]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
19 | #include "protocols.h" | |
20 | #include "usb_cdc.h" // for usb_poll_validate_length | |
21 | ||
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param period_0 | |
26 | * @param period_1 | |
27 | * @param command | |
28 | */ | |
29 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) | |
30 | { | |
31 | ||
32 | int divisor_used = 95; // 125 KHz | |
33 | // see if 'h' was specified | |
34 | ||
35 | if (command[strlen((char *) command) - 1] == 'h') | |
36 | divisor_used = 88; // 134.8 KHz | |
37 | ||
38 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
39 | setSamplingConfig(&sc); | |
40 | //clear read buffer | |
41 | BigBuf_Clear_keep_EM(); | |
42 | ||
43 | /* Make sure the tag is reset */ | |
44 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
45 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
46 | SpinDelay(2500); | |
47 | ||
48 | LFSetupFPGAForADC(sc.divisor, 1); | |
49 | ||
50 | // And a little more time for the tag to fully power up | |
51 | SpinDelay(2000); | |
52 | ||
53 | // now modulate the reader field | |
54 | while(*command != '\0' && *command != ' ') { | |
55 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
56 | LED_D_OFF(); | |
57 | SpinDelayUs(delay_off); | |
58 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
59 | ||
60 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
61 | LED_D_ON(); | |
62 | if(*(command++) == '0') | |
63 | SpinDelayUs(period_0); | |
64 | else | |
65 | SpinDelayUs(period_1); | |
66 | } | |
67 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
68 | LED_D_OFF(); | |
69 | SpinDelayUs(delay_off); | |
70 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
71 | ||
72 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
73 | ||
74 | // now do the read | |
75 | DoAcquisition_config(false); | |
76 | } | |
77 | ||
78 | /* blank r/w tag data stream | |
79 | ...0000000000000000 01111111 | |
80 | 1010101010101010101010101010101010101010101010101010101010101010 | |
81 | 0011010010100001 | |
82 | 01111111 | |
83 | 101010101010101[0]000... | |
84 | ||
85 | [5555fe852c5555555555555555fe0000] | |
86 | */ | |
87 | void ReadTItag(void) | |
88 | { | |
89 | // some hardcoded initial params | |
90 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
91 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
92 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
93 | #define FSAMPLE 2000000 | |
94 | #define FREQLO 123200 | |
95 | #define FREQHI 134200 | |
96 | ||
97 | signed char *dest = (signed char *)BigBuf_get_addr(); | |
98 | uint16_t n = BigBuf_max_traceLen(); | |
99 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
100 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
101 | ||
102 | int i, cycles=0, samples=0; | |
103 | // how many sample points fit in 16 cycles of each frequency | |
104 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
105 | // when to tell if we're close enough to one freq or another | |
106 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
107 | ||
108 | // TI tags charge at 134.2Khz | |
109 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
110 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
111 | ||
112 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
113 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
114 | // whether we're modulating the antenna (high) | |
115 | // or listening to the antenna (low) | |
116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
117 | ||
118 | // get TI tag data into the buffer | |
119 | AcquireTiType(); | |
120 | ||
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
122 | ||
123 | for (i=0; i<n-1; i++) { | |
124 | // count cycles by looking for lo to hi zero crossings | |
125 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
126 | cycles++; | |
127 | // after 16 cycles, measure the frequency | |
128 | if (cycles>15) { | |
129 | cycles=0; | |
130 | samples=i-samples; // number of samples in these 16 cycles | |
131 | ||
132 | // TI bits are coming to us lsb first so shift them | |
133 | // right through our 128 bit right shift register | |
134 | shift0 = (shift0>>1) | (shift1 << 31); | |
135 | shift1 = (shift1>>1) | (shift2 << 31); | |
136 | shift2 = (shift2>>1) | (shift3 << 31); | |
137 | shift3 >>= 1; | |
138 | ||
139 | // check if the cycles fall close to the number | |
140 | // expected for either the low or high frequency | |
141 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
142 | // low frequency represents a 1 | |
143 | shift3 |= (1<<31); | |
144 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
145 | // high frequency represents a 0 | |
146 | } else { | |
147 | // probably detected a gay waveform or noise | |
148 | // use this as gaydar or discard shift register and start again | |
149 | shift3 = shift2 = shift1 = shift0 = 0; | |
150 | } | |
151 | samples = i; | |
152 | ||
153 | // for each bit we receive, test if we've detected a valid tag | |
154 | ||
155 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
156 | // remember the bits are backwards | |
157 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
158 | // if start and end bytes match, we have a tag so break out of the loop | |
159 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
160 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
161 | break; | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | ||
168 | // if flag is set we have a tag | |
169 | if (cycles!=0xF0B) { | |
170 | DbpString("Info: No valid tag detected."); | |
171 | } else { | |
172 | // put 64 bit data into shift1 and shift0 | |
173 | shift0 = (shift0>>24) | (shift1 << 8); | |
174 | shift1 = (shift1>>24) | (shift2 << 8); | |
175 | ||
176 | // align 16 bit crc into lower half of shift2 | |
177 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
178 | ||
179 | // if r/w tag, check ident match | |
180 | if (shift3 & (1<<15) ) { | |
181 | DbpString("Info: TI tag is rewriteable"); | |
182 | // only 15 bits compare, last bit of ident is not valid | |
183 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { | |
184 | DbpString("Error: Ident mismatch!"); | |
185 | } else { | |
186 | DbpString("Info: TI tag ident is valid"); | |
187 | } | |
188 | } else { | |
189 | DbpString("Info: TI tag is readonly"); | |
190 | } | |
191 | ||
192 | // WARNING the order of the bytes in which we calc crc below needs checking | |
193 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
194 | // bytes in reverse or something | |
195 | // calculate CRC | |
196 | uint32_t crc=0; | |
197 | ||
198 | crc = update_crc16(crc, (shift0)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
201 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
202 | crc = update_crc16(crc, (shift1)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
205 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
206 | ||
207 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
208 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
209 | if (crc != (shift2&0xffff)) { | |
210 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
211 | } else { | |
212 | DbpString("Info: CRC is good"); | |
213 | } | |
214 | } | |
215 | } | |
216 | ||
217 | void WriteTIbyte(uint8_t b) | |
218 | { | |
219 | int i = 0; | |
220 | ||
221 | // modulate 8 bits out to the antenna | |
222 | for (i=0; i<8; i++) | |
223 | { | |
224 | if (b&(1<<i)) { | |
225 | // stop modulating antenna | |
