| 1 | /* crapto1.c\r |
| 2 | \r |
| 3 | This program is free software; you can redistribute it and/or\r |
| 4 | modify it under the terms of the GNU General Public License\r |
| 5 | as published by the Free Software Foundation; either version 2\r |
| 6 | of the License, or (at your option) any later version.\r |
| 7 | \r |
| 8 | This program is distributed in the hope that it will be useful,\r |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of\r |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r |
| 11 | GNU General Public License for more details.\r |
| 12 | \r |
| 13 | You should have received a copy of the GNU General Public License\r |
| 14 | along with this program; if not, write to the Free Software\r |
| 15 | Foundation, Inc., 51 Franklin Street, Fifth Floor,\r |
| 16 | Boston, MA 02110-1301, US$\r |
| 17 | \r |
| 18 | Copyright (C) 2008-2008 bla <blapost@gmail.com>\r |
| 19 | */\r |
| 20 | #include "crapto1.h"\r |
| 21 | #include <stdlib.h>\r |
| 22 | \r |
| 23 | #if !defined LOWMEM && defined __GNUC__\r |
| 24 | static uint8_t filterlut[1 << 20];\r |
| 25 | static void __attribute__((constructor)) fill_lut()\r |
| 26 | {\r |
| 27 | uint32_t i;\r |
| 28 | for(i = 0; i < 1 << 20; ++i)\r |
| 29 | filterlut[i] = filter(i);\r |
| 30 | }\r |
| 31 | #define filter(x) (filterlut[(x) & 0xfffff])\r |
| 32 | #endif\r |
| 33 | \r |
| 34 | \r |
| 35 | \r |
| 36 | typedef struct bucket {\r |
| 37 | uint32_t *head;\r |
| 38 | uint32_t *bp;\r |
| 39 | } bucket_t;\r |
| 40 | \r |
| 41 | typedef bucket_t bucket_array_t[2][0x100];\r |
| 42 | \r |
| 43 | typedef struct bucket_info {\r |
| 44 | struct {\r |
| 45 | uint32_t *head, *tail;\r |
| 46 | } bucket_info[2][0x100];\r |
| 47 | uint32_t numbuckets;\r |
| 48 | } bucket_info_t;\r |
| 49 | \r |
| 50 | \r |
| 51 | static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,\r |
| 52 | uint32_t* const ostart, uint32_t* const ostop,\r |
| 53 | bucket_info_t *bucket_info, bucket_array_t bucket)\r |
| 54 | {\r |
| 55 | uint32_t *p1, *p2;\r |
| 56 | uint32_t *start[2];\r |
| 57 | uint32_t *stop[2];\r |
| 58 | \r |
| 59 | start[0] = estart;\r |
| 60 | stop[0] = estop;\r |
| 61 | start[1] = ostart;\r |
| 62 | stop[1] = ostop;\r |
| 63 | \r |
| 64 | // init buckets to be empty\r |
| 65 | for (uint32_t i = 0; i < 2; i++) {\r |
| 66 | for (uint32_t j = 0x00; j <= 0xff; j++) {\r |
| 67 | bucket[i][j].bp = bucket[i][j].head;\r |
| 68 | }\r |
| 69 | }\r |
| 70 | \r |
| 71 | // sort the lists into the buckets based on the MSB (contribution bits)\r |
| 72 | for (uint32_t i = 0; i < 2; i++) {\r |
| 73 | for (p1 = start[i]; p1 <= stop[i]; p1++) {\r |
| 74 | uint32_t bucket_index = (*p1 & 0xff000000) >> 24;\r |
| 75 | *(bucket[i][bucket_index].bp++) = *p1;\r |
| 76 | }\r |
| 77 | }\r |
| 78 | \r |
| 79 | \r |
| 80 | // write back intersecting buckets as sorted list.\r |
| 81 | // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.\r |
| 82 | uint32_t nonempty_bucket;\r |
| 83 | for (uint32_t i = 0; i < 2; i++) {\r |
| 84 | p1 = start[i];\r |
| 85 | nonempty_bucket = 0;\r |
| 86 | for (uint32_t j = 0x00; j <= 0xff; j++) {\r |
| 87 | if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only\r |
| 88 | bucket_info->bucket_info[i][nonempty_bucket].head = p1;\r |
| 89 | for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);\r |
| 90 | bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;\r |
| 91 | nonempty_bucket++;\r |
| 92 | }\r |
| 93 | }\r |
| 94 | bucket_info->numbuckets = nonempty_bucket;\r |
| 95 | }\r |
