]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2015, 2016 by piwi | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Implements a card only attack based on crypto text (encrypted nonces | |
9 | // received during a nested authentication) only. Unlike other card only | |
10 | // attacks this doesn't rely on implementation errors but only on the | |
11 | // inherent weaknesses of the crypto1 cypher. Described in | |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened | |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on | |
14 | // Computer and Communications Security, 2015 | |
15 | //----------------------------------------------------------------------------- | |
16 | ||
17 | #include "cmdhfmfhard.h" | |
18 | ||
19 | #include <stdio.h> | |
20 | #include <stdlib.h> | |
21 | #include <inttypes.h> | |
22 | #include <string.h> | |
23 | #include <time.h> | |
24 | #include <pthread.h> | |
25 | #include <locale.h> | |
26 | #include <math.h> | |
27 | #include "proxmark3.h" | |
28 | #include "cmdmain.h" | |
29 | #include "ui.h" | |
30 | #include "util.h" | |
31 | #include "util_posix.h" | |
32 | #include "crapto1/crapto1.h" | |
33 | #include "parity.h" | |
34 | #include "hardnested/hardnested_bruteforce.h" | |
35 | #include "hardnested/hardnested_bitarray_core.h" | |
36 | ||
37 | #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs()) | |
38 | #define NUM_REDUCTION_WORKING_THREADS (num_CPUs()) | |
39 | ||
40 | #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states | |
41 | ||
42 | #define STATE_FILES_DIRECTORY "hardnested/tables/" | |
43 | #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin" | |
44 | ||
45 | #define DEBUG_KEY_ELIMINATION | |
46 | // #define DEBUG_REDUCTION | |
47 | ||
48 | static uint16_t sums[NUM_SUMS] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values | |
49 | ||
50 | #define NUM_PART_SUMS 9 // number of possible partial sum property values | |
51 | ||
52 | typedef enum { | |
53 | EVEN_STATE = 0, | |
54 | ODD_STATE = 1 | |
55 | } odd_even_t; | |
56 | ||
57 | static uint32_t num_acquired_nonces = 0; | |
58 | static uint64_t start_time = 0; | |
59 | static uint16_t effective_bitflip[2][0x400]; | |
60 | static uint16_t num_effective_bitflips[2] = {0, 0}; | |
61 | static uint16_t all_effective_bitflip[0x400]; | |
62 | static uint16_t num_all_effective_bitflips = 0; | |
63 | static uint16_t num_1st_byte_effective_bitflips = 0; | |
64 | #define CHECK_1ST_BYTES 0x01 | |
65 | #define CHECK_2ND_BYTES 0x02 | |
66 | static uint8_t hardnested_stage = CHECK_1ST_BYTES; | |
67 | static uint64_t known_target_key; | |
68 | static uint32_t test_state[2] = {0,0}; | |
69 | static float brute_force_per_second; | |
70 | ||
71 | ||
72 | static void get_SIMD_instruction_set(char* instruction_set) { | |
73 | #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8)) | |
74 | #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2) | |
75 | if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set, "AVX512F"); | |
76 | else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2"); | |
77 | #else | |
78 | if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2"); | |
79 | #endif | |
80 | else if (__builtin_cpu_supports("avx")) strcpy(instruction_set, "AVX"); | |
81 | else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set, "SSE2"); | |
82 | else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set, "MMX"); | |
83 | else | |
84 | #endif | |
85 | strcpy(instruction_set, "unsupported"); | |
86 | } | |
87 | ||
88 | ||
89 | static void print_progress_header(void) { | |
90 | char progress_text[80]; | |
91 | char instr_set[12] = ""; | |
92 | get_SIMD_instruction_set(instr_set); | |
93 | sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set); | |
94 | PrintAndLog("\n\n"); | |
95 | PrintAndLog(" time | #nonces | Activity | expected to brute force"); | |
96 | PrintAndLog(" | | | #states | time "); | |
97 | PrintAndLog("------------------------------------------------------------------------------------------------------"); | |
98 | PrintAndLog(" 0 | 0 | %-55s | |", progress_text); | |
99 | } | |
100 | ||
101 | ||
102 | void hardnested_print_progress(uint32_t nonces, char *activity, float brute_force, uint64_t min_diff_print_time) { | |
103 | static uint64_t last_print_time = 0; | |
104 | if (msclock() - last_print_time > min_diff_print_time) { | |
105 | last_print_time = msclock(); | |
106 | uint64_t total_time = msclock() - start_time; | |
107 | float brute_force_time = brute_force / brute_force_per_second; | |
108 | char brute_force_time_string[20]; | |
109 | if (brute_force_time < 90) { | |
110 | sprintf(brute_force_time_string, "%2.0fs", brute_force_time); | |
111 | } else if (brute_force_time < 60 * 90) { | |
112 | sprintf(brute_force_time_string, "%2.0fmin", brute_force_time/60); | |
113 | } else if (brute_force_time < 60 * 60 * 36) { | |
114 | sprintf(brute_force_time_string, "%2.0fh", brute_force_time/(60*60)); | |
115 | } else { | |
116 | sprintf(brute_force_time_string, "%2.0fd", brute_force_time/(60*60*24)); | |
117 | } | |
118 | PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time/1000.0, nonces, activity, brute_force, brute_force_time_string); | |
119 | } | |
120 | } | |
121 | ||
122 | ||
123 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
124 | // bitarray functions | |
125 | ||
126 | static inline void clear_bitarray24(uint32_t *bitarray) | |
127 | { | |
128 | memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19)); | |
129 | } | |
130 | ||
131 | ||
132 | static inline void set_bitarray24(uint32_t *bitarray) | |
133 | { | |
134 | memset(bitarray, 0xff, sizeof(uint32_t) * (1<<19)); | |
135 | } | |
136 | ||
137 | ||
138 | static inline void set_bit24(uint32_t *bitarray, uint32_t index) | |
139 | { | |
140 | bitarray[index>>5] |= 0x80000000>>(index&0x0000001f); | |
141 | } | |
142 | ||
143 | ||
144 | static inline void clear_bit24(uint32_t *bitarray, uint32_t index) | |
145 | { | |
146 | bitarray[index>>5] &= ~(0x80000000>>(index&0x0000001f)); | |
147 | } | |
148 | ||
149 | ||
150 | static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index) | |
151 | { | |
152 | return bitarray[index>>5] & (0x80000000>>(index&0x0000001f)); | |
153 | } | |
154 | ||
155 | ||
156 | static inline uint32_t next_state(uint32_t *bitarray, uint32_t state) | |
157 | { | |
158 | if (++state == 1<<24) return 1<<24; | |
159 | uint32_t index = state >> 5; | |
160 | uint_fast8_t bit = state & 0x1f; | |
161 | uint32_t line = bitarray[index] << bit; | |
162 | while (bit <= 0x1f) { | |
163 | if (line & 0x80000000) return state; | |
164 | state++; | |
165 | bit++; | |
166 | line <<= 1; | |
167 | } | |
168 | index++; | |
169 | while (bitarray[index] == 0x00000000 && state < 1<<24) { | |
170 | index++; | |
171 | state += 0x20; | |
172 | } | |
173 | if (state >= 1<<24) return 1<<24; | |
174 | #if defined __GNUC__ | |
175 | return state + __builtin_clz(bitarray[index]); | |
176 | #else | |
177 | bit = 0x00; | |
178 | line = bitarray[index]; | |
179 | while (bit <= 0x1f) { | |
180 | if (line & 0x80000000) return state; | |
181 | state++; | |
182 | bit++; | |
183 | line <<= 1; | |
184 | } | |
185 | return 1<<24; | |
186 | #endif | |
187 | } | |
188 | ||
189 | ||
190 | static inline uint32_t next_not_state(uint32_t *bitarray, uint32_t state) | |
191 | { | |
192 | if (++state == 1<<24) return 1<<24; | |
193 | uint32_t index = state >> 5; | |
194 | uint_fast8_t bit = state & 0x1f; | |
195 | uint32_t line = bitarray[index] << bit; | |
196 | while (bit <= 0x1f) { | |
197 | if ((line & 0x80000000) == 0) return state; | |
198 | state++; | |
199 | bit++; | |
200 | line <<= 1; | |
201 | } | |
202 | index++; | |
203 | while (bitarray[index] == 0xffffffff && state < 1<<24) { | |
204 | index++; | |
205 | state += 0x20; | |
206 | } | |
207 | if (state >= 1<<24) return 1<<24; | |
208 | #if defined __GNUC__ | |
209 | return state + __builtin_clz(~bitarray[index]); | |
210 | #else | |
211 | bit = 0x00; | |
212 | line = bitarray[index]; | |
213 | while (bit <= 0x1f) { | |
214 | if ((line & 0x80000000) == 0) return state; | |
