMP_BIT)) |
| 125 | #endif |
| 126 | |
| 127 | poly_t |
| 128 | filtop(FILE *input, unsigned long length, int flags, int bperhx) { |
| 129 | /* reads binary data from input into a poly_t until EOF or until |
| 130 | * length bits are read. Characters are read until |
| 131 | * ceil(bperhx / CHAR_BIT) bits are collected; if P_LTLBYT is |
| 132 | * set in flags then the first character contains the LSB, |
| 133 | * otherwise the last one does. The least significant bperhx |
| 134 | * bits are taken, reflected (if P_REFIN) and appended to the |
| 135 | * result, then more characters are read. The maximum number of |
| 136 | * characters read is |
| 137 | * floor(length / bperhx) * ceil(bperhx / * CHAR_BIT). |
| 138 | * The returned poly_t is CLEAN. |
| 139 | */ |
| 140 | |
| 141 | bmp_t accu = BMP_C(0); |
| 142 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); |
| 143 | unsigned long iter = 0UL, idx; |
| 144 | int cmask = (1 << CHAR_BIT) - 1, c; |
| 145 | int count = 0, ofs; |
| 146 | poly_t poly = PZERO; |
| 147 | if(bperhx == 0) return(poly); |
| 148 | |
| 149 | length -= length % bperhx; |
| 150 | palloc(&poly, length); /* >= 0 */ |
| 151 | |
| 152 | while(iter < length && (c = fgetc(input)) != EOF) { |
| 153 | if(flags & P_LTLBYT) |
| 154 | accu |= (bmp_t) (c & cmask) << count; |
| 155 | else |
| 156 | accu = (accu << CHAR_BIT) | (bmp_t) (c & cmask); |
| 157 | count += CHAR_BIT; |
| 158 | if(count >= bperhx) { |
| 159 | /* the low bperhx bits of accu contain bits of the poly.*/ |
| 160 | iter += bperhx; |
| 161 | count = 0; |
| 162 | if(flags & P_REFIN) |
| 163 | accu = rev(accu, bperhx); |
| 164 | accu &= mask; |
| 165 | |
| 166 | /* iter >= bperhx > 0 */ |
| 167 | idx = IDX(iter - 1UL); |
| 168 | ofs = OFS(iter - 1UL); |
| 169 | poly.bitmap[idx] |= accu << ofs; |
| 170 | if(ofs + bperhx > BMP_BIT) { |
| 171 | poly.bitmap[idx-1] |= accu >> (BMP_BIT - ofs); |
| 172 | } |
| 173 | accu = BMP_C(0); /* only needed for P_LTLBYT */ |
| 174 | } |
| 175 | } |
| 176 | praloc(&poly, iter); |
| 177 | return(poly); |
| 178 | } |
| 179 | |
| 180 | poly_t |
| 181 | strtop(const char *string, int flags, int bperhx) { |
| 182 | /* Converts a hex or character string to a poly_t. |
| 183 | * Each character is converted to a hex nibble yielding 4 bits |
| 184 | * unless P_DIRECT, when each character yields CHAR_BIT bits. |
| 185 | * Nibbles and characters are accumulated left-to-right |
| 186 | * unless P_DIRECT && P_LTLBYT, when they are accumulated |
| 187 | * right-to-left without reflection. |
| 188 | * As soon as at least bperhx bits are accumulated, the |
| 189 | * rightmost bperhx bits are reflected (if P_REFIN) |
| 190 | * and appended to the poly. When !P_DIRECT: |
| 191 | * bperhx=8 reads hex nibbles in pairs |
| 192 | * bperhx=7 reads hex nibbles in pairs and discards |
| 193 | * b3 of first nibble |
| 194 | * bperhx=4 reads hex nibbles singly |
| 195 | * bperhx=3 reads octal |
| 196 | * bperhx=1 reads longhand binary |
| 197 | * in theory if !P_REFIN, bperhx can be any multiple of 4 |
| 198 | * with equal effect |
| 199 | * The returned poly_t is CLEAN. |
| 200 | */ |
| 201 | |
| 202 | /* make two passes, one to determine the poly size |
| 203 | * one to populate the bitmap |
| 204 | */ |
| 205 | unsigned long length = 1UL, idx; |
| 206 | bmp_t accu; |
| 207 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); |
| 208 | int pass, count, ofs; |
| 209 | int cmask = (1 << CHAR_BIT) - 1 , c; |
| 210 | const char *s; |
| 211 | |
| 212 | poly_t poly = PZERO; |
| 213 | if(bperhx > BMP_BIT || bperhx <= 0 || string == NULL || *string == '\0') |
| 214 | return(poly); |
| 215 | |
| 216 | if(~flags & P_DIRECT) { |
| 217 | if(*string == '$' || *string == '&') |
| 218 | ++string; |
| 219 | else if(*string == '0' |
| 220 | && (string[1] == 'x' || string[1] == 'X')) |
| 221 | string += 2; |
| 222 | } |
| 223 | length = (*string != '\0'); |
| 224 | |
| 225 | for(pass=0; pass<2 && length > 0UL; ++pass) { |
| 226 | s = string; |
| 227 | length = 0UL; |
| 228 | count = 0; |
| 229 | accu = BMP_C(0); |
| 230 | while((c = *s++)) { |
| 231 | if(flags & P_DIRECT) { |
| 232 | if(flags & P_LTLBYT) |
| 233 | accu |= (bmp_t) (c & cmask) << count; |
| 234 | else |
| 235 | accu = (accu << CHAR_BIT) | (bmp_t) (c & cmask); |
| 236 | count += CHAR_BIT; |
| 237 | } else { |
| 238 | if(c == ' ' || c == '\t' || c == '\r' || c == '\n') continue; |
| 239 | accu <<= 4; |
| 240 | count += 4; |
| 241 | switch(c) { |
| 242 | case '0': |
| 243 | case '1': |
| 244 | case '2': |
| 245 | case '3': |
| 246 | case '4': |
| 247 | case '5': |
| 248 | case '6': |
| 249 | case '7': |
| 250 | case '8': |
| 251 | case '9': |
| 252 | accu |= (bmp_t) c - '0'; |
| 253 | break; |
| 254 | case 'A': |
| 255 | case 'a': |
| 256 | accu |= BMP_C(0xa); |
| 257 | break; |
| 258 | case 'B': |
| 259 | case 'b': |
| 260 | accu |= BMP_C(0xb); |
| 261 | break; |
| 262 | case 'C': |
| 263 | case 'c': |
| 264 | accu |= BMP_C(0xc); |
| 265 | break; |
| 266 | case 'D': |
| 267 | case 'd': |
| 268 | accu |= BMP_C(0xd); |
| 269 | break; |
| 270 | case 'E': |
| 271 | case 'e': |
| 272 | accu |= BMP_C(0xe); |
| 273 | break; |
| 274 | case 'F': |
| 275 | case 'f': |
| 276 | accu |= BMP_C(0xf); |
| 277 | break; |
| 278 | default: |