226 | LOW(GPIO_SSC_DOUT); | |
227 | SpinDelayUs(1000); | |
228 | // modulate antenna | |
229 | HIGH(GPIO_SSC_DOUT); | |
230 | SpinDelayUs(1000); | |
231 | } else { | |
232 | // stop modulating antenna | |
233 | LOW(GPIO_SSC_DOUT); | |
234 | SpinDelayUs(300); | |
235 | // modulate antenna | |
236 | HIGH(GPIO_SSC_DOUT); | |
237 | SpinDelayUs(1700); | |
238 | } | |
239 | } | |
240 | } | |
241 | ||
242 | void AcquireTiType(void) | |
243 | { | |
244 | int i, j, n; | |
245 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
246 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
247 | #define TIBUFLEN 1250 | |
248 | ||
249 | // clear buffer | |
250 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); | |
251 | BigBuf_Clear_ext(false); | |
252 | ||
253 | // Set up the synchronous serial port | |
254 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
255 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
256 | ||
257 | // steal this pin from the SSP and use it to control the modulation | |
258 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
259 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
260 | ||
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
263 | ||
264 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
265 | // 48/2 = 24 MHz clock must be divided by 12 | |
266 | AT91C_BASE_SSC->SSC_CMR = 12; | |
267 | ||
268 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
269 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
270 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
271 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
272 | ||
273 | LED_D_ON(); | |
274 | ||
275 | // modulate antenna | |
276 | HIGH(GPIO_SSC_DOUT); | |
277 | ||
278 | // Charge TI tag for 50ms. | |
279 | SpinDelay(50); | |
280 | ||
281 | // stop modulating antenna and listen | |
282 | LOW(GPIO_SSC_DOUT); | |
283 | ||
284 | LED_D_OFF(); | |
285 | ||
286 | i = 0; | |
287 | for(;;) { | |
288 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
289 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
290 | i++; if(i >= TIBUFLEN) break; | |
291 | } | |
292 | WDT_HIT(); | |
293 | } | |
294 | ||
295 | // return stolen pin to SSP | |
296 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
297 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
298 | ||
299 | char *dest = (char *)BigBuf_get_addr(); | |
300 | n = TIBUFLEN*32; | |
301 | // unpack buffer | |
302 | for (i=TIBUFLEN-1; i>=0; i--) { | |
303 | for (j=0; j<32; j++) { | |
304 | if(BigBuf[i] & (1 << j)) { | |
305 | dest[--n] = 1; | |
306 | } else { | |
307 | dest[--n] = -1; | |
308 | } | |
309 | } | |
310 | } | |
311 | } | |
312 | ||
313 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
314 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
315 | // if not provided a valid crc will be computed from the data and written. | |
316 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
317 | { | |
318 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
319 | if(crc == 0) { | |
320 | crc = update_crc16(crc, (idlo)&0xff); | |
321 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
324 | crc = update_crc16(crc, (idhi)&0xff); | |
325 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
328 | } | |
329 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
330 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
331 | ||
332 | // TI tags charge at 134.2Khz | |
333 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
334 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
335 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
336 | // whether we're modulating the antenna (high) | |
337 | // or listening to the antenna (low) | |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
339 | LED_A_ON(); | |
340 | ||
341 | // steal this pin from the SSP and use it to control the modulation | |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | ||
345 | // writing algorithm: | |
346 | // a high bit consists of a field off for 1ms and field on for 1ms | |
347 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
348 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
349 | // start by writing 0xBB (keyword) and 0xEB (password) | |
350 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
351 | // finally end with 0x0300 (write frame) | |
352 | // all data is sent lsb firts | |
353 | // finish with 15ms programming time | |
354 | ||
355 | // modulate antenna | |
356 | HIGH(GPIO_SSC_DOUT); | |
357 | SpinDelay(50); // charge time | |
358 | ||
359 | WriteTIbyte(0xbb); // keyword | |
360 | WriteTIbyte(0xeb); // password | |
361 | WriteTIbyte( (idlo )&0xff ); | |
362 | WriteTIbyte( (idlo>>8 )&0xff ); | |
363 | WriteTIbyte( (idlo>>16)&0xff ); | |
364 | WriteTIbyte( (idlo>>24)&0xff ); | |
365 | WriteTIbyte( (idhi )&0xff ); | |
366 | WriteTIbyte( (idhi>>8 )&0xff ); | |
367 | WriteTIbyte( (idhi>>16)&0xff ); | |
368 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
369 | WriteTIbyte( (crc )&0xff ); // crc lo | |
370 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
371 | WriteTIbyte(0x00); // write frame lo | |
372 | WriteTIbyte(0x03); // write frame hi | |
373 | HIGH(GPIO_SSC_DOUT); | |
374 | SpinDelay(50); // programming time | |
375 | ||
376 | LED_A_OFF(); | |
377 | ||
378 | // get TI tag data into the buffer | |
379 | AcquireTiType(); | |
380 | ||
381 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
382 | DbpString("Now use `lf ti read` to check"); | |
383 | } | |
384 | ||
385 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
386 | { | |
387 | int i; | |
388 | uint8_t *tab = BigBuf_get_addr(); | |
389 | ||
390 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
392 | ||
393 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
394 | ||
395 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
396 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
397 | ||
398 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
399 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
400 | ||
401 | i = 0; | |
402 | for(;;) { | |
403 | //wait until SSC_CLK goes HIGH | |
404 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
405 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { | |
406 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
407 | DbpString("Stopped"); | |
408 | return; | |
409 | } | |
410 | WDT_HIT(); | |
411 | } | |
412 | if (ledcontrol) | |
413 | LED_D_ON(); | |
414 | ||
415 | if(tab[i]) | |
416 | OPEN_COIL(); | |
417 | else | |
418 | SHORT_COIL(); | |
419 | ||
420 | if (ledcontrol) | |
421 | LED_D_OFF(); | |
422 | //wait until SSC_CLK goes LOW | |
423 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
424 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { | |
425 | DbpString("Stopped"); | |
426 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
427 | return; | |
428 | } | |
429 | WDT_HIT(); | |
430 | } | |
431 | ||
432 | i++; | |
433 | if(i == period) { | |
434 | ||
435 | i = 0; | |
436 | if (gap) { | |
437 | SHORT_COIL(); | |
438 | SpinDelayUs(gap); | |
439 | } | |
440 | } | |
441 | ||
442 | } | |
443 | } | |
444 | ||
445 | #define DEBUG_FRAME_CONTENTS 1 | |
446 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
447 | { | |
448 | } | |
449 | ||
450 | // compose fc/8 fc/10 waveform (FSK2) | |
451 | static void fc(int c, int *n) | |
452 | { | |
453 | uint8_t *dest = BigBuf_get_addr(); | |
454 | int idx; | |
455 | ||
456 | // for when we want an fc8 pattern every 4 logical bits | |
457 | if(c==0) { | |