215 | state++; | |
216 | bit++; | |
217 | line <<= 1; | |
218 | } | |
219 | return 1<<24; | |
220 | #endif | |
221 | } | |
222 | ||
223 | ||
224 | ||
225 | ||
226 | #define BITFLIP_2ND_BYTE 0x0200 | |
227 | ||
228 | ||
229 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
230 | // bitflip property bitarrays | |
231 | ||
232 | static uint32_t *bitflip_bitarrays[2][0x400]; | |
233 | static uint32_t count_bitflip_bitarrays[2][0x400]; | |
234 | ||
235 | static int compare_count_bitflip_bitarrays(const void *b1, const void *b2) | |
236 | { | |
237 | uint64_t count1 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b1] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b1]; | |
238 | uint64_t count2 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b2] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b2]; | |
239 | return (count1 > count2) - (count2 > count1); | |
240 | } | |
241 | ||
242 | ||
243 | static void init_bitflip_bitarrays(void) | |
244 | { | |
245 | #if defined (DEBUG_REDUCTION) | |
246 | uint8_t line = 0; | |
247 | #endif | |
248 | ||
249 | char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1]; | |
250 | char state_file_name[strlen(STATE_FILE_TEMPLATE)]; | |
251 | ||
252 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
253 | num_effective_bitflips[odd_even] = 0; | |
254 | for (uint16_t bitflip = 0x001; bitflip < 0x400; bitflip++) { | |
255 | bitflip_bitarrays[odd_even][bitflip] = NULL; | |
256 | count_bitflip_bitarrays[odd_even][bitflip] = 1<<24; | |
257 | sprintf(state_file_name, STATE_FILE_TEMPLATE, odd_even, bitflip); | |
258 | strcpy(state_files_path, get_my_executable_directory()); | |
259 | strcat(state_files_path, STATE_FILES_DIRECTORY); | |
260 | strcat(state_files_path, state_file_name); | |
261 | FILE *statesfile = fopen(state_files_path, "rb"); | |
262 | if (statesfile == NULL) { | |
263 | continue; | |
264 | } else { | |
265 | uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
266 | if (bitset == NULL) { | |
267 | printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); | |
268 | fclose(statesfile); | |
269 | exit(4); | |
270 | } | |
271 | size_t bytesread = fread(bitset, 1, sizeof(uint32_t) * (1<<19), statesfile); | |
272 | if (bytesread != sizeof(uint32_t) * (1<<19)) { | |
273 | printf("File read error with %s. Aborting...", state_file_name); | |
274 | fclose(statesfile); | |
275 | free_bitarray(bitset); | |
276 | exit(5); | |
277 | } | |
278 | fclose(statesfile); | |
279 | uint32_t count = count_states(bitset); | |
280 | if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) { | |
281 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip; | |
282 | bitflip_bitarrays[odd_even][bitflip] = bitset; | |
283 | count_bitflip_bitarrays[odd_even][bitflip] = count; | |
284 | #if defined (DEBUG_REDUCTION) | |
285 | printf("(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even?"odd ":"even", (float)count/(1<<24)*100.0); | |
286 | line++; | |
287 | if (line == 8) { | |
288 | printf("\n"); | |
289 | line = 0; | |
290 | } | |
291 | #endif | |
292 | } else { | |
293 | free_bitarray(bitset); | |
294 | } | |
295 | } | |
296 | } | |
297 | effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400; // EndOfList marker | |
298 | } | |
299 | ||
300 | uint16_t i = 0; | |
301 | uint16_t j = 0; | |
302 | num_all_effective_bitflips = 0; | |
303 | num_1st_byte_effective_bitflips = 0; | |
304 | while (i < num_effective_bitflips[EVEN_STATE] || j < num_effective_bitflips[ODD_STATE]) { | |
305 | if (effective_bitflip[EVEN_STATE][i] < effective_bitflip[ODD_STATE][j]) { | |
306 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; | |
307 | i++; | |
308 | } else if (effective_bitflip[EVEN_STATE][i] > effective_bitflip[ODD_STATE][j]) { | |
309 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[ODD_STATE][j]; | |
310 | j++; | |
311 | } else { | |
312 | all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i]; | |
313 | i++; j++; | |
314 | } | |
315 | if (!(all_effective_bitflip[num_all_effective_bitflips-1] & BITFLIP_2ND_BYTE)) { | |
316 | num_1st_byte_effective_bitflips = num_all_effective_bitflips; | |
317 | } | |
318 | } | |
319 | qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); | |
320 | #if defined (DEBUG_REDUCTION) | |
321 | printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips); | |
322 | for(uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) { | |
323 | printf("%03x ", all_effective_bitflip[i]); | |
324 | } | |
325 | #endif | |
326 | qsort(all_effective_bitflip+num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); | |
327 | #if defined (DEBUG_REDUCTION) | |
328 | printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips); | |
329 | for(uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) { | |
330 | printf("%03x ", all_effective_bitflip[i]); | |
331 | } | |
332 | #endif | |
333 | char progress_text[80]; | |
334 | sprintf(progress_text, "Using %d precalculated bitflip state tables", num_all_effective_bitflips); | |
335 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
336 | } | |
337 | ||
338 | ||
339 | static void free_bitflip_bitarrays(void) | |
340 | { | |
341 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { | |
342 | free_bitarray(bitflip_bitarrays[ODD_STATE][bitflip]); | |
343 | } | |
344 | for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) { | |
345 | free_bitarray(bitflip_bitarrays[EVEN_STATE][bitflip]); | |
346 | } | |
347 | } | |
348 | ||
349 | ||
350 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
351 | // sum property bitarrays | |
352 | ||
353 | static uint32_t *part_sum_a0_bitarrays[2][NUM_PART_SUMS]; | |
354 | static uint32_t *part_sum_a8_bitarrays[2][NUM_PART_SUMS]; | |
355 | static uint32_t *sum_a0_bitarrays[2][NUM_SUMS]; | |
356 | ||
357 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) | |
358 | { | |
359 | uint16_t sum = 0; | |
360 | for (uint16_t j = 0; j < 16; j++) { | |
361 | uint32_t st = state; | |
362 | uint16_t part_sum = 0; | |
363 | if (odd_even == ODD_STATE) { | |
364 | for (uint16_t i = 0; i < 5; i++) { | |
365 | part_sum ^= filter(st); | |
366 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
367 | } | |
368 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits | |
369 | } else { | |
370 | for (uint16_t i = 0; i < 4; i++) { | |
371 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
372 | part_sum ^= filter(st); | |
373 | } | |
374 | } | |
375 | sum += part_sum; | |
376 | } | |
377 | return sum; | |
378 | } | |
379 | ||
380 | ||
381 | static void init_part_sum_bitarrays(void) | |
382 | { | |
383 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
384 | for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { | |
385 | part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
386 | if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) { | |
387 | printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); | |
388 | exit(4); | |
389 | } | |
390 | clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]); | |
391 | } | |
392 | } | |
393 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
394 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0); | |
395 | for (uint32_t state = 0; state < (1<<20); state++) { | |
396 | uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2; | |
397 | for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) { | |
398 | set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits); | |
399 | } | |
400 | } | |
401 | } | |
402 | ||
403 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
404 | for (uint16_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { | |
405 | part_sum_a8_bitarrays[odd_even][part_sum_a8] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
406 | if (part_sum_a8_bitarrays[odd_even][part_sum_a8] == NULL) { | |
407 | printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); | |
408 | exit(4); | |
409 | } | |
410 | clear_bitarray24(part_sum_a8_bitarrays[odd_even][part_sum_a8]); | |
411 | } | |
412 | } | |
413 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
414 | //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8); | |