| 279 | uerror("invalid character in hexadecimal argument"); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | if(count >= bperhx) { |
| 284 | /* the low bperhx bits of accu contain bits of the poly. |
| 285 | * in pass 0, increment length by bperhx. |
| 286 | * in pass 1, put the low bits of accu into the bitmap. */ |
| 287 | length += bperhx; |
| 288 | count = 0; |
| 289 | if(pass == 1) { |
| 290 | if(flags & P_REFIN) |
| 291 | accu = rev(accu, bperhx); |
| 292 | accu &= mask; |
| 293 | |
| 294 | /* length >= bperhx > 0 */ |
| 295 | idx = IDX(length - 1); |
| 296 | ofs = OFS(length - 1); |
| 297 | poly.bitmap[idx] |= accu << ofs; |
| 298 | if(ofs + bperhx > BMP_BIT) |
| 299 | poly.bitmap[idx-1] |= accu >> (BMP_BIT - ofs); |
| 300 | accu = BMP_C(0); /* only needed for P_LTLBYT */ |
| 301 | } |
| 302 | } |
| 303 | } |
| 304 | if(pass == 0) palloc(&poly, length); |
| 305 | } |
| 306 | return(poly); |
| 307 | } |
| 308 | |
| 309 | char * |
| 310 | ptostr(const poly_t poly, int flags, int bperhx) { |
| 311 | /* Returns a malloc()-ed string containing a hexadecimal |
| 312 | * representation of poly. See phxsubs(). |
| 313 | */ |
| 314 | return(pxsubs(poly, flags, bperhx, 0UL, poly.length)); |
| 315 | } |
| 316 | |
| 317 | char * |
| 318 | pxsubs(const poly_t poly, int flags, int bperhx, unsigned long start, unsigned long end) { |
| 319 | /* Returns a malloc()-ed string containing a hexadecimal |
| 320 | * representation of a portion of poly, from bit offset start to |
| 321 | * (end - 1) inclusive. The output is grouped into words of |
| 322 | * bperhx bits each. If P_RTJUST then the first word is padded |
| 323 | * with zeroes at the MSB end to make a whole number of words, |
| 324 | * otherwise the last word is padded at the LSB end. After |
| 325 | * justification the bperhx bits of each word are reversed (if |
| 326 | * P_REFOUT) and printed as a hex sequence, with words |
| 327 | * optionally separated by spaces (P_SPACE). |
| 328 | * If end exceeds the length of poly then zero bits are appended |
| 329 | * to make up the difference, in which case poly must be CLEAN. |
| 330 | */ |
| 331 | char *string, *sptr; |
| 332 | unsigned long size, iter; |
| 333 | bmp_t accu; |
| 334 | bmp_t mask = bperhx == BMP_BIT ? ~BMP_C(0) : (BMP_C(1) << bperhx) - BMP_C(1); |
| 335 | int cperhx, part; |
| 336 | |
| 337 | if(bperhx <= 0 || bperhx > BMP_BIT) return(NULL); |
| 338 | |
| 339 | if(start > poly.length) start = poly.length; |
| 340 | if(end > poly.length) end = poly.length; |
| 341 | if(end < start) end = start; |
| 342 | |
| 343 | cperhx = (bperhx + 3) >> 2; |
| 344 | if(flags & P_SPACE) ++cperhx; |
| 345 | |
| 346 | size = (end - start + bperhx - 1UL) / bperhx; |
| 347 | size *= cperhx; |
| 348 | if(!size || ~flags & P_SPACE) ++size; /* for trailing null */ |
| 349 | |
| 350 | if(!(sptr = string = (char *) malloc(size))) |
| 351 | uerror("cannot allocate memory for string"); |
| 352 | |
| 353 | size = end - start; |
| 354 | part = (int) size % bperhx; |
| 355 | if(part && flags & P_RTJUST) { |
| 356 | iter = start + part; |
| 357 | accu = getwrd(poly, iter - 1UL) & ((BMP_C(1) << part) - BMP_C(1)); |
| 358 | if(flags & P_REFOUT) |
| 359 | /* best to reverse over bperhx rather than part, I think |
| 360 | * e.g. converting a 7-bit poly to 8-bit little-endian hex |
| 361 | */ |
| 362 | accu = rev(accu, bperhx); |
| 363 | prhex(&sptr, accu, flags, bperhx); |
| 364 | if(flags & P_SPACE && size > iter) *sptr++ = ' '; |
| 365 | } else { |
| 366 | iter = start; |
| 367 | } |
| 368 | |
| 369 | while((iter+=bperhx) <= end) { |
| 370 | accu = getwrd(poly, iter - 1UL) & mask; |
| 371 | if(flags & P_REFOUT) |
| 372 | accu = rev(accu, bperhx); |
| 373 | prhex(&sptr, accu, flags, bperhx); |
| 374 | if(flags & P_SPACE && size > iter) *sptr++ = ' '; |
| 375 | } |
| 376 | |
| 377 | if(part && ~flags & P_RTJUST) { |
| 378 | accu = getwrd(poly, end - 1UL); |
| 379 | if(flags & P_REFOUT) |
| 380 | accu = rev(accu, part); |
| 381 | else |
| 382 | accu = accu << (bperhx - part) & mask; |
| 383 | prhex(&sptr, accu, flags, bperhx); |
| 384 | } |
| 385 | *sptr = '\0'; |
| 386 | return(string); |
| 387 | } |
| 388 | |
| 389 | poly_t |
| 390 | pclone(const poly_t poly) { |
| 391 | /* Returns a freestanding copy of poly. Does not clean poly or |
| 392 | * the result. |
| 393 | */ |
| 394 | poly_t clone = PZERO; |
| 395 | |
| 396 | pcpy(&clone, poly); |
| 397 | return(clone); |
| 398 | } |
| 399 | |
| 400 | void |
| 401 | pcpy(poly_t *dest, const poly_t src) { |
| 402 | /* Assigns (copies) src into dest. Does not clean src or dest. |
| 403 | */ |
| 404 | unsigned long iter, idx; |
| 405 | |
| 406 | praloc(dest, src.length); |
| 407 | for(iter=0UL, idx=0UL; iter < src.length; iter += BMP_BIT, ++idx) |
| 408 | dest->bitmap[idx] = src.bitmap[idx]; |
| 409 | } |
| 410 | |
| 411 | void |
| 412 | pcanon(poly_t *poly) { |
| 413 | /* Converts poly into a CLEAN object by freeing unused bitmap words |
| 414 | * and clearing any bits in the last word beyond the last bit. |
| 415 | * The length field has absolute priority over the contents of the bitmap. |
| 416 | * Canonicalisation differs from normalisation in that leading and trailing |
| 417 | * zero terms are significant and preserved. |