458 | dest[((*n)++)]=1; | |
459 | dest[((*n)++)]=1; | |
460 | dest[((*n)++)]=1; | |
461 | dest[((*n)++)]=1; | |
462 | dest[((*n)++)]=0; | |
463 | dest[((*n)++)]=0; | |
464 | dest[((*n)++)]=0; | |
465 | dest[((*n)++)]=0; | |
466 | } | |
467 | ||
468 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
469 | if(c==8) { | |
470 | for (idx=0; idx<6; idx++) { | |
471 | dest[((*n)++)]=1; | |
472 | dest[((*n)++)]=1; | |
473 | dest[((*n)++)]=1; | |
474 | dest[((*n)++)]=1; | |
475 | dest[((*n)++)]=0; | |
476 | dest[((*n)++)]=0; | |
477 | dest[((*n)++)]=0; | |
478 | dest[((*n)++)]=0; | |
479 | } | |
480 | } | |
481 | ||
482 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
483 | if(c==10) { | |
484 | for (idx=0; idx<5; idx++) { | |
485 | dest[((*n)++)]=1; | |
486 | dest[((*n)++)]=1; | |
487 | dest[((*n)++)]=1; | |
488 | dest[((*n)++)]=1; | |
489 | dest[((*n)++)]=1; | |
490 | dest[((*n)++)]=0; | |
491 | dest[((*n)++)]=0; | |
492 | dest[((*n)++)]=0; | |
493 | dest[((*n)++)]=0; | |
494 | dest[((*n)++)]=0; | |
495 | } | |
496 | } | |
497 | } | |
498 | // compose fc/X fc/Y waveform (FSKx) | |
499 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) | |
500 | { | |
501 | uint8_t *dest = BigBuf_get_addr(); | |
502 | uint8_t halfFC = fc/2; | |
503 | uint8_t wavesPerClock = clock/fc; | |
504 | uint8_t mod = clock % fc; //modifier | |
505 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
506 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
507 | // loop through clock - step field clock | |
508 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
509 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
510 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
511 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
512 | *n += fc; | |
513 | } | |
514 | if (mod>0) (*modCnt)++; | |
515 | if ((mod>0) && modAdjOk){ //fsk2 | |
516 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
517 | memset(dest+(*n), 0, fc-halfFC); | |
518 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
519 | *n += fc; | |
520 | } | |
521 | } | |
522 | if (mod>0 && !modAdjOk){ //fsk1 | |
523 | memset(dest+(*n), 0, mod-(mod/2)); | |
524 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
525 | *n += mod; | |
526 | } | |
527 | } | |
528 | ||
529 | // prepare a waveform pattern in the buffer based on the ID given then | |
530 | // simulate a HID tag until the button is pressed | |
531 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
532 | { | |
533 | int n=0, i=0; | |
534 | /* | |
535 | HID tag bitstream format | |
536 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
537 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
538 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
539 | A fc8 is inserted before every 4 bits | |
540 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
541 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
542 | */ | |
543 | ||
544 | if (hi>0xFFF) { | |
545 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
546 | return; | |
547 | } | |
548 | fc(0,&n); | |
549 | // special start of frame marker containing invalid bit sequences | |
550 | fc(8, &n); fc(8, &n); // invalid | |
551 | fc(8, &n); fc(10, &n); // logical 0 | |
552 | fc(10, &n); fc(10, &n); // invalid | |
553 | fc(8, &n); fc(10, &n); // logical 0 | |
554 | ||
555 | WDT_HIT(); | |
556 | // manchester encode bits 43 to 32 | |
557 | for (i=11; i>=0; i--) { | |
558 | if ((i%4)==3) fc(0,&n); | |
559 | if ((hi>>i)&1) { | |
560 | fc(10, &n); fc(8, &n); // low-high transition | |
561 | } else { | |
562 | fc(8, &n); fc(10, &n); // high-low transition | |
563 | } | |
564 | } | |
565 | ||
566 | WDT_HIT(); | |
567 | // manchester encode bits 31 to 0 | |
568 | for (i=31; i>=0; i--) { | |
569 | if ((i%4)==3) fc(0,&n); | |
570 | if ((lo>>i)&1) { | |
571 | fc(10, &n); fc(8, &n); // low-high transition | |
572 | } else { | |
573 | fc(8, &n); fc(10, &n); // high-low transition | |
574 | } | |
575 | } | |
576 | ||
577 | if (ledcontrol) | |
578 | LED_A_ON(); | |
579 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
580 | ||
581 | if (ledcontrol) | |
582 | LED_A_OFF(); | |
583 | } | |
584 | ||
585 | // prepare a waveform pattern in the buffer based on the ID given then | |
586 | // simulate a FSK tag until the button is pressed | |
587 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
588 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
589 | { | |
590 | int ledcontrol=1; | |
591 | int n=0, i=0; | |
592 | uint8_t fcHigh = arg1 >> 8; | |
593 | uint8_t fcLow = arg1 & 0xFF; | |
594 | uint16_t modCnt = 0; | |
595 | uint8_t clk = arg2 & 0xFF; | |
596 | uint8_t invert = (arg2 >> 8) & 1; | |
597 | ||
598 | for (i=0; i<size; i++){ | |
599 | if (BitStream[i] == invert){ | |
600 | fcAll(fcLow, &n, clk, &modCnt); | |
601 | } else { | |
602 | fcAll(fcHigh, &n, clk, &modCnt); | |
603 | } | |
604 | } | |
605 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
606 | /*Dbprintf("DEBUG: First 32:"); | |
607 | uint8_t *dest = BigBuf_get_addr(); | |
608 | i=0; | |
609 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
610 | i+=16; | |
611 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
612 | */ | |
613 | if (ledcontrol) | |
614 | LED_A_ON(); | |
615 | ||
616 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
617 | ||
618 | if (ledcontrol) | |
619 | LED_A_OFF(); | |
620 | } | |
621 | ||
622 | // compose ask waveform for one bit(ASK) | |
623 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) | |
624 | { | |
625 | uint8_t *dest = BigBuf_get_addr(); | |
626 | uint8_t halfClk = clock/2; | |
627 | // c = current bit 1 or 0 | |
628 | if (manchester==1){ | |
629 | memset(dest+(*n), c, halfClk); | |
630 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
631 | } else { | |
632 | memset(dest+(*n), c, clock); | |
633 | } | |
634 | *n += clock; | |
635 | } | |
636 | ||
637 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) | |
638 | { | |
639 | uint8_t *dest = BigBuf_get_addr(); | |
640 | uint8_t halfClk = clock/2; | |
641 | if (c){ | |
642 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
643 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
644 | } else { | |
645 | memset(dest+(*n), c ^ *phase, clock); | |
646 | *phase ^= 1; | |
647 | } | |
648 | *n += clock; | |
649 | } | |
650 | ||
651 | static void stAskSimBit(int *n, uint8_t clock) { | |
652 | uint8_t *dest = BigBuf_get_addr(); | |
653 | uint8_t halfClk = clock/2; | |
654 | //ST = .5 high .5 low 1.5 high .5 low 1 high | |
655 | memset(dest+(*n), 1, halfClk); | |
656 | memset(dest+(*n) + halfClk, 0, halfClk); | |
657 | memset(dest+(*n) + clock, 1, clock + halfClk); | |
658 | memset(dest+(*n) + clock*2 + halfClk, 0, halfClk); | |
659 | memset(dest+(*n) + clock*3, 1, clock); | |
660 | *n += clock*4; | |
661 | } | |
662 | ||
663 | // args clock, ask/man or askraw, invert, transmission separator | |
664 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
665 | { | |
666 | int ledcontrol = 1; | |
667 | int n=0, i=0; | |
668 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
669 | uint8_t encoding = arg1 & 0xFF; | |
670 | uint8_t separator = arg2 & 1; | |
671 | uint8_t invert = (arg2 >> 8) & 1; | |
672 | ||
673 | if (encoding==2){ //biphase | |
674 | uint8_t phase=0; | |
675 | for (i=0; i<size; i++){ | |
676 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
677 | } | |
678 | if (phase==1) { //run a second set inverted to keep phase in check | |
679 | for (i=0; i<size; i++){ | |