415 | for (uint32_t state = 0; state < (1<<20); state++) { | |
416 | uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2; | |
417 | for (uint16_t high_bits = 0; high_bits < 1<<4; high_bits++) { | |
418 | set_bit24(part_sum_a8_bitarrays[odd_even][part_sum_a8], state | high_bits<<20); | |
419 | } | |
420 | } | |
421 | } | |
422 | } | |
423 | ||
424 | ||
425 | static void free_part_sum_bitarrays(void) | |
426 | { | |
427 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { | |
428 | free_bitarray(part_sum_a8_bitarrays[ODD_STATE][part_sum_a8]); | |
429 | } | |
430 | for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) { | |
431 | free_bitarray(part_sum_a8_bitarrays[EVEN_STATE][part_sum_a8]); | |
432 | } | |
433 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { | |
434 | free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]); | |
435 | } | |
436 | for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) { | |
437 | free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]); | |
438 | } | |
439 | } | |
440 | ||
441 | ||
442 | static void init_sum_bitarrays(void) | |
443 | { | |
444 | for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { | |
445 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
446 | sum_a0_bitarrays[odd_even][sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
447 | if (sum_a0_bitarrays[odd_even][sum_a0] == NULL) { | |
448 | printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); | |
449 | exit(4); | |
450 | } | |
451 | clear_bitarray24(sum_a0_bitarrays[odd_even][sum_a0]); | |
452 | } | |
453 | } | |
454 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
455 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
456 | uint16_t sum_a0 = 2*p*(16-2*q) + (16-2*p)*2*q; | |
457 | uint16_t sum_a0_idx = 0; | |
458 | while (sums[sum_a0_idx] != sum_a0) sum_a0_idx++; | |
459 | bitarray_OR(sum_a0_bitarrays[EVEN_STATE][sum_a0_idx], part_sum_a0_bitarrays[EVEN_STATE][q]); | |
460 | bitarray_OR(sum_a0_bitarrays[ODD_STATE][sum_a0_idx], part_sum_a0_bitarrays[ODD_STATE][p]); | |
461 | } | |
462 | } | |
463 | // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { | |
464 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
465 | // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); | |
466 | // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); | |
467 | // } | |
468 | // } | |
469 | } | |
470 | ||
471 | ||
472 | static void free_sum_bitarrays(void) | |
473 | { | |
474 | for (int8_t sum_a0 = NUM_SUMS-1; sum_a0 >= 0; sum_a0--) { | |
475 | free_bitarray(sum_a0_bitarrays[ODD_STATE][sum_a0]); | |
476 | free_bitarray(sum_a0_bitarrays[EVEN_STATE][sum_a0]); | |
477 | } | |
478 | } | |
479 | ||
480 | ||
481 | #ifdef DEBUG_KEY_ELIMINATION | |
482 | char failstr[250] = ""; | |
483 | #endif | |
484 | ||
485 | static const float p_K0[NUM_SUMS] = { // the probability that a random nonce has a Sum Property K | |
486 | 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290 | |
487 | }; | |
488 | ||
489 | static float my_p_K[NUM_SUMS]; | |
490 | ||
491 | static const float *p_K; | |
492 | ||
493 | static uint32_t cuid; | |
494 | static noncelist_t nonces[256]; | |
495 | static uint8_t best_first_bytes[256]; | |
496 | static uint64_t maximum_states = 0; | |
497 | static uint8_t best_first_byte_smallest_bitarray = 0; | |
498 | static uint16_t first_byte_Sum = 0; | |
499 | static uint16_t first_byte_num = 0; | |
500 | static bool write_stats = false; | |
501 | static FILE *fstats = NULL; | |
502 | static uint32_t *all_bitflips_bitarray[2]; | |
503 | static uint32_t num_all_bitflips_bitarray[2]; | |
504 | static bool all_bitflips_bitarray_dirty[2]; | |
505 | static uint64_t last_sample_clock = 0; | |
506 | static uint64_t sample_period = 0; | |
507 | static uint64_t num_keys_tested = 0; | |
508 | static statelist_t *candidates = NULL; | |
509 | ||
510 | ||
511 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) | |
512 | { | |
513 | uint8_t first_byte = nonce_enc >> 24; | |
514 | noncelistentry_t *p1 = nonces[first_byte].first; | |
515 | noncelistentry_t *p2 = NULL; | |
516 | ||
517 | if (p1 == NULL) { // first nonce with this 1st byte | |
518 | first_byte_num++; | |
519 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
520 | } | |
521 | ||
522 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { | |
523 | p2 = p1; | |
524 | p1 = p1->next; | |
525 | } | |
526 | ||
527 | if (p1 == NULL) { // need to add at the end of the list | |
528 | if (p2 == NULL) { // list is empty yet. Add first entry. | |
529 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
530 | } else { // add new entry at end of existing list. | |
531 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
532 | } | |
533 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. | |
534 | if (p2 == NULL) { // need to insert at start of list | |
535 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
536 | } else { | |
537 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
538 | } | |
539 | } else { // we have seen this 2nd byte before. Nothing to add or insert. | |
540 | return (0); | |
541 | } | |
542 | ||
543 | // add or insert new data | |
544 | p2->next = p1; | |
545 | p2->nonce_enc = nonce_enc; | |
546 | p2->par_enc = par_enc; | |
547 | ||
548 | nonces[first_byte].num++; | |
549 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); | |
550 | nonces[first_byte].sum_a8_guess_dirty = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte | |
551 | return (1); // new nonce added | |
552 | } | |
553 | ||
554 | ||
555 | static void init_nonce_memory(void) | |
556 | { | |
557 | for (uint16_t i = 0; i < 256; i++) { | |
558 | nonces[i].num = 0; | |
559 | nonces[i].Sum = 0; | |
560 | nonces[i].first = NULL; | |
561 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
562 | nonces[i].sum_a8_guess[j].sum_a8_idx = j; | |
563 | nonces[i].sum_a8_guess[j].prob = 0.0; | |
564 | } | |
565 | nonces[i].sum_a8_guess_dirty = false; | |
566 | for (uint16_t bitflip = 0x000; bitflip < 0x400; bitflip++) { | |
567 | nonces[i].BitFlips[bitflip] = 0; | |
568 | } | |
569 | nonces[i].states_bitarray[EVEN_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
570 | if (nonces[i].states_bitarray[EVEN_STATE] == NULL) { | |
571 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); | |
572 | exit(4); | |
573 | } | |
574 | set_bitarray24(nonces[i].states_bitarray[EVEN_STATE]); | |
575 | nonces[i].num_states_bitarray[EVEN_STATE] = 1 << 24; | |
576 | nonces[i].states_bitarray[ODD_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
577 | if (nonces[i].states_bitarray[ODD_STATE] == NULL) { | |
578 | printf("Out of memory error in init_nonce_memory(). Aborting...\n"); | |
579 | exit(4); | |
580 | } | |
581 | set_bitarray24(nonces[i].states_bitarray[ODD_STATE]); | |
582 | nonces[i].num_states_bitarray[ODD_STATE] = 1 << 24; | |
583 | nonces[i].all_bitflips_dirty[EVEN_STATE] = false; | |
584 | nonces[i].all_bitflips_dirty[ODD_STATE] = false; | |
585 | } | |
586 | first_byte_num = 0; | |
587 | first_byte_Sum = 0; | |
588 | } | |
589 | ||
590 | ||
591 | static void free_nonce_list(noncelistentry_t *p) | |
592 | { | |
593 | if (p == NULL) { | |
594 | return; | |
595 | } else { | |
596 | free_nonce_list(p->next); | |
597 | free(p); | |
598 | } | |
599 | } | |
600 | ||
601 | ||
602 | static void free_nonces_memory(void) | |
603 | { | |
604 | for (uint16_t i = 0; i < 256; i++) { | |
605 | free_nonce_list(nonces[i].first); | |
606 | } | |
607 | for (int i = 255; i >= 0; i--) { | |
608 | free_bitarray(nonces[i].states_bitarray[ODD_STATE]); | |
609 | free_bitarray(nonces[i].states_bitarray[EVEN_STATE]); | |
610 | } | |
611 | } | |
612 | ||
613 | ||
614 | // static double p_hypergeometric_cache[257][NUM_SUMS][257]; | |
615 | ||
616 | // #define CACHE_INVALID -1.0 | |
617 | // static void init_p_hypergeometric_cache(void) | |
618 | // { | |
619 | // for (uint16_t n = 0; n <= 256; n++) { | |
620 | // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { | |
621 | // for (uint16_t k = 0; k <= 256; k++) { | |
622 | // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; | |