| 96 | }\r |
| 97 | \r |
| 98 | /** binsearch\r |
| 99 | * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r |
| 100 | */\r |
| 101 | static inline uint32_t*\r |
| 102 | binsearch(uint32_t *start, uint32_t *stop)\r |
| 103 | {\r |
| 104 | uint32_t mid, val = *stop & 0xff000000;\r |
| 105 | while(start != stop)\r |
| 106 | if(start[mid = (stop - start) >> 1] > val)\r |
| 107 | stop = &start[mid];\r |
| 108 | else\r |
| 109 | start += mid + 1;\r |
| 110 | \r |
| 111 | return start;\r |
| 112 | }\r |
| 113 | \r |
| 114 | /** update_contribution\r |
| 115 | * helper, calculates the partial linear feedback contributions and puts in MSB\r |
| 116 | */\r |
| 117 | static inline void\r |
| 118 | update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r |
| 119 | {\r |
| 120 | uint32_t p = *item >> 25;\r |
| 121 | \r |
| 122 | p = p << 1 | parity(*item & mask1);\r |
| 123 | p = p << 1 | parity(*item & mask2);\r |
| 124 | *item = p << 24 | (*item & 0xffffff);\r |
| 125 | }\r |
| 126 | \r |
| 127 | /** extend_table\r |
| 128 | * using a bit of the keystream extend the table of possible lfsr states\r |
| 129 | */\r |
| 130 | static inline void\r |
| 131 | extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r |
| 132 | {\r |
| 133 | in <<= 24;\r |
| 134 | \r |
| 135 | for(uint32_t *p = tbl; p <= *end; p++) {\r |
| 136 | *p <<= 1;\r |
| 137 | if(filter(*p) != filter(*p | 1)) { // replace\r |
| 138 | *p |= filter(*p) ^ bit;\r |
| 139 | update_contribution(p, m1, m2);\r |
| 140 | *p ^= in;\r |
| 141 | } else if(filter(*p) == bit) { // insert\r |
| 142 | *++*end = p[1];\r |
| 143 | p[1] = p[0] | 1;\r |
| 144 | update_contribution(p, m1, m2);\r |
| 145 | *p++ ^= in;\r |
| 146 | update_contribution(p, m1, m2);\r |
| 147 | *p ^= in;\r |
| 148 | } else { // drop\r |
| 149 | *p-- = *(*end)--;\r |
| 150 | }\r |
| 151 | }\r |
| 152 | \r |
| 153 | }\r |
| 154 | \r |
| 155 | \r |
| 156 | /** extend_table_simple\r |
| 157 | * using a bit of the keystream extend the table of possible lfsr states\r |
| 158 | */\r |
| 159 | static inline void\r |
| 160 | extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r |
| 161 | {\r |
| 162 | for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r |
| 163 | if(filter(*tbl) ^ filter(*tbl | 1)) { // replace\r |
| 164 | *tbl |= filter(*tbl) ^ bit;\r |
| 165 | } else if(filter(*tbl) == bit) { // insert\r |
| 166 | *++*end = *++tbl;\r |
| 167 | *tbl = tbl[-1] | 1;\r |
| 168 | } else // drop\r |
| 169 | *tbl-- = *(*end)--;\r |
| 170 | }\r |
| 171 | \r |
| 172 | \r |
| 173 | /** recover\r |
| 174 | * recursively narrow down the search space, 4 bits of keystream at a time\r |
| 175 | */\r |
| 176 | static struct Crypto1State*\r |
| 177 | recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r |
| 178 | uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r |
| 179 | struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)\r |
| 180 | {\r |
| 181 | uint32_t *o, *e;\r |
| 182 | bucket_info_t bucket_info;\r |
| 183 | \r |
| 184 | if(rem == -1) {\r |
| 185 | for(e = e_head; e <= e_tail; ++e) {\r |
| 186 | *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r |
| 187 | for(o = o_head; o <= o_tail; ++o, ++sl) {\r |
| 188 | sl->even = *o;\r |
| 189 | sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r |
| 190 | }\r |
| 191 | }\r |
| 192 | sl->odd = sl->even = 0;\r |
| 193 | return sl;\r |
| 194 | }\r |
| 195 | \r |
| 196 | for(uint32_t i = 0; i < 4 && rem--; i++) {\r |
| 197 | extend_table(o_head, &o_tail, (oks >>= 1) & 1,\r |