| 418 | * poly may or may not be WELL-FORMED. |
| 419 | */ |
| 420 | praloc(poly, poly->length); |
| 421 | } |
| 422 | |
| 423 | void |
| 424 | pnorm(poly_t *poly) { |
| 425 | /* Converts poly into a NORMALISED object by removing leading |
| 426 | * and trailing zeroes, so that the polynomial starts and ends |
| 427 | * with significant terms. |
| 428 | * poly may or may not be WELL-FORMED. |
| 429 | */ |
| 430 | unsigned long first; |
| 431 | |
| 432 | /* call pcanon() here so pfirst() and plast() return the correct |
| 433 | * results |
| 434 | */ |
| 435 | pcanon(poly); |
| 436 | first = pfirst(*poly); |
| 437 | if(first) |
| 438 | pshift(poly, *poly, 0UL, first, plast(*poly), 0UL); |
| 439 | else |
| 440 | praloc(poly, plast(*poly)); |
| 441 | } |
| 442 | |
| 443 | void |
| 444 | psnorm(poly_t *poly) { |
| 445 | /* Converts poly into a SEMI-NORMALISED object by removing |
| 446 | * trailing zeroes, so that the polynomial ends with a |
| 447 | * significant term. |
| 448 | * poly may or may not be WELL-FORMED. |
| 449 | */ |
| 450 | |
| 451 | /* call pcanon() here so plast() returns the correct result */ |
| 452 | pcanon(poly); |
| 453 | praloc(poly, plast(*poly)); |
| 454 | } |
| 455 | |
| 456 | void |
| 457 | pchop(poly_t *poly) { |
| 458 | /* Normalise poly, then chop off the highest significant term |
| 459 | * (produces a SEMI-NORMALISED object). poly becomes a suitable |
| 460 | * divisor for pcrc(). |
| 461 | * poly may or may not be WELL-FORMED. |
| 462 | */ |
| 463 | |
| 464 | /* call pcanon() here so pfirst() and plast() return correct |
| 465 | * results |
| 466 | */ |
| 467 | pcanon(poly); |
| 468 | pshift(poly, *poly, 0UL, pfirst(*poly) + 1UL, plast(*poly), 0UL); |
| 469 | } |
| 470 | |
| 471 | void |
| 472 | pkchop(poly_t *poly) { |
| 473 | /* Convert poly from Koopman notation to chopped form (produces |
| 474 | * a SEMI-NORMALISED object). poly becomes a suitable divisor |
| 475 | * for pcrc(). |
| 476 | * poly may or may not be WELL-FORMED. |
| 477 | */ |
| 478 | unsigned long first; |
| 479 | |
| 480 | /* call pcanon() here so pfirst() returns the correct result */ |
| 481 | pcanon(poly); |
| 482 | first = pfirst(*poly); |
| 483 | if(first >= poly->length) { |
| 484 | pfree(poly); |
| 485 | return; |
| 486 | } |
| 487 | pshift(poly, *poly, 0UL, first + 1UL, poly->length, 1UL); |
| 488 | piter(poly); |
| 489 | } |
| 490 | |
| 491 | unsigned long |
| 492 | plen(const poly_t poly) { |
| 493 | /* Return length of polynomial. |
| 494 | * poly may or may not be WELL-FORMED. |
| 495 | */ |
| 496 | return(poly.length); |
| 497 | } |
| 498 | |
| 499 | int |
| 500 | pcmp(const poly_t *a, const poly_t *b) { |
| 501 | /* Compares poly_t objects for identical sizes and contents. |
| 502 | * a and b must be CLEAN. |
| 503 | * Defines a total order relation for sorting, etc. although |
| 504 | * mathematically, polynomials of equal degree are no greater or |
| 505 | * less than one another. |
| 506 | */ |
| 507 | unsigned long iter; |
| 508 | bmp_t *aptr, *bptr; |
| 509 | |
| 510 | if(!a || !b) return(!b - !a); |
| 511 | if(a->length < b->length) return(-1); |
| 512 | if(a->length > b->length) return(1); |
| 513 | aptr = a->bitmap; |
| 514 | bptr = b->bitmap; |
| 515 | if(aptr == bptr) |
| 516 | return(0); |
| 517 | for(iter=0UL; iter < a->length; iter += BMP_BIT) { |
| 518 | if(*aptr < *bptr) |
| 519 | return(-1); |
| 520 | if(*aptr++ > *bptr++) |
| 521 | return(1); |
| 522 | } |
| 523 | return(0); |
| 524 | } |
| 525 | |
| 526 | int |
| 527 | psncmp(const poly_t *a, const poly_t *b) { |
| 528 | /* Compares polys for identical effect, i.e. as though the |
| 529 | * shorter poly were padded with zeroes to the length of the |
| 530 | * longer. |
| 531 | * a and b must still be CLEAN, therefore psncmp() is *not* |
| 532 | * identical to pcmp() on semi-normalised polys as psnorm() |
| 533 | * clears the slack space. |
| 534 | */ |
| 535 | unsigned long length, iter, idx; |
| 536 | bmp_t aword, bword; |
| 537 | if(!a || !b) return(!b - !a); |
| 538 | length = (a->length > b->length) ? a->length : b->length; |
| 539 | for(iter = 0UL, idx = 0UL; iter < length; iter += BMP_BIT, ++idx) { |
| 540 | aword = (iter < a->length) ? a->bitmap[idx] : BMP_C(0); |
| 541 | bword = (iter < b->length) ? b->bitmap[idx] : BMP_C(0); |
| 542 | if(aword < bword) |
| 543 | return(-1); |
| 544 | if(aword > bword) |
| 545 | return(1); |
| 546 | } |
| 547 | return(0); |
| 548 | } |
| 549 | |
| 550 | |
| 551 | int |
| 552 | ptst(const poly_t poly) { |
| 553 | /* Tests whether a polynomial equals zero. Returns 0 if equal, |
| 554 | * a nonzero value otherwise. |
| 555 | * poly must be CLEAN. |
| 556 | */ |
| 557 | unsigned long iter; |
| 558 | bmp_t *bptr; |
| 559 | if(!poly.bitmap) return(0); |
| 560 | for(iter = 0UL, bptr = poly.bitmap; iter < poly.length; iter += BMP_BIT) |
| 561 | if(*bptr++) return(1); |
| 562 | return(0); |
| 563 | } |
| 564 | |
| 565 | unsigned long |
| 566 | pfirst(const poly_t poly) { |
| 567 | /* Returns the index of the first nonzero term in poly. If none |
| 568 | * is found, returns the length of poly. |
| 569 | * poly must be CLEAN. |
| 570 | */ |
| 571 | unsigned long idx = 0UL, size = SIZE(poly.length); |
| 572 | bmp_t accu = BMP_C(0); /* initialiser for Acorn C */ |