623 | // } | |
624 | // } | |
625 | // } | |
626 | // } | |
627 | ||
628 | ||
629 | static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) | |
630 | { | |
631 | // for efficient computation we are using the recursive definition | |
632 | // (K-k+1) * (n-k+1) | |
633 | // P(X=k) = P(X=k-1) * -------------------- | |
634 | // k * (N-K-n+k) | |
635 | // and | |
636 | // (N-K)*(N-K-1)*...*(N-K-n+1) | |
637 | // P(X=0) = ----------------------------- | |
638 | // N*(N-1)*...*(N-n+1) | |
639 | ||
640 | ||
641 | uint16_t const N = 256; | |
642 | uint16_t K = sums[i_K]; | |
643 | ||
644 | // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { | |
645 | // return p_hypergeometric_cache[n][i_K][k]; | |
646 | // } | |
647 | ||
648 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below | |
649 | if (k == 0) { | |
650 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) | |
651 | double log_result = 0.0; | |
652 | for (int16_t i = N-K; i >= N-K-n+1; i--) { | |
653 | log_result += log(i); | |
654 | } | |
655 | for (int16_t i = N; i >= N-n+1; i--) { | |
656 | log_result -= log(i); | |
657 | } | |
658 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); | |
659 | return exp(log_result); | |
660 | } else { | |
661 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception | |
662 | double log_result = 0.0; | |
663 | for (int16_t i = k+1; i <= n; i++) { | |
664 | log_result += log(i); | |
665 | } | |
666 | for (int16_t i = K+1; i <= N; i++) { | |
667 | log_result -= log(i); | |
668 | } | |
669 | // p_hypergeometric_cache[n][i_K][k] = exp(log_result); | |
670 | return exp(log_result); | |
671 | } else { // recursion | |
672 | return (p_hypergeometric(i_K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); | |
673 | } | |
674 | } | |
675 | } | |
676 | ||
677 | ||
678 | static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) | |
679 | { | |
680 | if (k > sums[i_K]) return 0.0; | |
681 | ||
682 | double p_T_is_k_when_S_is_K = p_hypergeometric(i_K, n, k); | |
683 | double p_S_is_K = p_K[i_K]; | |
684 | double p_T_is_k = 0; | |
685 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
686 | p_T_is_k += p_K[i] * p_hypergeometric(i, n, k); | |
687 | } | |
688 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); | |
689 | } | |
690 | ||
691 | ||
692 | static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS]; | |
693 | ||
694 | static void init_allbitflips_array(void) | |
695 | { | |
696 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
697 | uint32_t *bitset = all_bitflips_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
698 | if (bitset == NULL) { | |
699 | printf("Out of memory in init_allbitflips_array(). Aborting..."); | |
700 | exit(4); | |
701 | } | |
702 | set_bitarray24(bitset); | |
703 | all_bitflips_bitarray_dirty[odd_even] = false; | |
704 | num_all_bitflips_bitarray[odd_even] = 1<<24; | |
705 | } | |
706 | } | |
707 | ||
708 | ||
709 | static void update_allbitflips_array(void) | |
710 | { | |
711 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
712 | for (uint16_t i = 0; i < 256; i++) { | |
713 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
714 | if (nonces[i].all_bitflips_dirty[odd_even]) { | |
715 | uint32_t old_count = num_all_bitflips_bitarray[odd_even]; | |
716 | num_all_bitflips_bitarray[odd_even] = count_bitarray_low20_AND(all_bitflips_bitarray[odd_even], nonces[i].states_bitarray[odd_even]); | |
717 | nonces[i].all_bitflips_dirty[odd_even] = false; | |
718 | if (num_all_bitflips_bitarray[odd_even] != old_count) { | |
719 | all_bitflips_bitarray_dirty[odd_even] = true; | |
720 | } | |
721 | } | |
722 | } | |
723 | } | |
724 | } | |
725 | } | |
726 | ||
727 | ||
728 | static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) | |
729 | { | |
730 | return part_sum_count[odd_even][part_sum_a0_idx][part_sum_a8_idx]; | |
731 | } | |
732 | ||
733 | ||
734 | static uint32_t estimated_num_states_part_sum(uint8_t first_byte, uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) | |
735 | { | |
736 | if (odd_even == ODD_STATE) { | |
737 | return count_bitarray_AND3(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], | |
738 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], | |
739 | nonces[first_byte].states_bitarray[odd_even]); | |
740 | } else { | |
741 | return count_bitarray_AND4(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], | |
742 | part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], | |
743 | nonces[first_byte].states_bitarray[odd_even], | |
744 | nonces[first_byte^0x80].states_bitarray[odd_even]); | |
745 | } | |
746 | ||
747 | // estimate reduction by all_bitflips_match() | |
748 | // if (odd_even) { | |
749 | // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; | |
750 | // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip); | |
751 | // } else { | |
752 | // return count; | |
753 | // } | |
754 | } | |
755 | ||
756 | ||
757 | static uint64_t estimated_num_states(uint8_t first_byte, uint16_t sum_a0, uint16_t sum_a8) | |
758 | { | |
759 | uint64_t num_states = 0; | |
760 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
761 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
762 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
763 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
764 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
765 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
766 | num_states += (uint64_t)estimated_num_states_part_sum(first_byte, p, r, ODD_STATE) | |
767 | * estimated_num_states_part_sum(first_byte, q, s, EVEN_STATE); | |
768 | } | |
769 | } | |
770 | } | |
771 | } | |
772 | } | |
773 | } | |
774 | return num_states; | |
775 | } | |
776 | ||
777 | ||
778 | static uint64_t estimated_num_states_coarse(uint16_t sum_a0, uint16_t sum_a8) | |
779 | { | |
780 | uint64_t num_states = 0; | |
781 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
782 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
783 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
784 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
785 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
786 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
787 | num_states += (uint64_t)estimated_num_states_part_sum_coarse(p, r, ODD_STATE) | |
788 | * estimated_num_states_part_sum_coarse(q, s, EVEN_STATE); | |
789 | } | |
790 | } | |
791 | } | |
792 | } | |
793 | } | |
794 | } | |
795 | return num_states; | |
796 | } | |
797 | ||
798 | ||
799 | static void update_p_K(void) | |
800 | { | |
801 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
802 | uint64_t total_count = 0; | |
803 | uint16_t sum_a0 = sums[first_byte_Sum]; | |
804 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
805 | uint16_t sum_a8 = sums[sum_a8_idx]; | |
806 | total_count += estimated_num_states_coarse(sum_a0, sum_a8); | |
807 | } | |
808 | for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
809 | uint16_t sum_a8 = sums[sum_a8_idx]; | |
810 | my_p_K[sum_a8_idx] = (float)estimated_num_states_coarse(sum_a0, sum_a8) / total_count; | |
811 | } | |
812 | // printf("my_p_K = ["); | |
813 | // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { | |
814 | // printf("%7.4f ", my_p_K[sum_a8_idx]); | |
815 | // } | |
816 | p_K = my_p_K; | |
817 | } | |
818 | } | |
819 | ||
820 | ||
821 | static void update_sum_bitarrays(odd_even_t odd_even) | |
822 | { | |
823 | if (all_bitflips_bitarray_dirty[odd_even]) { | |
824 | for (uint8_t part_sum = 0; part_sum < NUM_PART_SUMS; part_sum++) { | |
825 | bitarray_AND(part_sum_a0_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); | |
826 | bitarray_AND(part_sum_a8_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]); | |
827 | } | |
828 | for (uint16_t i = 0; i < 256; i++) { | |
829 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], all_bitflips_bitarray[odd_even]); | |
830 | } | |
831 | for (uint8_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) { | |
832 | for (uint8_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) { | |