680 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
681 | } | |
682 | } | |
683 | } else { // ask/manchester || ask/raw | |
684 | for (i=0; i<size; i++){ | |
685 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
686 | } | |
687 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase) | |
688 | for (i=0; i<size; i++){ | |
689 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
690 | } | |
691 | } | |
692 | } | |
693 | if (separator==1 && encoding == 1) | |
694 | stAskSimBit(&n, clk); | |
695 | else if (separator==1) | |
696 | Dbprintf("sorry but separator option not yet available"); | |
697 | ||
698 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
699 | //DEBUG | |
700 | //Dbprintf("First 32:"); | |
701 | //uint8_t *dest = BigBuf_get_addr(); | |
702 | //i=0; | |
703 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
704 | //i+=16; | |
705 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
706 | ||
707 | if (ledcontrol) LED_A_ON(); | |
708 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
709 | if (ledcontrol) LED_A_OFF(); | |
710 | } | |
711 | ||
712 | //carrier can be 2,4 or 8 | |
713 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
714 | { | |
715 | uint8_t *dest = BigBuf_get_addr(); | |
716 | uint8_t halfWave = waveLen/2; | |
717 | //uint8_t idx; | |
718 | int i = 0; | |
719 | if (phaseChg){ | |
720 | // write phase change | |
721 | memset(dest+(*n), *curPhase^1, halfWave); | |
722 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
723 | *n += waveLen; | |
724 | *curPhase ^= 1; | |
725 | i += waveLen; | |
726 | } | |
727 | //write each normal clock wave for the clock duration | |
728 | for (; i < clk; i+=waveLen){ | |
729 | memset(dest+(*n), *curPhase, halfWave); | |
730 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
731 | *n += waveLen; | |
732 | } | |
733 | } | |
734 | ||
735 | // args clock, carrier, invert, | |
736 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
737 | { | |
738 | int ledcontrol=1; | |
739 | int n=0, i=0; | |
740 | uint8_t clk = arg1 >> 8; | |
741 | uint8_t carrier = arg1 & 0xFF; | |
742 | uint8_t invert = arg2 & 0xFF; | |
743 | uint8_t curPhase = 0; | |
744 | for (i=0; i<size; i++){ | |
745 | if (BitStream[i] == curPhase){ | |
746 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
747 | } else { | |
748 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
749 | } | |
750 | } | |
751 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
752 | //Dbprintf("DEBUG: First 32:"); | |
753 | //uint8_t *dest = BigBuf_get_addr(); | |
754 | //i=0; | |
755 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
756 | //i+=16; | |
757 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
758 | ||
759 | if (ledcontrol) LED_A_ON(); | |
760 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
761 | if (ledcontrol) LED_A_OFF(); | |
762 | } | |
763 | ||
764 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
765 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
766 | { | |
767 | uint8_t *dest = BigBuf_get_addr(); | |
768 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); | |
769 | size_t size; | |
770 | uint32_t hi2=0, hi=0, lo=0; | |
771 | int idx=0; | |
772 | // Configure to go in 125Khz listen mode | |
773 | LFSetupFPGAForADC(95, true); | |
774 | ||
775 | //clear read buffer | |
776 | BigBuf_Clear_keep_EM(); | |
777 | ||
778 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
779 | ||
780 | WDT_HIT(); | |
781 | if (ledcontrol) LED_A_ON(); | |
782 | ||
783 | DoAcquisition_default(-1,true); | |
784 | // FSK demodulator | |
785 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use | |
786 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
787 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); | |
788 | ||
789 | if (idx>0 && lo>0 && (size==96 || size==192)){ | |
790 | // go over previously decoded manchester data and decode into usable tag ID | |
791 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
792 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
793 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
794 | }else { //standard HID tags 44/96 bits | |
795 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd | |
796 | uint8_t bitlen = 0; | |
797 | uint32_t fc = 0; | |
798 | uint32_t cardnum = 0; | |
799 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used | |
800 | uint32_t lo2=0; | |
801 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
802 | uint8_t idx3 = 1; | |
803 | while(lo2 > 1){ //find last bit set to 1 (format len bit) | |
804 | lo2=lo2 >> 1; | |
805 | idx3++; | |
806 | } | |
807 | bitlen = idx3+19; | |
808 | fc =0; | |
809 | cardnum=0; | |
810 | if(bitlen == 26){ | |
811 | cardnum = (lo>>1)&0xFFFF; | |
812 | fc = (lo>>17)&0xFF; | |
813 | } | |
814 | if(bitlen == 37){ | |
815 | cardnum = (lo>>1)&0x7FFFF; | |
816 | fc = ((hi&0xF)<<12)|(lo>>20); | |
817 | } | |
818 | if(bitlen == 34){ | |
819 | cardnum = (lo>>1)&0xFFFF; | |
820 | fc= ((hi&1)<<15)|(lo>>17); | |
821 | } | |
822 | if(bitlen == 35){ | |
823 | cardnum = (lo>>1)&0xFFFFF; | |
824 | fc = ((hi&1)<<11)|(lo>>21); | |
825 | } | |
826 | } | |
827 | else { //if bit 38 is not set then 37 bit format is used | |
828 | bitlen= 37; | |
829 | fc =0; | |
830 | cardnum=0; | |
831 | if(bitlen==37){ | |
832 | cardnum = (lo>>1)&0x7FFFF; | |
833 | fc = ((hi&0xF)<<12)|(lo>>20); | |
834 | } | |
835 | } | |
836 | //Dbprintf("TAG ID: %x%08x (%d)", | |
837 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
838 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
839 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
840 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
841 | } | |
842 | if (findone){ | |
843 | if (ledcontrol) LED_A_OFF(); | |
844 | *high = hi; | |
845 | *low = lo; | |
846 | break; | |
847 | } | |
848 | // reset | |
849 | } | |
850 | hi2 = hi = lo = idx = 0; | |
851 | WDT_HIT(); | |
852 | } | |
853 | ||
854 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
855 | DbpString("Stopped"); | |
856 | if (ledcontrol) LED_A_OFF(); | |
857 | } | |
858 | ||
859 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
860 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
861 | { | |
862 | uint8_t *dest = BigBuf_get_addr(); | |
863 | size_t size; | |
864 | int idx=0; | |
865 | //clear read buffer | |
866 | BigBuf_Clear_keep_EM(); | |
867 | // Configure to go in 125Khz listen mode | |
868 | LFSetupFPGAForADC(95, true); | |
869 | ||
870 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
871 | ||
872 | WDT_HIT(); | |
873 | if (ledcontrol) LED_A_ON(); | |
874 | ||
875 | DoAcquisition_default(-1,true); | |
876 | // FSK demodulator | |
877 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
878 | idx = AWIDdemodFSK(dest, &size); | |
879 | ||
880 | if (idx<=0 || size!=96) continue; | |
881 | // Index map | |
882 | // 0 10 20 30 40 50 60 | |
883 | // | | | | | | | | |
884 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
885 | // ----------------------------------------------------------------------------- | |
886 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
887 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
888 | // |---26 bit---| |-----117----||-------------142-------------| | |
889 | // b = format bit len, o = odd parity of last 3 bits | |
890 | // f = facility code, c = card number | |
891 | // w = wiegand parity | |
892 | // (26 bit format shown) | |
893 | ||
894 | //get raw ID before removing parities | |