| 573 | unsigned int probe = BMP_SUB, ofs = 0; |
| 574 | |
| 575 | while(idx < size && !(accu = poly.bitmap[idx])) ++idx; |
| 576 | if(idx >= size) return(poly.length); |
| 577 | while(probe) { |
| 578 | #ifndef BMP_POF2 |
| 579 | while((ofs | probe) >= (unsigned int) BMP_BIT) probe >>= 1; |
| 580 | #endif |
| 581 | if(accu >> (ofs | probe)) ofs |= probe; |
| 582 | probe >>= 1; |
| 583 | } |
| 584 | |
| 585 | return(BMP_BIT - 1UL - ofs + idx * BMP_BIT); |
| 586 | } |
| 587 | |
| 588 | unsigned long |
| 589 | plast(const poly_t poly) { |
| 590 | /* Returns 1 plus the index of the last nonzero term in poly. |
| 591 | * If none is found, returns zero. |
| 592 | * poly must be CLEAN. |
| 593 | */ |
| 594 | unsigned long idx, size = SIZE(poly.length); |
| 595 | bmp_t accu; |
| 596 | unsigned int probe = BMP_SUB, ofs = 0; |
| 597 | |
| 598 | if(!poly.length) return(0UL); |
| 599 | idx = size - 1UL; |
| 600 | while(idx && !(accu = poly.bitmap[idx])) --idx; |
| 601 | if(!idx && !(accu = poly.bitmap[idx])) return(0UL); |
| 602 | /* now accu == poly.bitmap[idx] and contains last significant term */ |
| 603 | while(probe) { |
| 604 | #ifndef BMP_POF2 |
| 605 | while((ofs | probe) >= (unsigned int) BMP_BIT) probe >>= 1; |
| 606 | #endif |
| 607 | if(accu << (ofs | probe)) ofs |= probe; |
| 608 | probe >>= 1; |
| 609 | } |
| 610 | |
| 611 | return(idx * BMP_BIT + ofs + 1UL); |
| 612 | } |
| 613 | |
| 614 | poly_t |
| 615 | psubs(const poly_t src, unsigned long head, unsigned long start, unsigned long end, unsigned long tail) { |
| 616 | poly_t dest = PZERO; |
| 617 | pshift(&dest, src, head, start, end, tail); |
| 618 | return(dest); |
| 619 | } |
| 620 | |
| 621 | void |
| 622 | pright(poly_t *poly, unsigned long length) { |
| 623 | /* Trims or extends poly to length at the left edge, prepending |
| 624 | * zeroes if necessary. Analogous to praloc() except the |
| 625 | * rightmost terms of poly are preserved. |
| 626 | * On entry, poly may or may not be WELL-FORMED. |
| 627 | * On exit, poly is CLEAN. |
| 628 | */ |
| 629 | |
| 630 | if(length > poly->length) |
| 631 | pshift(poly, *poly, length - poly->length, 0UL, poly->length, 0UL); |
| 632 | else if(length < poly->length) |
| 633 | pshift(poly, *poly, 0UL, poly->length - length, poly->length, 0UL); |
| 634 | else |
| 635 | praloc(poly, poly->length); |
| 636 | } |
| 637 | |
| 638 | void |
| 639 | pshift(poly_t *dest, const poly_t src, unsigned long head, unsigned long start, unsigned long end, unsigned long tail) { |
| 640 | /* copies bits start to end-1 of src to dest, plus the number of leading and trailing zeroes given by head and tail. |
| 641 | * end may exceed the length of src in which case more zeroes are appended. |
| 642 | * dest may point to src, in which case the poly is edited in place. |
| 643 | * On exit, dest is CLEAN. |
| 644 | */ |
| 645 | |
| 646 | unsigned long length, fulllength, size, fullsize, iter, idx, datidx; |
| 647 | /* condition inputs; end, head and tail may be any value */ |
| 648 | if(end < start) end = start; |
| 649 | |
| 650 | length = end - start + head; |
| 651 | fulllength = length + tail; |
| 652 | if(fulllength > src.length) |
| 653 | praloc(dest, fulllength); |
| 654 | else |
| 655 | praloc(dest, src.length); |
| 656 | |
| 657 | /* number of words in new poly */ |
| 658 | size = SIZE(length); |
| 659 | fullsize = SIZE(fulllength); |
| 660 | /* array index of first word ending up with source material */ |
| 661 | datidx = IDX(head); |
| 662 | |
| 663 | if(head > start && end > start) { |
| 664 | /* shifting right, size > 0 */ |
| 665 | /* index of the source bit ending up in the LSB of the last word |
| 666 | * size * BMP_BIT >= length > head > 0 */ |
| 667 | iter = size * BMP_BIT - head - 1UL; |
| 668 | for(idx = size - 1UL; idx > datidx; iter -= BMP_BIT, --idx) |
| 669 | dest->bitmap[idx] = getwrd(src, iter); |
| 670 | dest->bitmap[idx] = getwrd(src, iter); |
| 671 | /* iter == size * BMP_BIT - head - 1 - BMP_BIT * (size - 1 - datidx) |
| 672 | * == BMP_BIT * (size - size + 1 + datidx) - head - 1 |
| 673 | * == BMP_BIT * (1 + head / BMP_BIT) - head - 1 |
| 674 | * == BMP_BIT + head - head % BMP_BIT - head - 1 |
| 675 | * == BMP_BIT - head % BMP_BIT - 1 |
| 676 | * >= 0 |
| 677 | */ |
| 678 | } else if(head <= start) { |
| 679 | /* shifting left or copying */ |
| 680 | /* index of the source bit ending up in the LSB of bitmap[idx] */ |
| 681 | iter = start - head + BMP_BIT - 1UL; |
| 682 | for(idx = datidx; idx < size; iter += BMP_BIT, ++idx) |
| 683 | dest->bitmap[idx] = getwrd(src, iter); |
| 684 | } |
| 685 | |
| 686 | /* clear head */ |
| 687 | for(idx = 0UL; idx < datidx; ++idx) |
| 688 | dest->bitmap[idx] = BMP_C(0); |
| 689 | if(size) |
| 690 | dest->bitmap[datidx] &= ~BMP_C(0) >> LOFS(head); |
| 691 | |
| 692 | /* clear tail */ |
| 693 | if(LOFS(length)) |
| 694 | dest->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(length)); |
| 695 | for(idx = size; idx < fullsize; ++idx) |
| 696 | dest->bitmap[idx] = BMP_C(0); |
| 697 | |
| 698 | /* call praloc to shrink poly if required */ |
| 699 | if(dest->length > fulllength) |
| 700 | praloc(dest, fulllength); |
| 701 | } |
| 702 | |
| 703 | void |