833 | part_sum_count[odd_even][part_sum_a0][part_sum_a8] | |
834 | += count_bitarray_AND2(part_sum_a0_bitarrays[odd_even][part_sum_a0], part_sum_a8_bitarrays[odd_even][part_sum_a8]); | |
835 | } | |
836 | } | |
837 | all_bitflips_bitarray_dirty[odd_even] = false; | |
838 | } | |
839 | } | |
840 | ||
841 | ||
842 | static int compare_expected_num_brute_force(const void *b1, const void *b2) | |
843 | { | |
844 | uint8_t index1 = *(uint8_t *)b1; | |
845 | uint8_t index2 = *(uint8_t *)b2; | |
846 | float score1 = nonces[index1].expected_num_brute_force; | |
847 | float score2 = nonces[index2].expected_num_brute_force; | |
848 | return (score1 > score2) - (score1 < score2); | |
849 | } | |
850 | ||
851 | ||
852 | static int compare_sum_a8_guess(const void *b1, const void *b2) | |
853 | { | |
854 | float prob1 = ((guess_sum_a8_t *)b1)->prob; | |
855 | float prob2 = ((guess_sum_a8_t *)b2)->prob; | |
856 | return (prob1 < prob2) - (prob1 > prob2); | |
857 | ||
858 | } | |
859 | ||
860 | ||
861 | static float check_smallest_bitflip_bitarrays(void) | |
862 | { | |
863 | uint32_t num_odd, num_even; | |
864 | uint64_t smallest = 1LL << 48; | |
865 | // initialize best_first_bytes, do a rough estimation on remaining states | |
866 | for (uint16_t i = 0; i < 256; i++) { | |
867 | num_odd = nonces[i].num_states_bitarray[ODD_STATE]; | |
868 | num_even = nonces[i].num_states_bitarray[EVEN_STATE]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; | |
869 | if ((uint64_t)num_odd * num_even < smallest) { | |
870 | smallest = (uint64_t)num_odd * num_even; | |
871 | best_first_byte_smallest_bitarray = i; | |
872 | } | |
873 | } | |
874 | ||
875 | #if defined (DEBUG_REDUCTION) | |
876 | num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
877 | num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; | |
878 | printf("0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even)/log(2.0)); | |
879 | #endif | |
880 | return (float)smallest/2.0; | |
881 | } | |
882 | ||
883 | ||
884 | static void update_expected_brute_force(uint8_t best_byte) { | |
885 | ||
886 | float total_prob = 0.0; | |
887 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
888 | total_prob += nonces[best_byte].sum_a8_guess[i].prob; | |
889 | } | |
890 | // linear adjust probabilities to result in total_prob = 1.0; | |
891 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
892 | nonces[best_byte].sum_a8_guess[i].prob /= total_prob; | |
893 | } | |
894 | float prob_all_failed = 1.0; | |
895 | nonces[best_byte].expected_num_brute_force = 0.0; | |
896 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
897 | nonces[best_byte].expected_num_brute_force += nonces[best_byte].sum_a8_guess[i].prob * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; | |
898 | prob_all_failed -= nonces[best_byte].sum_a8_guess[i].prob; | |
899 | nonces[best_byte].expected_num_brute_force += prob_all_failed * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0; | |
900 | } | |
901 | return; | |
902 | } | |
903 | ||
904 | ||
905 | static float sort_best_first_bytes(void) | |
906 | { | |
907 | ||
908 | // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property | |
909 | // and the expected number of states to brute force | |
910 | for (uint16_t i = 0; i < 256; i++) { | |
911 | best_first_bytes[i] = i; | |
912 | float prob_all_failed = 1.0; | |
913 | nonces[i].expected_num_brute_force = 0.0; | |
914 | for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
915 | nonces[i].sum_a8_guess[j].num_states = estimated_num_states_coarse(sums[first_byte_Sum], sums[nonces[i].sum_a8_guess[j].sum_a8_idx]); | |
916 | nonces[i].expected_num_brute_force += nonces[i].sum_a8_guess[j].prob * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; | |
917 | prob_all_failed -= nonces[i].sum_a8_guess[j].prob; | |
918 | nonces[i].expected_num_brute_force += prob_all_failed * (float)nonces[i].sum_a8_guess[j].num_states / 2.0; | |
919 | } | |
920 | } | |
921 | ||
922 | // sort based on expected number of states to brute force | |
923 | qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force); | |
924 | ||
925 | // printf("refine estimations: "); | |
926 | #define NUM_REFINES 1 | |
927 | // refine scores for the best: | |
928 | for (uint16_t i = 0; i < NUM_REFINES; i++) { | |
929 | // printf("%d...", i); | |
930 | uint16_t first_byte = best_first_bytes[i]; | |
931 | for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
932 | nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
933 | } | |
934 | // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 | |
935 | // || nonces[first_byte].sum_a8_guess[1].num_states == 0 | |
936 | // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { | |
937 | // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { | |
938 | // nonces[first_byte].sum_a8_guess[0].prob = 0.0; | |
939 | // printf("(0x%02x,%d)", first_byte, 0); | |
940 | // } | |
941 | // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { | |
942 | // nonces[first_byte].sum_a8_guess[1].prob = 0.0; | |
943 | // printf("(0x%02x,%d)", first_byte, 1); | |
944 | // } | |
945 | // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { | |
946 | // nonces[first_byte].sum_a8_guess[2].prob = 0.0; | |
947 | // printf("(0x%02x,%d)", first_byte, 2); | |
948 | // } | |
949 | // printf("|"); | |
950 | // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); | |
951 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
952 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
953 | // } | |
954 | // } | |
955 | // float fix_probs = 0.0; | |
956 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
957 | // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; | |
958 | // } | |
959 | // for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
960 | // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; | |
961 | // } | |
962 | // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { | |
963 | // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); | |
964 | // } | |
965 | float prob_all_failed = 1.0; | |
966 | nonces[first_byte].expected_num_brute_force = 0.0; | |
967 | for (uint8_t j = 0; j < NUM_SUMS; j++) { | |
968 | nonces[first_byte].expected_num_brute_force += nonces[first_byte].sum_a8_guess[j].prob * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; | |
969 | prob_all_failed -= nonces[first_byte].sum_a8_guess[j].prob; | |
970 | nonces[first_byte].expected_num_brute_force += prob_all_failed * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0; | |
971 | } | |
972 | } | |
973 | ||
974 | // copy best byte to front: | |
975 | float least_expected_brute_force = (1LL << 48); | |
976 | uint8_t best_byte = 0; | |
977 | for (uint16_t i = 0; i < 10; i++) { | |
978 | uint16_t first_byte = best_first_bytes[i]; | |
979 | if (nonces[first_byte].expected_num_brute_force < least_expected_brute_force) { | |
980 | least_expected_brute_force = nonces[first_byte].expected_num_brute_force; | |
981 | best_byte = i; | |
982 | } | |
983 | } | |
984 | if (best_byte != 0) { | |
985 | // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); | |
986 | uint8_t tmp = best_first_bytes[0]; | |
987 | best_first_bytes[0] = best_first_bytes[best_byte]; | |
988 | best_first_bytes[best_byte] = tmp; | |
989 | } | |
990 | ||
991 | return nonces[best_first_bytes[0]].expected_num_brute_force; | |
992 | } | |
993 | ||
994 | ||
995 | static float update_reduction_rate(float last, bool init) | |
996 | { | |
997 | #define QUEUE_LEN 4 | |
998 | static float queue[QUEUE_LEN]; | |
999 | ||
1000 | for (uint16_t i = 0; i < QUEUE_LEN-1; i++) { | |
1001 | if (init) { | |
1002 | queue[i] = (float)(1LL << 48); | |
1003 | } else { | |
1004 | queue[i] = queue[i+1]; | |
1005 | } | |
1006 | } | |
1007 | if (init) { | |
1008 | queue[QUEUE_LEN-1] = (float)(1LL << 48); | |
1009 | } else { | |
1010 | queue[QUEUE_LEN-1] = last; | |
1011 | } | |
1012 | ||
1013 | // linear regression | |
1014 | float avg_y = 0.0; | |
1015 | float avg_x = 0.0; | |
1016 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { | |
1017 | avg_x += i; | |
1018 | avg_y += queue[i]; | |
1019 | } | |