| 198 | LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);\r |
| 199 | if(o_head > o_tail)\r |
| 200 | return sl;\r |
| 201 | \r |
| 202 | extend_table(e_head, &e_tail, (eks >>= 1) & 1,\r |
| 203 | LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);\r |
| 204 | if(e_head > e_tail)\r |
| 205 | return sl;\r |
| 206 | }\r |
| 207 | \r |
| 208 | bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);\r |
| 209 | \r |
| 210 | for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {\r |
| 211 | sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,\r |
| 212 | bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,\r |
| 213 | rem, sl, in, bucket);\r |
| 214 | }\r |
| 215 | \r |
| 216 | return sl;\r |
| 217 | }\r |
| 218 | /** lfsr_recovery\r |
| 219 | * recover the state of the lfsr given 32 bits of the keystream\r |
| 220 | * additionally you can use the in parameter to specify the value\r |
| 221 | * that was fed into the lfsr at the time the keystream was generated\r |
| 222 | */\r |
| 223 | struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r |
| 224 | {\r |
| 225 | struct Crypto1State *statelist;\r |
| 226 | uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r |
| 227 | uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r |
| 228 | int i;\r |
| 229 | \r |
| 230 | // split the keystream into an odd and even part\r |
| 231 | for(i = 31; i >= 0; i -= 2)\r |
| 232 | oks = oks << 1 | BEBIT(ks2, i);\r |
| 233 | for(i = 30; i >= 0; i -= 2)\r |
| 234 | eks = eks << 1 | BEBIT(ks2, i);\r |
| 235 | \r |
| 236 | odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r |
| 237 | even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r |
| 238 | statelist = malloc(sizeof(struct Crypto1State) << 18);\r |
| 239 | if(!odd_tail-- || !even_tail-- || !statelist) {\r |
| 240 | goto out;\r |
| 241 | }\r |
| 242 | statelist->odd = statelist->even = 0;\r |
| 243 | \r |
| 244 | // allocate memory for out of place bucket_sort\r |
| 245 | bucket_array_t bucket;\r |
| 246 | for (uint32_t i = 0; i < 2; i++)\r |
| 247 | for (uint32_t j = 0; j <= 0xff; j++) {\r |
| 248 | bucket[i][j].head = malloc(sizeof(uint32_t)<<14);\r |
| 249 | if (!bucket[i][j].head) {\r |
| 250 | goto out;\r |
| 251 | }\r |
| 252 | }\r |
| 253 | \r |
| 254 | \r |
| 255 | // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream\r |
| 256 | for(i = 1 << 20; i >= 0; --i) {\r |
| 257 | if(filter(i) == (oks & 1))\r |
| 258 | *++odd_tail = i;\r |
| 259 | if(filter(i) == (eks & 1))\r |
| 260 | *++even_tail = i;\r |
| 261 | }\r |
| 262 | \r |
| 263 | // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):\r |
| 264 | for(i = 0; i < 4; i++) {\r |
| 265 | extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r |
| 266 | extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r |
| 267 | }\r |
| 268 | \r |
| 269 | // the statelists now contain all states which could have generated the last 10 Bits of the keystream.\r |
| 270 | // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"\r |
| 271 | // parameter into account.\r |
| 272 | \r |
| 273 | in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping\r |
| 274 | \r |
| 275 | recover(odd_head, odd_tail, oks,\r |
| 276 | even_head, even_tail, eks, 11, statelist, in << 1, bucket);\r |
| 277 | \r |
| 278 | \r |
| 279 | out:\r |
| 280 | free(odd_head);\r |
| 281 | free(even_head);\r |
| 282 | for (uint32_t i = 0; i < 2; i++)\r |
| 283 | for (uint32_t j = 0; j <= 0xff; j++)\r |
| 284 | free(bucket[i][j].head);\r |
| 285 | \r |