895 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
896 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
897 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
898 | ||
899 | size = removeParity(dest, idx+8, 4, 1, 88); | |
900 | if (size != 66) continue; | |
901 | // ok valid card found! | |
902 | ||
903 | // Index map | |
904 | // 0 10 20 30 40 50 60 | |
905 | // | | | | | | | | |
906 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
907 | // ----------------------------------------------------------------------------- | |
908 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
909 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
910 | // |26 bit| |-117--| |-----142------| | |
911 | // b = format bit len, o = odd parity of last 3 bits | |
912 | // f = facility code, c = card number | |
913 | // w = wiegand parity | |
914 | // (26 bit format shown) | |
915 | ||
916 | uint32_t fc = 0; | |
917 | uint32_t cardnum = 0; | |
918 | uint32_t code1 = 0; | |
919 | uint32_t code2 = 0; | |
920 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
921 | if (fmtLen==26){ | |
922 | fc = bytebits_to_byte(dest+9, 8); | |
923 | cardnum = bytebits_to_byte(dest+17, 16); | |
924 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
925 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
926 | } else { | |
927 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
928 | if (fmtLen>32){ | |
929 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
930 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
931 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
932 | } else{ | |
933 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
934 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
935 | } | |
936 | } | |
937 | if (findone){ | |
938 | if (ledcontrol) LED_A_OFF(); | |
939 | break; | |
940 | } | |
941 | // reset | |
942 | idx = 0; | |
943 | WDT_HIT(); | |
944 | } | |
945 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
946 | DbpString("Stopped"); | |
947 | if (ledcontrol) LED_A_OFF(); | |
948 | } | |
949 | ||
950 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
951 | { | |
952 | uint8_t *dest = BigBuf_get_addr(); | |
953 | ||
954 | size_t size=0, idx=0; | |
955 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
956 | uint32_t hi=0; | |
957 | uint64_t lo=0; | |
958 | //clear read buffer | |
959 | BigBuf_Clear_keep_EM(); | |
960 | // Configure to go in 125Khz listen mode | |
961 | LFSetupFPGAForADC(95, true); | |
962 | ||
963 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
964 | ||
965 | WDT_HIT(); | |
966 | if (ledcontrol) LED_A_ON(); | |
967 | ||
968 | DoAcquisition_default(-1,true); | |
969 | size = BigBuf_max_traceLen(); | |
970 | //askdemod and manchester decode | |
971 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format | |
972 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); | |
973 | WDT_HIT(); | |
974 | ||
975 | if (errCnt<0) continue; | |
976 | ||
977 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
978 | if (errCnt){ | |
979 | if (size>64){ | |
980 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
981 | hi, | |
982 | (uint32_t)(lo>>32), | |
983 | (uint32_t)lo, | |
984 | (uint32_t)(lo&0xFFFF), | |
985 | (uint32_t)((lo>>16LL) & 0xFF), | |
986 | (uint32_t)(lo & 0xFFFFFF)); | |
987 | } else { | |
988 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
989 | (uint32_t)(lo>>32), | |
990 | (uint32_t)lo, | |
991 | (uint32_t)(lo&0xFFFF), | |
992 | (uint32_t)((lo>>16LL) & 0xFF), | |
993 | (uint32_t)(lo & 0xFFFFFF)); | |
994 | } | |
995 | ||
996 | if (findone){ | |
997 | if (ledcontrol) LED_A_OFF(); | |
998 | *high=lo>>32; | |
999 | *low=lo & 0xFFFFFFFF; | |
1000 | break; | |
1001 | } | |
1002 | } | |
1003 | WDT_HIT(); | |
1004 | hi = lo = size = idx = 0; | |
1005 | clk = invert = errCnt = 0; | |
1006 | } | |
1007 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1008 | DbpString("Stopped"); | |
1009 | if (ledcontrol) LED_A_OFF(); | |
1010 | } | |
1011 | ||
1012 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
1013 | { | |
1014 | uint8_t *dest = BigBuf_get_addr(); | |
1015 | int idx=0; | |
1016 | uint32_t code=0, code2=0; | |
1017 | uint8_t version=0; | |
1018 | uint8_t facilitycode=0; | |
1019 | uint16_t number=0; | |
1020 | //clear read buffer | |
1021 | BigBuf_Clear_keep_EM(); | |
1022 | // Configure to go in 125Khz listen mode | |
1023 | LFSetupFPGAForADC(95, true); | |
1024 | ||
1025 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
1026 | WDT_HIT(); | |
1027 | if (ledcontrol) LED_A_ON(); | |
1028 | DoAcquisition_default(-1,true); | |
1029 | //fskdemod and get start index | |
1030 | WDT_HIT(); | |
1031 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
1032 | if (idx<0) continue; | |
1033 | //valid tag found | |
1034 | ||
1035 | //Index map | |
1036 | //0 10 20 30 40 50 60 | |
1037 | //| | | | | | | | |
1038 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1039 | //----------------------------------------------------------------------------- | |
1040 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
1041 | // | |
1042 | //XSF(version)facility:codeone+codetwo | |
1043 | //Handle the data | |
1044 | if(findone){ //only print binary if we are doing one | |
1045 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1046 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1047 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1048 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1049 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1050 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1051 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1052 | } | |
1053 | code = bytebits_to_byte(dest+idx,32); | |
1054 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1055 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1056 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1057 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1058 | ||
1059 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
1060 | // if we're only looking for one tag | |
1061 | if (findone){ | |
1062 | if (ledcontrol) LED_A_OFF(); | |
1063 | //LED_A_OFF(); | |
1064 | *high=code; | |
1065 | *low=code2; | |
1066 | break; | |
1067 | } | |
1068 | code=code2=0; | |
1069 | version=facilitycode=0; | |
1070 | number=0; | |
1071 | idx=0; | |
1072 | ||
1073 | WDT_HIT(); | |
1074 | } | |
1075 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1076 | DbpString("Stopped"); | |
1077 | if (ledcontrol) LED_A_OFF(); | |
1078 | } | |
1079 | ||
1080 | /*------------------------------ | |
1081 | * T5555/T5557/T5567/T5577 routines | |
1082 | *------------------------------ | |
1083 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h | |
1084 | * | |
1085 | * Relevant communication times in microsecond | |
1086 | * To compensate antenna falling times shorten the write times | |
1087 | * and enlarge the gap ones. | |
1088 | * Q5 tags seems to have issues when these values changes. | |
1089 | */ | |
1090 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) | |
1091 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) | |
1092 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) | |
1093 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 | |
1094 | #define READ_GAP 15*8 | |
1095 | ||
1096 | void TurnReadLFOn(int delay) { | |
1097 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1098 | // Give it a bit of time for the resonant antenna to settle. | |