1020 | avg_x /= QUEUE_LEN; | |
1021 | avg_y /= QUEUE_LEN; | |
1022 | ||
1023 | float dev_xy = 0.0; | |
1024 | float dev_x2 = 0.0; | |
1025 | for (uint16_t i = 0; i < QUEUE_LEN; i++) { | |
1026 | dev_xy += (i - avg_x)*(queue[i] - avg_y); | |
1027 | dev_x2 += (i - avg_x)*(i - avg_x); | |
1028 | } | |
1029 | ||
1030 | float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression | |
1031 | ||
1032 | #if defined (DEBUG_REDUCTION) | |
1033 | printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0); | |
1034 | #endif | |
1035 | return reduction_rate; | |
1036 | } | |
1037 | ||
1038 | ||
1039 | static bool shrink_key_space(float *brute_forces) | |
1040 | { | |
1041 | #if defined(DEBUG_REDUCTION) | |
1042 | printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage); | |
1043 | #endif | |
1044 | float brute_forces1 = check_smallest_bitflip_bitarrays(); | |
1045 | float brute_forces2 = (float)(1LL << 47); | |
1046 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1047 | brute_forces2 = sort_best_first_bytes(); | |
1048 | } | |
1049 | *brute_forces = MIN(brute_forces1, brute_forces2); | |
1050 | float reduction_rate = update_reduction_rate(*brute_forces, false); | |
1051 | return ((hardnested_stage & CHECK_2ND_BYTES) | |
1052 | && reduction_rate >= 0.0 && reduction_rate < brute_force_per_second * sample_period / 1000.0); | |
1053 | } | |
1054 | ||
1055 | ||
1056 | static void estimate_sum_a8(void) | |
1057 | { | |
1058 | if (first_byte_num == 256) { | |
1059 | for (uint16_t i = 0; i < 256; i++) { | |
1060 | if (nonces[i].sum_a8_guess_dirty) { | |
1061 | for (uint16_t j = 0; j < NUM_SUMS; j++ ) { | |
1062 | uint16_t sum_a8_idx = nonces[i].sum_a8_guess[j].sum_a8_idx; | |
1063 | nonces[i].sum_a8_guess[j].prob = sum_probability(sum_a8_idx, nonces[i].num, nonces[i].Sum); | |
1064 | } | |
1065 | qsort(nonces[i].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); | |
1066 | nonces[i].sum_a8_guess_dirty = false; | |
1067 | } | |
1068 | } | |
1069 | } | |
1070 | } | |
1071 | ||
1072 | ||
1073 | static int read_nonce_file(void) | |
1074 | { | |
1075 | FILE *fnonces = NULL; | |
1076 | size_t bytes_read; | |
1077 | uint8_t trgBlockNo; | |
1078 | uint8_t trgKeyType; | |
1079 | uint8_t read_buf[9]; | |
1080 | uint32_t nt_enc1, nt_enc2; | |
1081 | uint8_t par_enc; | |
1082 | ||
1083 | num_acquired_nonces = 0; | |
1084 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { | |
1085 | PrintAndLog("Could not open file nonces.bin"); | |
1086 | return 1; | |
1087 | } | |
1088 | ||
1089 | hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); | |
1090 | bytes_read = fread(read_buf, 1, 6, fnonces); | |
1091 | if (bytes_read != 6) { | |
1092 | PrintAndLog("File reading error."); | |
1093 | fclose(fnonces); | |
1094 | return 1; | |
1095 | } | |
1096 | cuid = bytes_to_num(read_buf, 4); | |
1097 | trgBlockNo = bytes_to_num(read_buf+4, 1); | |
1098 | trgKeyType = bytes_to_num(read_buf+5, 1); | |
1099 | ||
1100 | bytes_read = fread(read_buf, 1, 9, fnonces); | |
1101 | while (bytes_read == 9) { | |
1102 | nt_enc1 = bytes_to_num(read_buf, 4); | |
1103 | nt_enc2 = bytes_to_num(read_buf+4, 4); | |
1104 | par_enc = bytes_to_num(read_buf+8, 1); | |
1105 | add_nonce(nt_enc1, par_enc >> 4); | |
1106 | add_nonce(nt_enc2, par_enc & 0x0f); | |
1107 | num_acquired_nonces += 2; | |
1108 | bytes_read = fread(read_buf, 1, 9, fnonces); | |
1109 | } | |
1110 | fclose(fnonces); | |
1111 | ||
1112 | char progress_string[80]; | |
1113 | sprintf(progress_string, "Read %d nonces from file. cuid=%08x", num_acquired_nonces, cuid); | |
1114 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); | |
1115 | sprintf(progress_string, "Target Block=%d, Keytype=%c", trgBlockNo, trgKeyType==0?'A':'B'); | |
1116 | hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0); | |
1117 | ||
1118 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1119 | if (first_byte_Sum == sums[i]) { | |
1120 | first_byte_Sum = i; | |
1121 | break; | |
1122 | } | |
1123 | } | |
1124 | ||
1125 | return 0; | |
1126 | } | |
1127 | ||
1128 | ||
1129 | noncelistentry_t *SearchFor2ndByte(uint8_t b1, uint8_t b2) | |
1130 | { | |
1131 | noncelistentry_t *p = nonces[b1].first; | |
1132 | while (p != NULL) { | |
1133 | if ((p->nonce_enc >> 16 & 0xff) == b2) { | |
1134 | return p; | |
1135 | } | |
1136 | p = p->next; | |
1137 | } | |
1138 | return NULL; | |
1139 | } | |
1140 | ||
1141 | ||
1142 | static bool timeout(void) | |
1143 | { | |
1144 | return (msclock() > last_sample_clock + sample_period); | |
1145 | } | |
1146 | ||
1147 | ||
1148 | static void *check_for_BitFlipProperties_thread(void *args) | |
1149 | { | |
1150 | uint8_t first_byte = ((uint8_t *)args)[0]; | |
1151 | uint8_t last_byte = ((uint8_t *)args)[1]; | |
1152 | uint8_t time_budget = ((uint8_t *)args)[2]; | |
1153 | ||
1154 | if (hardnested_stage & CHECK_1ST_BYTES) { | |
1155 | // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { | |
1156 | for (uint16_t bitflip_idx = 0; bitflip_idx < num_1st_byte_effective_bitflips; bitflip_idx++) { | |
1157 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; | |
1158 | if (time_budget & timeout()) { | |
1159 | #if defined (DEBUG_REDUCTION) | |
1160 | printf("break at bitflip_idx %d...", bitflip_idx); | |
1161 | #endif | |
1162 | return NULL; | |
1163 | } | |
1164 | for (uint16_t i = first_byte; i <= last_byte; i++) { | |
1165 | if (nonces[i].BitFlips[bitflip] == 0 && nonces[i].BitFlips[bitflip ^ 0x100] == 0 | |
1166 | && nonces[i].first != NULL && nonces[i^(bitflip&0xff)].first != NULL) { | |
1167 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte | |
1168 | uint8_t parity2 = (nonces[i^(bitflip&0xff)].first->par_enc) >> 3; // parity of nonce with bits flipped | |
1169 | if ((parity1 == parity2 && !(bitflip & 0x100)) // bitflip | |
1170 | || (parity1 != parity2 && (bitflip & 0x100))) { // not bitflip | |
1171 | nonces[i].BitFlips[bitflip] = 1; | |
1172 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1173 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { | |
1174 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; | |
1175 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); | |
1176 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { | |
1177 | nonces[i].all_bitflips_dirty[odd_even] = true; | |
1178 | } | |
1179 | // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); | |
1180 | } | |
1181 | } | |
1182 | } | |
1183 | } | |
1184 | } | |
1185 | ((uint8_t *)args)[1] = num_1st_byte_effective_bitflips - bitflip_idx - 1; // bitflips still to go in stage 1 | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | ((uint8_t *)args)[1] = 0; // stage 1 definitely completed | |
1190 | ||
1191 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1192 | for (uint16_t bitflip_idx = num_1st_byte_effective_bitflips; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
1193 | uint16_t bitflip = all_effective_bitflip[bitflip_idx]; | |
1194 | if (time_budget & timeout()) { | |
1195 | #if defined (DEBUG_REDUCTION) | |
1196 | printf("break at bitflip_idx %d...", bitflip_idx); | |
1197 | #endif | |
1198 | return NULL; | |
1199 | } | |
1200 | for (uint16_t i = first_byte; i <= last_byte; i++) { | |
1201 | // Check for Bit Flip Property of 2nd bytes | |
1202 | if (nonces[i].BitFlips[bitflip] == 0) { | |
1203 | for (uint16_t j = 0; j < 256; j++) { // for each 2nd Byte | |
1204 | noncelistentry_t *byte1 = SearchFor2ndByte(i, j); | |
1205 | noncelistentry_t *byte2 = SearchFor2ndByte(i, j^(bitflip&0xff)); | |
1206 | if (byte1 != NULL && byte2 != NULL) { | |
1207 | uint8_t parity1 = byte1->par_enc >> 2 & 0x01; // parity of 2nd byte | |
1208 | uint8_t parity2 = byte2->par_enc >> 2 & 0x01; // parity of 2nd byte with bits flipped | |
1209 | if ((parity1 == parity2 && !(bitflip&0x100)) // bitflip | |
1210 | || (parity1 != parity2 && (bitflip&0x100))) { // not bitflip | |
1211 | nonces[i].BitFlips[bitflip] = 1; | |
1212 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1213 | if (bitflip_bitarrays[odd_even][bitflip] != NULL) { | |
1214 | uint32_t old_count = nonces[i].num_states_bitarray[odd_even]; | |