| 704 | ppaste(poly_t *dest, const poly_t src, unsigned long skip, unsigned long seek, unsigned long end, unsigned long fulllength) { |
| 705 | /* pastes terms of src, starting from skip, to positions seek to end-1 of dest |
| 706 | * then sets length of dest to fulllength (>= end) |
| 707 | * to paste n terms of src, give end = seek + n |
| 708 | * to truncate dest at end of paste, set fulllength = end |
| 709 | * to avoid truncating, set fulllength = plen(*dest) |
| 710 | * dest may point to src, in which case the poly is edited in place. |
| 711 | * src must be CLEAN in the case that the end is overrun. |
| 712 | * On exit, dest is CLEAN. |
| 713 | */ |
| 714 | bmp_t mask; |
| 715 | unsigned long seekidx, endidx, iter; |
| 716 | int seekofs; |
| 717 | if(end < seek) end = seek; |
| 718 | if(fulllength < end) fulllength = end; |
| 719 | |
| 720 | /* expand dest if necessary. don't shrink as dest may be src */ |
| 721 | if(fulllength > dest->length) |
| 722 | praloc(dest, fulllength); |
| 723 | seekidx = IDX(seek); |
| 724 | endidx = IDX(end); |
| 725 | seekofs = OFS(seek); |
| 726 | /* index of the source bit ending up in the LSB of the first modified word */ |
| 727 | iter = skip + seekofs; |
| 728 | if(seekidx == endidx) { |
| 729 | /* paste affects one word (traps end = seek case) */ |
| 730 | mask = ((BMP_C(1) << seekofs) - (BMP_C(1) << OFS(end))) << 1; |
| 731 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & ~mask) | (getwrd(src, iter) & mask); |
| 732 | } else if(seek > skip) { |
| 733 | /* shifting right */ |
| 734 | /* index of the source bit ending up in the LSB of the last modified word */ |
| 735 | iter += (endidx - seekidx) * BMP_BIT; |
| 736 | mask = ~BMP_C(0) >> LOFS(end); |
| 737 | dest->bitmap[endidx] = (dest->bitmap[endidx] & mask) | (getwrd(src, iter) & ~mask); |
| 738 | for(iter -= BMP_BIT, --endidx; endidx > seekidx; iter -= BMP_BIT, --endidx) |
| 739 | dest->bitmap[endidx] = getwrd(src, iter); |
| 740 | mask = ~BMP_C(0) >> LOFS(seek); |
| 741 | dest->bitmap[endidx] = (dest->bitmap[endidx] & ~mask) | (getwrd(src, iter) & mask); |
| 742 | /* iter == skip + seekofs + (endidx - seekidx) * BMP_BIT - BMP_BIT * (endidx - seekidx) |
| 743 | * == skip + seekofs + BMP_BIT * (endidx - seekidx - endidx + seekidx) |
| 744 | * == skip + seekofs |
| 745 | * >= 0 |
| 746 | */ |
| 747 | } else { |
| 748 | /* shifting left or copying */ |
| 749 | mask = ~BMP_C(0) >> LOFS(seek); |
| 750 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & ~mask) | (getwrd(src, iter) & mask); |
| 751 | for(iter += BMP_BIT, ++seekidx; seekidx < endidx; iter += BMP_BIT, ++seekidx) |
| 752 | dest->bitmap[seekidx] = getwrd(src, iter); |
| 753 | mask = ~BMP_C(0) >> LOFS(end); |
| 754 | dest->bitmap[seekidx] = (dest->bitmap[seekidx] & mask) | (getwrd(src, iter) & ~mask); |
| 755 | } |
| 756 | /* shrink poly if required */ |
| 757 | if(dest->length > fulllength) |
| 758 | praloc(dest, fulllength); |
| 759 | } |
| 760 | |
| 761 | void |
| 762 | pdiff(poly_t *dest, const poly_t src, unsigned long ofs) { |
| 763 | /* Subtract src from dest (modulo 2) at offset ofs. |
| 764 | * In modulo 2 arithmetic, subtraction is equivalent to addition |
| 765 | * We include an alias for those who wish to retain the distinction |
| 766 | * src and dest must be CLEAN. |
| 767 | */ |
| 768 | psum(dest, src, ofs); |
| 769 | } |
| 770 | |
| 771 | void |
| 772 | psum(poly_t *dest, const poly_t src, unsigned long ofs) { |
| 773 | /* Adds src to dest (modulo 2) at offset ofs. |
| 774 | * When ofs == dest->length, catenates src on to dest. |
| 775 | * src and dest must be CLEAN. |
| 776 | */ |
| 777 | unsigned long fulllength, idx, iter, end; |
| 778 | |
| 779 | fulllength = ofs + src.length; |
| 780 | if(fulllength > dest->length) |
| 781 | praloc(dest, fulllength); |
| 782 | /* array index of first word in dest to be modified */ |
| 783 | idx = IDX(ofs); |
| 784 | /* index of bit in src to be added to LSB of dest->bitmap[idx] */ |
| 785 | iter = OFS(ofs); |
| 786 | /* stop value for iter */ |
| 787 | end = BMP_BIT - 1UL + src.length; |
| 788 | for(; iter < end; iter += BMP_BIT, ++idx) |
| 789 | dest->bitmap[idx] ^= getwrd(src, iter); |
| 790 | } |
| 791 | |
| 792 | void |
| 793 | prev(poly_t *poly) { |
| 794 | /* Reverse or reciprocate a polynomial. |
| 795 | * On exit, poly is CLEAN. |
| 796 | */ |
| 797 | unsigned long leftidx = 0UL, rightidx = SIZE(poly->length); |
| 798 | unsigned long ofs = LOFS(BMP_BIT - LOFS(poly->length)); |
| 799 | unsigned long fulllength = poly->length + ofs; |
| 800 | bmp_t accu; |
| 801 | |
| 802 | if(ofs) |
| 803 | /* removable optimisation */ |
| 804 | if(poly->length < (unsigned long) BMP_BIT) { |
| 805 | *poly->bitmap = rev(*poly->bitmap >> ofs, (int) poly->length) << ofs; |
| 806 | return; |
| 807 | } |
| 808 | |
| 809 | /* claim remaining bits of last word (as we use public function pshift()) */ |
| 810 | poly->length = fulllength; |
| 811 | |
| 812 | /* reverse and swap words in the array, leaving it right-justified */ |
| 813 | while(leftidx < rightidx) { |
| 814 | /* rightidx > 0 */ |
| 815 | accu = rev(poly->bitmap[--rightidx], BMP_BIT); |
| 816 | poly->bitmap[rightidx] = rev(poly->bitmap[leftidx], BMP_BIT); |
| 817 | poly->bitmap[leftidx++] = accu; |
| 818 | } |
| 819 | /* shift polynomial to left edge if required */ |