| 286 | return statelist;\r |
| 287 | }\r |
| 288 | \r |
| 289 | static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r |
| 290 | 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r |
| 291 | 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r |
| 292 | static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r |
| 293 | 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r |
| 294 | 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r |
| 295 | 0x7EC7EE90, 0x7F63F748, 0x79117020};\r |
| 296 | static const uint32_t T1[] = {\r |
| 297 | 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r |
| 298 | 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r |
| 299 | 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r |
| 300 | 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r |
| 301 | static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r |
| 302 | 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r |
| 303 | 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r |
| 304 | 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r |
| 305 | 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r |
| 306 | 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r |
| 307 | static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r |
| 308 | static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r |
| 309 | /** Reverse 64 bits of keystream into possible cipher states\r |
| 310 | * Variation mentioned in the paper. Somewhat optimized version\r |
| 311 | */\r |
| 312 | struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r |
| 313 | {\r |
| 314 | struct Crypto1State *statelist, *sl;\r |
| 315 | uint8_t oks[32], eks[32], hi[32];\r |
| 316 | uint32_t low = 0, win = 0;\r |
| 317 | uint32_t *tail, table[1 << 16];\r |
| 318 | int i, j;\r |
| 319 | \r |
| 320 | sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r |
| 321 | if(!sl)\r |
| 322 | return 0;\r |
| 323 | sl->odd = sl->even = 0;\r |
| 324 | \r |
| 325 | for(i = 30; i >= 0; i -= 2) {\r |
| 326 | oks[i >> 1] = BIT(ks2, i ^ 24);\r |
| 327 | oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r |
| 328 | }\r |
| 329 | for(i = 31; i >= 0; i -= 2) {\r |
| 330 | eks[i >> 1] = BIT(ks2, i ^ 24);\r |
| 331 | eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r |
| 332 | }\r |
| 333 | \r |
| 334 | for(i = 0xfffff; i >= 0; --i) {\r |
| 335 | if (filter(i) != oks[0])\r |
| 336 | continue;\r |
| 337 | \r |
| 338 | *(tail = table) = i;\r |
| 339 | for(j = 1; tail >= table && j < 29; ++j)\r |
| 340 | extend_table_simple(table, &tail, oks[j]);\r |
| 341 | \r |
| 342 | if(tail < table)\r |
| 343 | continue;\r |
| 344 | \r |
| 345 | for(j = 0; j < 19; ++j)\r |
| 346 | low = low << 1 | parity(i & S1[j]);\r |
| 347 | for(j = 0; j < 32; ++j)\r |
| 348 | hi[j] = parity(i & T1[j]);\r |
| 349 | \r |
| 350 | for(; tail >= table; --tail) {\r |
| 351 | for(j = 0; j < 3; ++j) {\r |
| 352 | *tail = *tail << 1;\r |
| 353 | *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r |
| 354 | if(filter(*tail) != oks[29 + j])\r |
| 355 | goto continue2;\r |
| 356 | }\r |
| 357 | \r |
| 358 | for(j = 0; j < 19; ++j)\r |
| 359 | win = win << 1 | parity(*tail & S2[j]);\r |
| 360 | \r |
| 361 | win ^= low;\r |
| 362 | for(j = 0; j < 32; ++j) {\r |
| 363 | win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r |
| 364 | if(filter(win) != eks[j])\r |
| 365 | goto continue2;\r |
| 366 | }\r |
| 367 | \r |
| 368 | *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r |
| 369 | sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r |