1215 | nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]); | |
1216 | if (nonces[i].num_states_bitarray[odd_even] != old_count) { | |
1217 | nonces[i].all_bitflips_dirty[odd_even] = true; | |
1218 | } | |
1219 | } | |
1220 | } | |
1221 | break; | |
1222 | } | |
1223 | } | |
1224 | } | |
1225 | } | |
1226 | // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); | |
1227 | // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); | |
1228 | } | |
1229 | } | |
1230 | } | |
1231 | ||
1232 | return NULL; | |
1233 | } | |
1234 | ||
1235 | ||
1236 | static void check_for_BitFlipProperties(bool time_budget) | |
1237 | { | |
1238 | // create and run worker threads | |
1239 | pthread_t thread_id[NUM_CHECK_BITFLIPS_THREADS]; | |
1240 | ||
1241 | uint8_t args[NUM_CHECK_BITFLIPS_THREADS][3]; | |
1242 | uint16_t bytes_per_thread = (256 + (NUM_CHECK_BITFLIPS_THREADS/2)) / NUM_CHECK_BITFLIPS_THREADS; | |
1243 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1244 | args[i][0] = i * bytes_per_thread; | |
1245 | args[i][1] = MIN(args[i][0]+bytes_per_thread-1, 255); | |
1246 | args[i][2] = time_budget; | |
1247 | } | |
1248 | args[NUM_CHECK_BITFLIPS_THREADS-1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS-1][1], 255); | |
1249 | ||
1250 | // start threads | |
1251 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1252 | pthread_create(&thread_id[i], NULL, check_for_BitFlipProperties_thread, args[i]); | |
1253 | } | |
1254 | ||
1255 | // wait for threads to terminate: | |
1256 | for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1257 | pthread_join(thread_id[i], NULL); | |
1258 | } | |
1259 | ||
1260 | if (hardnested_stage & CHECK_2ND_BYTES) { | |
1261 | hardnested_stage &= ~CHECK_1ST_BYTES; // we are done with 1st stage, except... | |
1262 | for (uint16_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) { | |
1263 | if (args[i][1] != 0) { | |
1264 | hardnested_stage |= CHECK_1ST_BYTES; // ... when any of the threads didn't complete in time | |
1265 | break; | |
1266 | } | |
1267 | } | |
1268 | } | |
1269 | #if defined (DEBUG_REDUCTION) | |
1270 | if (hardnested_stage & CHECK_1ST_BYTES) printf("stage 1 not completed yet\n"); | |
1271 | #endif | |
1272 | } | |
1273 | ||
1274 | ||
1275 | static void update_nonce_data(bool time_budget) | |
1276 | { | |
1277 | check_for_BitFlipProperties(time_budget); | |
1278 | update_allbitflips_array(); | |
1279 | update_sum_bitarrays(EVEN_STATE); | |
1280 | update_sum_bitarrays(ODD_STATE); | |
1281 | update_p_K(); | |
1282 | estimate_sum_a8(); | |
1283 | } | |
1284 | ||
1285 | ||
1286 | static void apply_sum_a0(void) | |
1287 | { | |
1288 | uint32_t old_count = num_all_bitflips_bitarray[EVEN_STATE]; | |
1289 | num_all_bitflips_bitarray[EVEN_STATE] = count_bitarray_AND(all_bitflips_bitarray[EVEN_STATE], sum_a0_bitarrays[EVEN_STATE][first_byte_Sum]); | |
1290 | if (num_all_bitflips_bitarray[EVEN_STATE] != old_count) { | |
1291 | all_bitflips_bitarray_dirty[EVEN_STATE] = true; | |
1292 | } | |
1293 | old_count = num_all_bitflips_bitarray[ODD_STATE]; | |
1294 | num_all_bitflips_bitarray[ODD_STATE] = count_bitarray_AND(all_bitflips_bitarray[ODD_STATE], sum_a0_bitarrays[ODD_STATE][first_byte_Sum]); | |
1295 | if (num_all_bitflips_bitarray[ODD_STATE] != old_count) { | |
1296 | all_bitflips_bitarray_dirty[ODD_STATE] = true; | |
1297 | } | |
1298 | } | |
1299 | ||
1300 | ||
1301 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) | |
1302 | { | |
1303 | struct Crypto1State sim_cs = {0, 0}; | |
1304 | ||
1305 | // init cryptostate with key: | |
1306 | for(int8_t i = 47; i > 0; i -= 2) { | |
1307 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); | |
1308 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); | |
1309 | } | |
1310 | ||
1311 | *par_enc = 0; | |
1312 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
1313 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { | |
1314 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; | |
1315 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte | |
1316 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; | |
1317 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit | |
1318 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it | |
1319 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; | |
1320 | } | |
1321 | ||
1322 | } | |
1323 | ||
1324 | ||
1325 | static void simulate_acquire_nonces() | |
1326 | { | |
1327 | time_t time1 = time(NULL); | |
1328 | last_sample_clock = 0; | |
1329 | sample_period = 1000; // for simulation | |
1330 | hardnested_stage = CHECK_1ST_BYTES; | |
1331 | bool acquisition_completed = false; | |
1332 | uint32_t total_num_nonces = 0; | |
1333 | float brute_force; | |
1334 | bool reported_suma8 = false; | |
1335 | ||
1336 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
1337 | if (known_target_key == -1) { | |
1338 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); | |
1339 | } | |
1340 | ||
1341 | char progress_text[80]; | |
1342 | sprintf(progress_text, "Simulating key %012" PRIx64 ", cuid %08" PRIx32 " ...", known_target_key, cuid); | |
1343 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
1344 | fprintf(fstats, "%012" PRIx64 ";%" PRIx32 ";", known_target_key, cuid); | |
1345 | ||
1346 | num_acquired_nonces = 0; | |
1347 | ||
1348 | do { | |
1349 | uint32_t nt_enc = 0; | |
1350 | uint8_t par_enc = 0; | |
1351 | ||
1352 | for (uint16_t i = 0; i < 113; i++) { | |
1353 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); | |
1354 | num_acquired_nonces += add_nonce(nt_enc, par_enc); | |
1355 | total_num_nonces++; | |
1356 | } | |
1357 | ||
1358 | last_sample_clock = msclock(); | |
1359 | ||
1360 | if (first_byte_num == 256 ) { | |
1361 | if (hardnested_stage == CHECK_1ST_BYTES) { | |
1362 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1363 | if (first_byte_Sum == sums[i]) { | |
1364 | first_byte_Sum = i; | |
1365 | break; | |
1366 | } | |
1367 | } | |
1368 | hardnested_stage |= CHECK_2ND_BYTES; | |
1369 | apply_sum_a0(); | |
1370 | } | |
1371 | update_nonce_data(true); | |
1372 | acquisition_completed = shrink_key_space(&brute_force); | |
1373 | if (!reported_suma8) { | |
1374 | char progress_string[80]; | |
1375 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); | |
1376 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); | |
1377 | reported_suma8 = true; | |
1378 | } else { | |
1379 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1380 | } | |
1381 | } else { | |
1382 | update_nonce_data(true); | |
1383 | acquisition_completed = shrink_key_space(&brute_force); | |
1384 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1385 | } | |
1386 | } while (!acquisition_completed); | |
1387 | ||
1388 | time_t end_time = time(NULL); | |
1389 | // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", | |
1390 | // num_acquired_nonces, | |
1391 | // difftime(end_time, time1), | |
1392 | // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY | |
1393 | // ); | |
1394 | ||
1395 | fprintf(fstats, "%" PRId32 ";%" PRId32 ";%1.0f;", total_num_nonces, num_acquired_nonces, difftime(end_time,time1)); | |
1396 | ||
1397 | } | |
1398 | ||
1399 | ||
1400 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) | |
1401 | { | |
1402 | last_sample_clock = msclock(); | |
1403 | sample_period = 2000; // initial rough estimate. Will be refined. | |
1404 | bool initialize = true; | |
1405 | bool field_off = false; | |
1406 | hardnested_stage = CHECK_1ST_BYTES; | |
1407 | bool acquisition_completed = false; | |
1408 | uint32_t flags = 0; | |
1409 | uint8_t write_buf[9]; | |
1410 | uint32_t total_num_nonces = 0; | |
1411 | float brute_force; | |
1412 | bool reported_suma8 = false; | |
1413 | FILE *fnonces = NULL; | |
1414 | UsbCommand resp; | |
1415 | ||
1416 | num_acquired_nonces = 0; | |
1417 | ||
1418 | clearCommandBuffer(); | |
1419 | ||
1420 | do { | |
1421 | flags = 0; | |
1422 | flags |= initialize ? 0x0001 : 0; | |
1423 | flags |= slow ? 0x0002 : 0; | |
1424 | flags |= field_off ? 0x0004 : 0; | |
1425 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; | |