| 820 | if(ofs) |
| 821 | pshift(poly, *poly, 0UL, ofs, fulllength, 0UL); |
| 822 | } |
| 823 | |
| 824 | void |
| 825 | prevch(poly_t *poly, int bperhx) { |
| 826 | /* Reverse each group of bperhx bits in a polynomial. |
| 827 | * Does not clean poly. |
| 828 | */ |
| 829 | unsigned long iter = 0, idx, ofs; |
| 830 | bmp_t mask, accu; |
| 831 | |
| 832 | if(bperhx < 2 || bperhx > BMP_BIT) |
| 833 | return; |
| 834 | if(poly->length % bperhx) |
| 835 | praloc(poly, bperhx - (poly->length % bperhx) + poly->length); |
| 836 | mask = ~BMP_C(0) >> (BMP_BIT - bperhx); |
| 837 | for(iter = (unsigned long) (bperhx - 1); iter < poly->length; iter += bperhx) { |
| 838 | accu = getwrd(*poly, iter) & mask; |
| 839 | accu ^= rev(accu, bperhx); |
| 840 | idx = IDX(iter); |
| 841 | ofs = OFS(iter); |
| 842 | poly->bitmap[idx] ^= accu << ofs; |
| 843 | if(ofs + bperhx > (unsigned int) BMP_BIT) |
| 844 | /* (BMP_BIT - 1UL - (iter) % BMP_BIT) + bperhx > BMP_BIT |
| 845 | * (-1UL - (iter) % BMP_BIT) + bperhx > 0 |
| 846 | * (- (iter % BMP_BIT)) + bperhx > 1 |
| 847 | * - (iter % BMP_BIT) > 1 - bperhx |
| 848 | * iter % BMP_BIT < bperhx - 1, iter >= bperhx - 1 |
| 849 | * iter >= BMP_BIT |
| 850 | * idx >= 1 |
| 851 | */ |
| 852 | poly->bitmap[idx-1] ^= accu >> (BMP_BIT - ofs); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | void |
| 857 | prcp(poly_t *poly) { |
| 858 | /* Reciprocate a chopped polynomial. Use prev() on whole |
| 859 | * polynomials. |
| 860 | * On exit, poly is SEMI-NORMALISED. |
| 861 | */ |
| 862 | unsigned long first; |
| 863 | |
| 864 | praloc(poly, RNDUP(poly->length)); |
| 865 | prev(poly); |
| 866 | first = pfirst(*poly); |
| 867 | if(first >= poly->length) { |
| 868 | pfree(poly); |
| 869 | return; |
| 870 | } |
| 871 | pshift(poly, *poly, 0UL, first + 1UL, poly->length, 1UL); |
| 872 | piter(poly); |
| 873 | } |
| 874 | |
| 875 | void |
| 876 | pinv(poly_t *poly) { |
| 877 | /* Invert a polynomial, i.e. add 1 (modulo 2) to the coefficient of each term |
| 878 | * on exit, poly is CLEAN. |
| 879 | */ |
| 880 | unsigned long idx, size = SIZE(poly->length); |
| 881 | |
| 882 | for(idx = 0UL; idx<size; ++idx) |
| 883 | poly->bitmap[idx] = ~poly->bitmap[idx]; |
| 884 | if(LOFS(poly->length)) |
| 885 | poly->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(poly->length)); |
| 886 | } |
| 887 | |
| 888 | poly_t |
| 889 | pmod(const poly_t dividend, const poly_t divisor) { |
| 890 | /* Divide dividend by normalised divisor and return the remainder |
| 891 | * This function generates a temporary 'chopped' divisor for pcrc() |
| 892 | * If calling repeatedly with a constant divisor, produce a chopped copy |
| 893 | * with pchop() and call pcrc() directly for higher efficiency. |
| 894 | * dividend and divisor must be CLEAN. |
| 895 | */ |
| 896 | |
| 897 | /* perhaps generate an error if divisor is zero */ |
| 898 | poly_t subdivisor = psubs(divisor, 0UL, pfirst(divisor) + 1UL, plast(divisor), 0UL); |
| 899 | poly_t result = pcrc(dividend, subdivisor, pzero, pzero, 0); |
| 900 | pfree(&subdivisor); |
| 901 | return(result); |
| 902 | } |
| 903 | |
| 904 | poly_t |
| 905 | pcrc(const poly_t message, const poly_t divisor, const poly_t init, const poly_t xorout, int flags) { |
| 906 | /* Divide message by divisor and return the remainder. |
| 907 | * init is added to divisor, highest terms aligned, before |
| 908 | * division. |
| 909 | * xorout is added to the remainder, highest terms aligned. |
| 910 | * If P_MULXN is set in flags, message is multiplied by x^n |
| 911 | * (i.e. trailing zeroes equal to the CRC width are appended) |
| 912 | * before adding init and division. Set P_MULXN for most CRC |
| 913 | * calculations. |
| 914 | * All inputs must be CLEAN. |
| 915 | * If all inputs are CLEAN, the returned poly_t will be CLEAN. |
| 916 | */ |
| 917 | unsigned long max = 0UL, iter, ofs, resiter; |
| 918 | bmp_t probe, rem, dvsr, *rptr, *sptr; |
| 919 | const bmp_t *bptr, *eptr; |
| 920 | poly_t result = PZERO; |
| 921 | |
| 922 | if(flags & P_MULXN) |
| 923 | max = message.length; |
| 924 | else if(message.length > divisor.length) |
| 925 | max = message.length - divisor.length; |
| 926 | bptr=message.bitmap; |
| 927 | eptr=message.bitmap+SIZE(message.length); |
| 928 | probe=~(~BMP_C(0) >> 1); |
| 929 | if(divisor.length <= (unsigned long) BMP_BIT |
| 930 | && init.length <= (unsigned long) BMP_BIT) { |
| 931 | rem = init.length ? *init.bitmap : BMP_C(0); |
| 932 | dvsr = divisor.length ? *divisor.bitmap : BMP_C(0); |
| 933 | for(iter = 0UL, ofs = 0UL; iter < max; ++iter, --ofs) { |
| 934 | if(!ofs) { |
| 935 | ofs = BMP_BIT; |
| 936 | rem ^= *bptr++; |
| 937 | } |
| 938 | if(rem & probe) |
| 939 | rem = (rem << 1) ^ dvsr; |
| 940 | else |
| 941 | rem <<= 1; |
| 942 | } |
| 943 | if(bptr < eptr) |
| 944 | /* max < message.length */ |
| 945 | rem ^= *bptr >> OFS(BMP_BIT - 1UL + max); |
| 946 | if(init.length > max && init.length - max > divisor.length) { |
| 947 | palloc(&result, init.length - max); |
| 948 | *result.bitmap = rem; |
| 949 | } else if(divisor.length) { |
| 950 | palloc(&result, divisor.length); |
| 951 | *result.bitmap = rem; |
| 952 | } |
| 953 | } else { |