| 370 | sl->even = win;\r |
| 371 | ++sl;\r |
| 372 | sl->odd = sl->even = 0;\r |
| 373 | continue2:;\r |
| 374 | }\r |
| 375 | }\r |
| 376 | return statelist;\r |
| 377 | }\r |
| 378 | \r |
| 379 | /** lfsr_rollback_bit\r |
| 380 | * Rollback the shift register in order to get previous states\r |
| 381 | */\r |
| 382 | void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r |
| 383 | {\r |
| 384 | int out;\r |
| 385 | uint32_t tmp;\r |
| 386 | \r |
| 387 | s->odd &= 0xffffff;\r |
| 388 | tmp = s->odd;\r |
| 389 | s->odd = s->even;\r |
| 390 | s->even = tmp;\r |
| 391 | \r |
| 392 | out = s->even & 1;\r |
| 393 | out ^= LF_POLY_EVEN & (s->even >>= 1);\r |
| 394 | out ^= LF_POLY_ODD & s->odd;\r |
| 395 | out ^= !!in;\r |
| 396 | out ^= filter(s->odd) & !!fb;\r |
| 397 | \r |
| 398 | s->even |= parity(out) << 23;\r |
| 399 | }\r |
| 400 | /** lfsr_rollback_byte\r |
| 401 | * Rollback the shift register in order to get previous states\r |
| 402 | */\r |
| 403 | void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r |
| 404 | {\r |
| 405 | int i;\r |
| 406 | for (i = 7; i >= 0; --i)\r |
| 407 | lfsr_rollback_bit(s, BEBIT(in, i), fb);\r |
| 408 | }\r |
| 409 | /** lfsr_rollback_word\r |
| 410 | * Rollback the shift register in order to get previous states\r |
| 411 | */\r |
| 412 | void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r |
| 413 | {\r |
| 414 | int i;\r |
| 415 | for (i = 31; i >= 0; --i)\r |
| 416 | lfsr_rollback_bit(s, BEBIT(in, i), fb);\r |
| 417 | }\r |
| 418 | \r |
| 419 | /** nonce_distance\r |
| 420 | * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r |
| 421 | */\r |
| 422 | static uint16_t *dist = 0;\r |
| 423 | int nonce_distance(uint32_t from, uint32_t to)\r |
| 424 | {\r |
| 425 | uint16_t x, i;\r |
| 426 | if(!dist) {\r |
| 427 | dist = malloc(2 << 16);\r |
| 428 | if(!dist)\r |
| 429 | return -1;\r |
| 430 | for (x = i = 1; i; ++i) {\r |
| 431 | dist[(x & 0xff) << 8 | x >> 8] = i;\r |
| 432 | x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r |
| 433 | }\r |
| 434 | }\r |
| 435 | return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r |
| 436 | }\r |
| 437 | \r |
| 438 | \r |
| 439 | static uint32_t fastfwd[2][8] = {\r |
| 440 | { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r |
| 441 | { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r |
| 442 | \r |
| 443 | \r |
| 444 | /** lfsr_prefix_ks\r |
| 445 | *\r |
| 446 | * Is an exported helper function from the common prefix attack\r |
| 447 | * Described in the "dark side" paper. It returns an -1 terminated array\r |
| 448 | * of possible partial(21 bit) secret state.\r |
| 449 | * The required keystream(ks) needs to contain the keystream that was used to\r |
| 450 | * encrypt the NACK which is observed when varying only the 4 last bits of Nr\r |
| 451 | * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r |
| 452 | */\r |
| 453 | uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r |
| 454 | {\r |
| 455 | uint32_t *candidates = malloc(4 << 21);\r |
| 456 | uint32_t c, entry;\r |
| 457 | int size, i;\r |
| 458 | \r |
| 459 | if(!candidates)\r |
| 460 | return 0;\r |
| 461 | \r |
| 462 | size = (1 << 21) - 1;\r |
| 463 | for(i = 0; i <= size; ++i)\r |
| 464 | candidates[i] = i;\r |
| 465 | \r |
| 466 | for(c = 0; c < 8; ++c)\r |
| 467 | for(i = 0;i <= size; ++i) {\r |
| 468 | entry = candidates[i] ^ fastfwd[isodd][c];\r |
| 469 | \r |
| 470 | if(filter(entry >> 1) == BIT(ks[c], isodd))\r |