1099 | SpinDelayUs(delay); //155*8 //50*8 | |
1100 | } | |
1101 | ||
1102 | // Write one bit to card | |
1103 | void T55xxWriteBit(int bit) { | |
1104 | if (!bit) | |
1105 | TurnReadLFOn(WRITE_0); | |
1106 | else | |
1107 | TurnReadLFOn(WRITE_1); | |
1108 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1109 | SpinDelayUs(WRITE_GAP); | |
1110 | } | |
1111 | ||
1112 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) | |
1113 | void T55xxResetRead(void) { | |
1114 | LED_A_ON(); | |
1115 | //clear buffer now so it does not interfere with timing later | |
1116 | BigBuf_Clear_keep_EM(); | |
1117 | ||
1118 | // Set up FPGA, 125kHz | |
1119 | LFSetupFPGAForADC(95, true); | |
1120 | ||
1121 | // Trigger T55x7 in mode. | |
1122 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1123 | SpinDelayUs(START_GAP); | |
1124 | ||
1125 | // reset tag - op code 00 | |
1126 | T55xxWriteBit(0); | |
1127 | T55xxWriteBit(0); | |
1128 | ||
1129 | // Turn field on to read the response | |
1130 | TurnReadLFOn(READ_GAP); | |
1131 | ||
1132 | // Acquisition | |
1133 | doT55x7Acquisition(BigBuf_max_traceLen()); | |
1134 | ||
1135 | // Turn the field off | |
1136 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1137 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1138 | LED_A_OFF(); | |
1139 | } | |
1140 | ||
1141 | // Write one card block in page 0, no lock | |
1142 | void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { | |
1143 | LED_A_ON(); | |
1144 | bool PwdMode = arg & 0x1; | |
1145 | uint8_t Page = (arg & 0x2)>>1; | |
1146 | uint32_t i = 0; | |
1147 | ||
1148 | // Set up FPGA, 125kHz | |
1149 | LFSetupFPGAForADC(95, true); | |
1150 | ||
1151 | // Trigger T55x7 in mode. | |
1152 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1153 | SpinDelayUs(START_GAP); | |
1154 | ||
1155 | // Opcode 10 | |
1156 | T55xxWriteBit(1); | |
1157 | T55xxWriteBit(Page); //Page 0 | |
1158 | if (PwdMode){ | |
1159 | // Send Pwd | |
1160 | for (i = 0x80000000; i != 0; i >>= 1) | |
1161 | T55xxWriteBit(Pwd & i); | |
1162 | } | |
1163 | // Send Lock bit | |
1164 | T55xxWriteBit(0); | |
1165 | ||
1166 | // Send Data | |
1167 | for (i = 0x80000000; i != 0; i >>= 1) | |
1168 | T55xxWriteBit(Data & i); | |
1169 | ||
1170 | // Send Block number | |
1171 | for (i = 0x04; i != 0; i >>= 1) | |
1172 | T55xxWriteBit(Block & i); | |
1173 | ||
1174 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1175 | // so wait a little more) | |
1176 | TurnReadLFOn(20 * 1000); | |
1177 | //could attempt to do a read to confirm write took | |
1178 | // as the tag should repeat back the new block | |
1179 | // until it is reset, but to confirm it we would | |
1180 | // need to know the current block 0 config mode | |
1181 | ||
1182 | // turn field off | |
1183 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1184 | LED_A_OFF(); | |
1185 | } | |
1186 | ||
1187 | // Write one card block in page 0, no lock | |
1188 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { | |
1189 | T55xxWriteBlockExt(Data, Block, Pwd, arg); | |
1190 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1191 | } | |
1192 | ||
1193 | // Read one card block in page [page] | |
1194 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { | |
1195 | LED_A_ON(); | |
1196 | bool PwdMode = arg0 & 0x1; | |
1197 | uint8_t Page = (arg0 & 0x2) >> 1; | |
1198 | uint32_t i = 0; | |
1199 | bool RegReadMode = (Block == 0xFF); | |
1200 | ||
1201 | //clear buffer now so it does not interfere with timing later | |
1202 | BigBuf_Clear_ext(false); | |
1203 | ||
1204 | //make sure block is at max 7 | |
1205 | Block &= 0x7; | |
1206 | ||
1207 | // Set up FPGA, 125kHz to power up the tag | |
1208 | LFSetupFPGAForADC(95, true); | |
1209 | ||
1210 | // Trigger T55x7 Direct Access Mode with start gap | |
1211 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1212 | SpinDelayUs(START_GAP); | |
1213 | ||
1214 | // Opcode 1[page] | |
1215 | T55xxWriteBit(1); | |
1216 | T55xxWriteBit(Page); //Page 0 | |
1217 | ||
1218 | if (PwdMode){ | |
1219 | // Send Pwd | |
1220 | for (i = 0x80000000; i != 0; i >>= 1) | |
1221 | T55xxWriteBit(Pwd & i); | |
1222 | } | |
1223 | // Send a zero bit separation | |
1224 | T55xxWriteBit(0); | |
1225 | ||
1226 | // Send Block number (if direct access mode) | |
1227 | if (!RegReadMode) | |
1228 | for (i = 0x04; i != 0; i >>= 1) | |
1229 | T55xxWriteBit(Block & i); | |
1230 | ||
1231 | // Turn field on to read the response | |
1232 | TurnReadLFOn(READ_GAP); | |
1233 | ||
1234 | // Acquisition | |
1235 | doT55x7Acquisition(12000); | |
1236 | ||
1237 | // Turn the field off | |
1238 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1239 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1240 | LED_A_OFF(); | |
1241 | } | |
1242 | ||
1243 | void T55xxWakeUp(uint32_t Pwd){ | |
1244 | LED_B_ON(); | |
1245 | uint32_t i = 0; | |
1246 | ||
1247 | // Set up FPGA, 125kHz | |
1248 | LFSetupFPGAForADC(95, true); | |
1249 | ||
1250 | // Trigger T55x7 Direct Access Mode | |
1251 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1252 | SpinDelayUs(START_GAP); | |
1253 | ||
1254 | // Opcode 10 | |
1255 | T55xxWriteBit(1); | |
1256 | T55xxWriteBit(0); //Page 0 | |
1257 | ||
1258 | // Send Pwd | |
1259 | for (i = 0x80000000; i != 0; i >>= 1) | |
1260 | T55xxWriteBit(Pwd & i); | |
1261 | ||
1262 | // Turn and leave field on to let the begin repeating transmission | |
1263 | TurnReadLFOn(20*1000); | |
1264 | } | |
1265 | ||
1266 | /*-------------- Cloning routines -----------*/ | |
1267 | ||
1268 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { | |
1269 | // write last block first and config block last (if included) | |
1270 | for (uint8_t i = numblocks+startblock; i > startblock; i--) { | |
1271 | T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | // Copy HID id to card and setup block 0 config | |
1276 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { | |
1277 | uint32_t data[] = {0,0,0,0,0,0,0}; | |
1278 | uint8_t last_block = 0; | |
1279 | ||
1280 | if (longFMT) { | |
1281 | // Ensure no more than 84 bits supplied | |
1282 | if (hi2>0xFFFFF) { | |
1283 | DbpString("Tags can only have 84 bits."); | |
1284 | return; | |
1285 | } | |
1286 | // Build the 6 data blocks for supplied 84bit ID | |
1287 | last_block = 6; | |
1288 | // load preamble (1D) & long format identifier (9E manchester encoded) | |
1289 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); | |
1290 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) | |
1291 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); | |
1292 | data[3] = manchesterEncode2Bytes(hi >> 16); | |
1293 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); | |
1294 | data[5] = manchesterEncode2Bytes(lo >> 16); | |
1295 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1296 | } else { | |
1297 | // Ensure no more than 44 bits supplied | |
1298 | if (hi>0xFFF) { | |
1299 | DbpString("Tags can only have 44 bits."); | |
1300 | return; | |
1301 | } | |
1302 | // Build the 3 data blocks for supplied 44bit ID | |
1303 | last_block = 3; | |
1304 | // load preamble | |
1305 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); | |
1306 | data[2] = manchesterEncode2Bytes(lo >> 16); | |
1307 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1308 | } | |
1309 | // load chip config block | |
1310 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; | |
1311 | ||
1312 | //TODO add selection of chip for Q5 or T55x7 | |