| 954 | /* allocate maximum size plus one word for shifted divisors and one word containing zero. |
| 955 | * This also ensures that result[1] exists |
| 956 | */ |
| 957 | palloc(&result, (init.length > divisor.length ? init.length : divisor.length) + (unsigned long) (BMP_BIT << 1)); |
| 958 | /*if there is content in init, there will be an extra word in result to clear it */ |
| 959 | psum(&result, init, 0UL); |
| 960 | if(max) |
| 961 | *result.bitmap ^= *bptr++; |
| 962 | for(iter = 0UL, ofs = 0UL; iter < max; ++iter, probe >>= 1) { |
| 963 | if(!probe) { |
| 964 | probe = ~(~BMP_C(0) >> 1); |
| 965 | ofs = 0UL; |
| 966 | sptr = rptr = result.bitmap; |
| 967 | ++sptr; |
| 968 | /* iter < max <= message.length, so bptr is valid |
| 969 | * shift result one word to the left, splicing in a message word |
| 970 | * and clearing the last active word |
| 971 | */ |
| 972 | *rptr++ = *sptr++ ^ *bptr++; |
| 973 | for(resiter = (unsigned long) (BMP_BIT << 1); resiter < result.length; resiter += BMP_BIT) |
| 974 | *rptr++ = *sptr++; |
| 975 | } |
| 976 | ++ofs; |
| 977 | if(*result.bitmap & probe) |
| 978 | psum(&result, divisor, ofs); |
| 979 | } |
| 980 | rptr = result.bitmap; |
| 981 | ++rptr; |
| 982 | while(bptr < eptr) |
| 983 | *rptr++ ^= *bptr++; |
| 984 | /* 0 <= ofs <= BMP_BIT, location of the first bit of the result */ |
| 985 | pshift(&result, result, 0UL, ofs, (init.length > max + divisor.length ? init.length - max - divisor.length : 0UL) + divisor.length + ofs, 0UL); |
| 986 | } |
| 987 | psum(&result, xorout, 0UL); |
| 988 | return(result); |
| 989 | } |
| 990 | |
| 991 | int |
| 992 | piter(poly_t *poly) { |
| 993 | /* Replace poly with the 'next' polynomial of equal length. |
| 994 | * Returns zero if the next polynomial is all zeroes, a nonzero |
| 995 | * value otherwise. |
| 996 | * Does not clean poly. |
| 997 | */ |
| 998 | bmp_t *bptr; |
| 999 | if(!poly->length) return(0); |
| 1000 | |
| 1001 | bptr = poly->bitmap + IDX(poly->length - 1UL); |
| 1002 | *bptr += BMP_C(1) << OFS(poly->length - 1UL); |
| 1003 | while(bptr != poly->bitmap && !*bptr) |
| 1004 | ++(*--bptr); |
| 1005 | return(*bptr != BMP_C(0)); |
| 1006 | } |
| 1007 | |
| 1008 | void |
| 1009 | palloc(poly_t *poly, unsigned long length) { |
| 1010 | /* Replaces poly with a CLEAN object of the specified length, |
| 1011 | * consisting of all zeroes. |
| 1012 | * It is safe to call with length = 0, in which case the object |
| 1013 | * is freed. |
| 1014 | * poly may or may not be WELL-FORMED. |
| 1015 | * On exit, poly is CLEAN. |
| 1016 | */ |
| 1017 | unsigned long size = SIZE(length); |
| 1018 | |
| 1019 | poly->length = 0UL; |
| 1020 | free(poly->bitmap); |
| 1021 | poly->bitmap = NULL; |
| 1022 | if(!length) return; |
| 1023 | if(!size) |
| 1024 | size = IDX(length) + 1UL; |
| 1025 | poly->bitmap = (bmp_t *) calloc(size, sizeof(bmp_t)); |
| 1026 | if(poly->bitmap) { |
| 1027 | poly->length = length; |
| 1028 | } else |
| 1029 | uerror("cannot allocate memory for poly"); |
| 1030 | } |
| 1031 | |
| 1032 | void |
| 1033 | pfree(poly_t *poly) { |
| 1034 | /* Frees poly's bitmap storage and sets poly equal to the empty |
| 1035 | * polynomial (PZERO). |
| 1036 | * poly may or may not be WELL-FORMED. |
| 1037 | * On exit, poly is CLEAN. |
| 1038 | */ |
| 1039 | |
| 1040 | /* palloc(poly, 0UL); */ |
| 1041 | |
| 1042 | poly->length = 0UL; |
| 1043 | free(poly->bitmap); |
| 1044 | poly->bitmap = NULL; |
| 1045 | } |
| 1046 | |
| 1047 | void |
| 1048 | praloc(poly_t *poly, unsigned long length) { |
| 1049 | /* Trims or extends poly to length at the right edge, appending |
| 1050 | * zeroes if necessary. |
| 1051 | * On entry, poly may or may not be WELL-FORMED. |
| 1052 | * On exit, poly is CLEAN. |
| 1053 | */ |
| 1054 | unsigned long oldsize, size = SIZE(length); |
| 1055 | if(!poly) return; |
| 1056 | if(!length) { |
| 1057 | poly->length = 0UL; |
| 1058 | free(poly->bitmap); |
| 1059 | poly->bitmap = NULL; |
| 1060 | return; |
| 1061 | } |
| 1062 | if(!size) |
| 1063 | size = IDX(length) + 1UL; |
| 1064 | if(!poly->bitmap) |
| 1065 | poly->length = 0UL; |
| 1066 | oldsize = SIZE(poly->length); |
| 1067 | if(oldsize != size) |
| 1068 | /* reallocate if array pointer is null or array resized */ |
| 1069 | poly->bitmap = (bmp_t *) realloc((void *)poly->bitmap, size * sizeof(bmp_t)); |
| 1070 | if(poly->bitmap) { |
| 1071 | if(poly->length < length) { |
| 1072 | /* poly->length >= 0, length > 0, size > 0. |
| 1073 | * poly expanded. clear old last word and all new words |
| 1074 | */ |
| 1075 | if(LOFS(poly->length)) |
| 1076 | poly->bitmap[oldsize - 1UL] &= ~(~BMP_C(0) >> LOFS(poly->length)); |
| 1077 | while(oldsize < size) |
| 1078 | poly->bitmap[oldsize++] = BMP_C(0); |
| 1079 | } else if(LOFS(length)) |
| 1080 | /* poly->length >= length > 0. |
| 1081 | * poly shrunk. clear new last word |
| 1082 | */ |
| 1083 | poly->bitmap[size - 1UL] &= ~(~BMP_C(0) >> LOFS(length)); |
| 1084 | poly->length = length; |
| 1085 | } else |
| 1086 | uerror("cannot reallocate memory for poly"); |
| 1087 | } |
| 1088 | |
| 1089 | int |
| 1090 | pmpar(const poly_t poly, const poly_t mask) { |
| 1091 | /* Return even parity of poly masked with mask. |
| 1092 | * Poly and mask must be CLEAN. |
| 1093 | */ |
| 1094 | bmp_t res = BMP_C(0); |