| 471 | if(filter(entry) == BIT(ks[c], isodd + 2))\r |
| 472 | continue;\r |
| 473 | \r |
| 474 | candidates[i--] = candidates[size--];\r |
| 475 | }\r |
| 476 | \r |
| 477 | candidates[size + 1] = -1;\r |
| 478 | \r |
| 479 | return candidates;\r |
| 480 | }\r |
| 481 | \r |
| 482 | /** brute_top\r |
| 483 | * helper function which eliminates possible secret states using parity bits\r |
| 484 | */\r |
| 485 | static struct Crypto1State*\r |
| 486 | brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],\r |
| 487 | uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)\r |
| 488 | {\r |
| 489 | struct Crypto1State s;\r |
| 490 | uint32_t ks1, nr, ks2, rr, ks3, good, c;\r |
| 491 | \r |
| 492 | for(c = 0; c < 8; ++c) {\r |
| 493 | s.odd = odd ^ fastfwd[1][c];\r |
| 494 | s.even = even ^ fastfwd[0][c];\r |
| 495 | \r |
| 496 | lfsr_rollback_bit(&s, 0, 0);\r |
| 497 | lfsr_rollback_bit(&s, 0, 0);\r |
| 498 | lfsr_rollback_bit(&s, 0, 0);\r |
| 499 | \r |
| 500 | lfsr_rollback_word(&s, 0, 0);\r |
| 501 | lfsr_rollback_word(&s, prefix | c << 5, 1);\r |
| 502 | \r |
| 503 | sl->odd = s.odd;\r |
| 504 | sl->even = s.even;\r |
| 505 | \r |
| 506 | if (no_chk)\r |
| 507 | break;\r |
| 508 | \r |
| 509 | ks1 = crypto1_word(&s, prefix | c << 5, 1);\r |
| 510 | ks2 = crypto1_word(&s,0,0);\r |
| 511 | ks3 = crypto1_word(&s, 0,0);\r |
| 512 | nr = ks1 ^ (prefix | c << 5);\r |
| 513 | rr = ks2 ^ rresp;\r |
| 514 | \r |
| 515 | good = 1;\r |
| 516 | good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r |
| 517 | good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r |
| 518 | good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r |
| 519 | good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r |
| 520 | good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);\r |
| 521 | \r |
| 522 | if(!good)\r |
| 523 | return sl;\r |
| 524 | }\r |
| 525 | \r |
| 526 | return ++sl;\r |
| 527 | }\r |
| 528 | \r |
| 529 | \r |
| 530 | /** lfsr_common_prefix\r |
| 531 | * Implentation of the common prefix attack.\r |
| 532 | * Requires the 28 bit constant prefix used as reader nonce (pfx)\r |
| 533 | * The reader response used (rr)\r |
| 534 | * The keystream used to encrypt the observed NACK's (ks)\r |
| 535 | * The parity bits (par)\r |
| 536 | * It returns a zero terminated list of possible cipher states after the\r |
| 537 | * tag nonce was fed in\r |
| 538 | */\r |
| 539 | struct Crypto1State*\r |
| 540 | lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)\r |
| 541 | {\r |
| 542 | struct Crypto1State *statelist, *s;\r |
| 543 | uint32_t *odd, *even, *o, *e, top;\r |
| 544 | \r |
| 545 | odd = lfsr_prefix_ks(ks, 1);\r |
| 546 | even = lfsr_prefix_ks(ks, 0);\r |
| 547 | \r |
| 548 | statelist = malloc((sizeof *statelist) << 21); //how large should be?\r |
| 549 | if(!statelist || !odd || !even)\r |
| 550 | {\r |
| 551 | free(statelist);\r |
| 552 | free(odd);\r |
| 553 | free(even);\r |
| 554 | return 0;\r |
| 555 | }\r |
| 556 | \r |
| 557 | s = statelist;\r |
| 558 | for(o = odd; *o != -1; ++o)\r |
| 559 | for(e = even; *e != -1; ++e)\r |
| 560 | for(top = 0; top < 64; ++top) {\r |
| 561 | *o = (*o & 0x1fffff) | (top << 21);\r |
| 562 | *e = (*e & 0x1fffff) | (top >> 3) << 21;\r |
| 563 | s = brute_top(pfx, rr, par, *o, *e, s, no_par);\r |
| 564 | }\r |
| 565 | \r |
| 566 | s->odd = s->even = -1;\r |
| 567 | //printf("state count = %d\n",s-statelist);\r |
| 568 | \r |
| 569 | free(odd);\r |
| 570 | free(even);\r |
| 571 | \r |
| 572 | return statelist;\r |
| 573 | }\r |