1313 | // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; | |
1314 | ||
1315 | LED_D_ON(); | |
1316 | // Program the data blocks for supplied ID | |
1317 | // and the block 0 for HID format | |
1318 | WriteT55xx(data, 0, last_block+1); | |
1319 | ||
1320 | LED_D_OFF(); | |
1321 | ||
1322 | DbpString("DONE!"); | |
1323 | } | |
1324 | ||
1325 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { | |
1326 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1327 | //TODO add selection of chip for Q5 or T55x7 | |
1328 | // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; | |
1329 | ||
1330 | LED_D_ON(); | |
1331 | // Program the data blocks for supplied ID | |
1332 | // and the block 0 config | |
1333 | WriteT55xx(data, 0, 3); | |
1334 | ||
1335 | LED_D_OFF(); | |
1336 | ||
1337 | DbpString("DONE!"); | |
1338 | } | |
1339 | ||
1340 | // Clone Indala 64-bit tag by UID to T55x7 | |
1341 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { | |
1342 | //Program the 2 data blocks for supplied 64bit UID | |
1343 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) | |
1344 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1345 | //TODO add selection of chip for Q5 or T55x7 | |
1346 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; | |
1347 | ||
1348 | WriteT55xx(data, 0, 3); | |
1349 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1350 | // T5567WriteBlock(0x603E1042,0); | |
1351 | DbpString("DONE!"); | |
1352 | } | |
1353 | // Clone Indala 224-bit tag by UID to T55x7 | |
1354 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { | |
1355 | //Program the 7 data blocks for supplied 224bit UID | |
1356 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; | |
1357 | // and the block 0 for Indala224 format | |
1358 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1359 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); | |
1360 | //TODO add selection of chip for Q5 or T55x7 | |
1361 | // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; | |
1362 | WriteT55xx(data, 0, 8); | |
1363 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1364 | // T5567WriteBlock(0x603E10E2,0); | |
1365 | DbpString("DONE!"); | |
1366 | } | |
1367 | // clone viking tag to T55xx | |
1368 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { | |
1369 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; | |
1370 | if (Q5) data[0] = ( ((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; | |
1371 | // Program the data blocks for supplied ID and the block 0 config | |
1372 | WriteT55xx(data, 0, 3); | |
1373 | LED_D_OFF(); | |
1374 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1375 | } | |
1376 | ||
1377 | // Define 9bit header for EM410x tags | |
1378 | #define EM410X_HEADER 0x1FF | |
1379 | #define EM410X_ID_LENGTH 40 | |
1380 | ||
1381 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { | |
1382 | int i, id_bit; | |
1383 | uint64_t id = EM410X_HEADER; | |
1384 | uint64_t rev_id = 0; // reversed ID | |
1385 | int c_parity[4]; // column parity | |
1386 | int r_parity = 0; // row parity | |
1387 | uint32_t clock = 0; | |
1388 | ||
1389 | // Reverse ID bits given as parameter (for simpler operations) | |
1390 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1391 | if (i < 32) { | |
1392 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1393 | id_lo >>= 1; | |
1394 | } else { | |
1395 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1396 | id_hi >>= 1; | |
1397 | } | |
1398 | } | |
1399 | ||
1400 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1401 | id_bit = rev_id & 1; | |
1402 | ||
1403 | if (i % 4 == 0) { | |
1404 | // Don't write row parity bit at start of parsing | |
1405 | if (i) | |
1406 | id = (id << 1) | r_parity; | |
1407 | // Start counting parity for new row | |
1408 | r_parity = id_bit; | |
1409 | } else { | |
1410 | // Count row parity | |
1411 | r_parity ^= id_bit; | |
1412 | } | |
1413 | ||
1414 | // First elements in column? | |
1415 | if (i < 4) | |
1416 | // Fill out first elements | |
1417 | c_parity[i] = id_bit; | |
1418 | else | |
1419 | // Count column parity | |
1420 | c_parity[i % 4] ^= id_bit; | |
1421 | ||
1422 | // Insert ID bit | |
1423 | id = (id << 1) | id_bit; | |
1424 | rev_id >>= 1; | |
1425 | } | |
1426 | ||
1427 | // Insert parity bit of last row | |
1428 | id = (id << 1) | r_parity; | |
1429 | ||
1430 | // Fill out column parity at the end of tag | |
1431 | for (i = 0; i < 4; ++i) | |
1432 | id = (id << 1) | c_parity[i]; | |
1433 | ||
1434 | // Add stop bit | |
1435 | id <<= 1; | |
1436 | ||
1437 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1438 | LED_D_ON(); | |
1439 | ||
1440 | // Write EM410x ID | |
1441 | uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; | |
1442 | ||
1443 | clock = (card & 0xFF00) >> 8; | |
1444 | clock = (clock == 0) ? 64 : clock; | |
1445 | Dbprintf("Clock rate: %d", clock); | |
1446 | if (card & 0xFF) { //t55x7 | |
1447 | clock = GetT55xxClockBit(clock); | |
1448 | if (clock == 0) { | |
1449 | Dbprintf("Invalid clock rate: %d", clock); | |
1450 | return; | |
1451 | } | |
1452 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); | |
1453 | } else { //t5555 (Q5) | |
1454 | clock = (clock-2)>>1; //n = (RF-2)/2 | |
1455 | data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); | |
1456 | } | |
1457 | ||
1458 | WriteT55xx(data, 0, 3); | |
1459 | ||
1460 | LED_D_OFF(); | |
1461 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1462 | (uint32_t)(id >> 32), (uint32_t)id); | |
1463 | } | |
1464 | ||
1465 | //----------------------------------- | |
1466 | // EM4469 / EM4305 routines | |
1467 | //----------------------------------- | |
1468 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1469 | #define FWD_CMD_WRITE 0xA | |
1470 | #define FWD_CMD_READ 0x9 | |
1471 | #define FWD_CMD_DISABLE 0x5 | |
1472 | ||
1473 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1474 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1475 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1476 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1477 | ||
1478 | //==================================================================== | |
1479 | // prepares command bits | |
1480 | // see EM4469 spec | |
1481 | //==================================================================== | |
1482 | //-------------------------------------------------------------------- | |
1483 | // VALUES TAKEN FROM EM4x function: SendForward | |
1484 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1485 | // WRITE_GAP = 128; (16*8) | |
1486 | // WRITE_1 = 256 32*8; (32*8) | |
1487 | ||
1488 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1489 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1490 | ||
1491 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1492 | ||
1493 | *forward_ptr++ = 0; //start bit | |
1494 | *forward_ptr++ = 0; //second pause for 4050 code | |
1495 | ||
1496 | *forward_ptr++ = cmd; | |
1497 | cmd >>= 1; | |
1498 | *forward_ptr++ = cmd; | |
1499 | cmd >>= 1; | |
1500 | *forward_ptr++ = cmd; | |
1501 | cmd >>= 1; | |
1502 | *forward_ptr++ = cmd; | |
1503 | ||
1504 | return 6; //return number of emited bits | |
1505 | } | |
1506 | ||
1507 | //==================================================================== | |
1508 | // prepares address bits | |
1509 | // see EM4469 spec | |
1510 | //==================================================================== | |