| 1095 | int i = BMP_SUB; |
| 1096 | const bmp_t *pptr = poly.bitmap, *mptr = mask.bitmap; |
| 1097 | const bmp_t *const pend = poly.bitmap + SIZE(poly.length); |
| 1098 | const bmp_t *const mend = mask.bitmap + SIZE(mask.length); |
| 1099 | |
| 1100 | while(pptr < pend && mptr < mend) |
| 1101 | res ^= *pptr++ & *mptr++; |
| 1102 | do |
| 1103 | res ^= res >> i; |
| 1104 | while(i >>= 1); |
| 1105 | |
| 1106 | return((int) (res & BMP_C(1))); |
| 1107 | } |
| 1108 | |
| 1109 | int |
| 1110 | pident(const poly_t a, const poly_t b) { |
| 1111 | /* Return nonzero if a and b have the same length |
| 1112 | * and point to the same bitmap. |
| 1113 | * a and b need not be CLEAN. |
| 1114 | */ |
| 1115 | return(a.length == b.length && a.bitmap == b.bitmap); |
| 1116 | } |
| 1117 | |
| 1118 | /* Private functions */ |
| 1119 | |
| 1120 | static bmp_t |
| 1121 | getwrd(const poly_t poly, unsigned long iter) { |
| 1122 | /* Fetch unaligned word from poly where LSB of result is |
| 1123 | * bit iter of the bitmap (counting from zero). If iter exceeds |
| 1124 | * the length of poly then zeroes are appended as necessary. |
| 1125 | * Factored from ptostr(). |
| 1126 | * poly must be CLEAN. |
| 1127 | */ |
| 1128 | bmp_t accu = BMP_C(0); |
| 1129 | unsigned long idx, size; |
| 1130 | int ofs; |
| 1131 | |
| 1132 | idx = IDX(iter); |
| 1133 | ofs = OFS(iter); |
| 1134 | size = SIZE(poly.length); |
| 1135 | |
| 1136 | if(idx < size) |
| 1137 | accu |= poly.bitmap[idx] >> ofs; |
| 1138 | if(idx && idx <= size && ofs > 0) |
| 1139 | accu |= poly.bitmap[idx - 1UL] << (BMP_BIT - ofs); |
| 1140 | return(accu); |
| 1141 | } |
| 1142 | |
| 1143 | static bmp_t |
| 1144 | rev(bmp_t accu, int bits) { |
| 1145 | /* Returns the bitmap word argument with the given number of |
| 1146 | * least significant bits reversed and the rest cleared. |
| 1147 | */ |
| 1148 | static const unsigned char revtab[256] = { |
| 1149 | 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0, |
| 1150 | 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0, |
| 1151 | 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8, |
| 1152 | 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8, |
| 1153 | 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4, |
| 1154 | 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4, |
| 1155 | 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec, |
| 1156 | 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc, |
| 1157 | 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2, |
| 1158 | 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2, |
| 1159 | 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea, |
| 1160 | 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa, |
| 1161 | 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6, |
| 1162 | 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6, |
| 1163 | 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee, |
| 1164 | 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe, |
| 1165 | 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1, |
| 1166 | 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1, |
| 1167 | 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9, |
| 1168 | 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9, |
| 1169 | 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5, |
| 1170 | 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5, |
| 1171 | 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed, |
| 1172 | 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd, |
| 1173 | 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3, |
| 1174 | 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3, |
| 1175 | 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb, |
| 1176 | 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb, |
| 1177 | 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7, |
| 1178 | 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7, |
| 1179 | 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef, |
| 1180 | 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff |
| 1181 | }; |
| 1182 | bmp_t result = BMP_C(0); |
| 1183 | while(bits > 8) { |
| 1184 | bits -= 8; |
| 1185 | result = result << 8 | revtab[accu & 0xff]; |
| 1186 | accu >>= 8; |
| 1187 | } |
| 1188 | result = result << bits | (bmp_t) (revtab[accu & 0xff] >> (8 - bits)); |
| 1189 | return(result); |
| 1190 | } |
| 1191 | |
| 1192 | static void |
| 1193 | prhex(char **spp, bmp_t bits, int flags, int bperhx) { |
| 1194 | /* Appends a hexadecimal string representing the bperhx least |
| 1195 | * significant bits of bits to an external string. |
| 1196 | * spp points to a character pointer that in turn points to the |
| 1197 | * end of a hex string being built. prhex() advances this |
| 1198 | * second pointer by the number of characters written. |
| 1199 | * The unused MSBs of bits MUST be cleared. |
| 1200 | * Set P_UPPER in flags to write A-F in uppercase. |
| 1201 | */ |
| 1202 | static const char hex[] = "0123456789abcdef0123456789ABCDEF"; |
| 1203 | const int upper = (flags & P_UPPER ? 0x10 : 0); |
| 1204 | while(bperhx > 0) { |
| 1205 | bperhx -= ((bperhx + 3) & 3) + 1; |
| 1206 | *(*spp)++ = hex[(bits >> bperhx & BMP_C(0xf)) | upper]; |
| 1207 | } |
| 1208 | } |