1511 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1512 | ||
1513 | register uint8_t line_parity; | |
1514 | ||
1515 | uint8_t i; | |
1516 | line_parity = 0; | |
1517 | for(i=0;i<6;i++) { | |
1518 | *forward_ptr++ = addr; | |
1519 | line_parity ^= addr; | |
1520 | addr >>= 1; | |
1521 | } | |
1522 | ||
1523 | *forward_ptr++ = (line_parity & 1); | |
1524 | ||
1525 | return 7; //return number of emited bits | |
1526 | } | |
1527 | ||
1528 | //==================================================================== | |
1529 | // prepares data bits intreleaved with parity bits | |
1530 | // see EM4469 spec | |
1531 | //==================================================================== | |
1532 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1533 | ||
1534 | register uint8_t line_parity; | |
1535 | register uint8_t column_parity; | |
1536 | register uint8_t i, j; | |
1537 | register uint16_t data; | |
1538 | ||
1539 | data = data_low; | |
1540 | column_parity = 0; | |
1541 | ||
1542 | for(i=0; i<4; i++) { | |
1543 | line_parity = 0; | |
1544 | for(j=0; j<8; j++) { | |
1545 | line_parity ^= data; | |
1546 | column_parity ^= (data & 1) << j; | |
1547 | *forward_ptr++ = data; | |
1548 | data >>= 1; | |
1549 | } | |
1550 | *forward_ptr++ = line_parity; | |
1551 | if(i == 1) | |
1552 | data = data_hi; | |
1553 | } | |
1554 | ||
1555 | for(j=0; j<8; j++) { | |
1556 | *forward_ptr++ = column_parity; | |
1557 | column_parity >>= 1; | |
1558 | } | |
1559 | *forward_ptr = 0; | |
1560 | ||
1561 | return 45; //return number of emited bits | |
1562 | } | |
1563 | ||
1564 | //==================================================================== | |
1565 | // Forward Link send function | |
1566 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1567 | // fwd_bit_count set with number of bits to be sent | |
1568 | //==================================================================== | |
1569 | void SendForward(uint8_t fwd_bit_count) { | |
1570 | ||
1571 | fwd_write_ptr = forwardLink_data; | |
1572 | fwd_bit_sz = fwd_bit_count; | |
1573 | ||
1574 | // Set up FPGA, 125kHz | |
1575 | LFSetupFPGAForADC(95, true); | |
1576 | ||
1577 | // force 1st mod pulse (start gap must be longer for 4305) | |
1578 | fwd_bit_sz--; //prepare next bit modulation | |
1579 | fwd_write_ptr++; | |
1580 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1581 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1582 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1583 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1584 | ||
1585 | // now start writting | |
1586 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1587 | if(((*fwd_write_ptr++) & 1) == 1) | |
1588 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1589 | else { | |
1590 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1591 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1592 | SpinDelayUs(20*8); //16-4 cycles off (8us each) //23 | |
1593 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1594 | SpinDelayUs(12*8); //16 cycles on (8us each) //9 | |
1595 | } | |
1596 | } | |
1597 | } | |
1598 | ||
1599 | void EM4xLogin(uint32_t Password) { | |
1600 | ||
1601 | uint8_t fwd_bit_count; | |
1602 | ||
1603 | forward_ptr = forwardLink_data; | |
1604 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1605 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1606 | ||
1607 | SendForward(fwd_bit_count); | |
1608 | ||
1609 | //Wait for command to complete | |
1610 | SpinDelay(20); | |
1611 | } | |
1612 | ||
1613 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1614 | ||
1615 | uint8_t fwd_bit_count; | |
1616 | ||
1617 | // Clear destination buffer before sending the command | |
1618 | BigBuf_Clear_ext(false); | |
1619 | ||
1620 | LED_A_ON(); | |
1621 | //If password mode do login | |
1622 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1623 | ||
1624 | forward_ptr = forwardLink_data; | |
1625 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1626 | fwd_bit_count += Prepare_Addr( Address ); | |
1627 | ||
1628 | SendForward(fwd_bit_count); | |
1629 | ||
1630 | // Now do the acquisition | |
1631 | DoAcquisition_default(0,TRUE); | |
1632 | ||
1633 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1634 | LED_A_OFF(); | |
1635 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1636 | } | |
1637 | ||
1638 | void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) { | |
1639 | ||
1640 | bool PwdMode = (flag & 0xF); | |
1641 | uint8_t Address = (flag >> 8) & 0xFF; | |
1642 | uint8_t fwd_bit_count; | |
1643 | ||
1644 | //clear buffer now so it does not interfere with timing later | |
1645 | BigBuf_Clear_ext(false); | |
1646 | ||
1647 | LED_A_ON(); | |
1648 | //If password mode do login | |
1649 | if (PwdMode) EM4xLogin(Pwd); | |
1650 | ||
1651 | forward_ptr = forwardLink_data; | |
1652 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1653 | fwd_bit_count += Prepare_Addr( Address ); | |
1654 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1655 | ||
1656 | SendForward(fwd_bit_count); | |
1657 | ||
1658 | //Wait for write to complete | |
1659 | SpinDelay(10); | |
1660 | ||
1661 | //Capture response if one exists | |
1662 | DoAcquisition_default(20, TRUE); | |
1663 | ||
1664 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1665 | LED_A_OFF(); | |
1666 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1667 | } | |
1668 | /* | |
1669 | Reading a COTAG. | |
1670 | ||
1671 | COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. | |
1672 | because of this, we can "sample" the data signal but we interpreate it to Manchester direct. | |
1673 | ||
1674 | READER START SEQUENCE: | |
1675 | burst 800 us, gap 2.2 msecs | |
1676 | burst 3.6 msecs gap 2.2 msecs | |
1677 | burst 800 us gap 2.2 msecs | |
1678 | pulse 3.6 msecs | |
1679 | ||
1680 | This triggers a COTAG tag to response | |
1681 | */ | |
1682 | void Cotag(uint32_t arg0) { | |
1683 | ||
1684 | #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); } | |
1685 | #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } | |
1686 | ||
1687 | uint8_t rawsignal = arg0 & 0xF; | |
1688 | ||
1689 | LED_A_ON(); | |
1690 | ||
1691 | // Switching to LF image on FPGA. This might empty BigBuff | |
1692 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1693 | ||
1694 | //clear buffer now so it does not interfere with timing later | |
1695 | BigBuf_Clear_ext(false); | |
1696 | ||
1697 | // Set up FPGA, 132kHz to power up the tag | |
1698 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89); | |
1699 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1700 | ||
1701 | // Connect the A/D to the peak-detected low-frequency path. | |
1702 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1703 | ||
1704 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1705 | FpgaSetupSsc(); | |
1706 | ||
1707 | // start clock - 1.5ticks is 1us | |
1708 | StartTicks(); | |
1709 | ||
1710 | //send COTAG start pulse | |
1711 | ON(740) OFF | |
1712 | ON(3330) OFF | |
1713 | ON(740) OFF | |
1714 | ON(1000) | |
1715 | ||
1716 | switch(rawsignal) { | |
1717 | case 0: doCotagAcquisition(50000); break; | |
1718 | case 1: doCotagAcquisitionManchester(); break; | |
1719 | case 2: DoAcquisition_config(TRUE); break; | |
1720 | } | |
1721 | ||
1722 | // Turn the field off | |
1723 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1724 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1725 | LED_A_OFF(); | |
1726 | } |