1426 | memcpy(c.d.asBytes, key, 6); | |
1427 | ||
1428 | SendCommand(&c); | |
1429 | ||
1430 | if (field_off) break; | |
1431 | ||
1432 | if (initialize) { | |
1433 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; | |
1434 | ||
1435 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard | |
1436 | ||
1437 | cuid = resp.arg[1]; | |
1438 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); | |
1439 | if (nonce_file_write && fnonces == NULL) { | |
1440 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { | |
1441 | PrintAndLog("Could not create file nonces.bin"); | |
1442 | return 3; | |
1443 | } | |
1444 | hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); | |
1445 | num_to_bytes(cuid, 4, write_buf); | |
1446 | fwrite(write_buf, 1, 4, fnonces); | |
1447 | fwrite(&trgBlockNo, 1, 1, fnonces); | |
1448 | fwrite(&trgKeyType, 1, 1, fnonces); | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | if (!initialize) { | |
1453 | uint32_t nt_enc1, nt_enc2; | |
1454 | uint8_t par_enc; | |
1455 | uint16_t num_sampled_nonces = resp.arg[2]; | |
1456 | uint8_t *bufp = resp.d.asBytes; | |
1457 | for (uint16_t i = 0; i < num_sampled_nonces; i+=2) { | |
1458 | nt_enc1 = bytes_to_num(bufp, 4); | |
1459 | nt_enc2 = bytes_to_num(bufp+4, 4); | |
1460 | par_enc = bytes_to_num(bufp+8, 1); | |
1461 | ||
1462 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
1463 | num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4); | |
1464 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
1465 | num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f); | |
1466 | ||
1467 | if (nonce_file_write) { | |
1468 | fwrite(bufp, 1, 9, fnonces); | |
1469 | } | |
1470 | bufp += 9; | |
1471 | } | |
1472 | total_num_nonces += num_sampled_nonces; | |
1473 | ||
1474 | if (first_byte_num == 256 ) { | |
1475 | if (hardnested_stage == CHECK_1ST_BYTES) { | |
1476 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
1477 | if (first_byte_Sum == sums[i]) { | |
1478 | first_byte_Sum = i; | |
1479 | break; | |
1480 | } | |
1481 | } | |
1482 | hardnested_stage |= CHECK_2ND_BYTES; | |
1483 | apply_sum_a0(); | |
1484 | } | |
1485 | update_nonce_data(true); | |
1486 | acquisition_completed = shrink_key_space(&brute_force); | |
1487 | if (!reported_suma8) { | |
1488 | char progress_string[80]; | |
1489 | sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]); | |
1490 | hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0); | |
1491 | reported_suma8 = true; | |
1492 | } else { | |
1493 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1494 | } | |
1495 | } else { | |
1496 | update_nonce_data(true); | |
1497 | acquisition_completed = shrink_key_space(&brute_force); | |
1498 | hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0); | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | if (acquisition_completed) { | |
1503 | field_off = true; // switch off field with next SendCommand and then finish | |
1504 | } | |
1505 | ||
1506 | if (!initialize) { | |
1507 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { | |
1508 | if (nonce_file_write) { | |
1509 | fclose(fnonces); | |
1510 | } | |
1511 | return 1; | |
1512 | } | |
1513 | if (resp.arg[0]) { | |
1514 | if (nonce_file_write) { | |
1515 | fclose(fnonces); | |
1516 | } | |
1517 | return resp.arg[0]; // error during nested_hard | |
1518 | } | |
1519 | } | |
1520 | ||
1521 | initialize = false; | |
1522 | ||
1523 | if (msclock() - last_sample_clock < sample_period) { | |
1524 | sample_period = msclock() - last_sample_clock; | |
1525 | } | |
1526 | last_sample_clock = msclock(); | |
1527 | ||
1528 | } while (!acquisition_completed || field_off); | |
1529 | ||
1530 | if (nonce_file_write) { | |
1531 | fclose(fnonces); | |
1532 | } | |
1533 | ||
1534 | // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)", | |
1535 | // total_num_nonces, | |
1536 | // time(NULL)-time1, | |
1537 | // (float)total_num_nonces*60.0/(time(NULL)-time1)); | |
1538 | ||
1539 | return 0; | |
1540 | } | |
1541 | ||
1542 | ||
1543 | static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
1544 | { | |
1545 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); | |
1546 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit | |
1547 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function | |
1548 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; | |
1549 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 | |
1550 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits | |
1551 | return !all_diff; | |
1552 | } | |
1553 | ||
1554 | ||
1555 | static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
1556 | { | |
1557 | uint_fast8_t j_bit_mask = 0x01 << bit; | |
1558 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit | |
1559 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; | |
1560 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 | |
1561 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits | |
1562 | return all_diff; | |
1563 | } | |
1564 | ||
1565 | ||
1566 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) | |
1567 | { | |
1568 | if (odd_even) { | |
1569 | // odd bits | |
1570 | switch (num_common_bits) { | |
1571 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; | |
1572 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; | |
1573 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; | |
1574 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; | |
1575 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; | |
1576 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; | |
1577 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; | |
1578 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; | |
1579 | } | |
1580 | } else { | |
1581 | // even bits | |
1582 | switch (num_common_bits) { | |
1583 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; | |
1584 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; | |
1585 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; | |
1586 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; | |
1587 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; | |
1588 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; | |
1589 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; | |
1590 | } | |
1591 | } | |
1592 | ||
1593 | return true; // valid state | |
1594 | } | |
1595 | ||
1596 | ||
1597 | static pthread_mutex_t statelist_cache_mutex; | |
1598 | static pthread_mutex_t book_of_work_mutex; | |
1599 | ||
1600 | ||
1601 | typedef enum { | |
1602 | TO_BE_DONE, | |
1603 | WORK_IN_PROGRESS, | |
1604 | COMPLETED | |
1605 | } work_status_t; | |
1606 | ||
1607 | static struct sl_cache_entry { | |
1608 | uint32_t *sl; | |
1609 | uint32_t len; | |
1610 | work_status_t cache_status; | |
1611 | } sl_cache[NUM_PART_SUMS][NUM_PART_SUMS][2]; | |
1612 | ||
1613 | ||
1614 | static void init_statelist_cache(void) | |
1615 | { | |
1616 | pthread_mutex_lock(&statelist_cache_mutex); | |
1617 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
1618 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { | |
1619 | for (uint16_t k = 0; k < 2; k++) { | |
1620 | sl_cache[i][j][k].sl = NULL; | |
1621 | sl_cache[i][j][k].len = 0; | |
1622 | sl_cache[i][j][k].cache_status = TO_BE_DONE; | |
1623 | } | |
1624 | } | |
1625 | } | |
1626 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1627 | } | |
1628 | ||
1629 | ||
1630 | static void free_statelist_cache(void) | |
1631 | { | |
1632 | pthread_mutex_lock(&statelist_cache_mutex); | |
1633 | for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
1634 | for (uint16_t j = 0; j < NUM_PART_SUMS; j++) { | |
1635 | for (uint16_t k = 0; k < 2; k++) { | |
1636 | free(sl_cache[i][j][k].sl); | |
1637 | } | |
1638 | } | |
1639 | } | |
1640 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1641 | } | |
1642 | ||
1643 | ||
1644 | #ifdef DEBUG_KEY_ELIMINATION | |
1645 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even, bool quiet) | |
1646 | #else | |
1647 | static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) | |
1648 | #endif | |
1649 | { | |
1650 | uint32_t *bitset = nonces[byte].states_bitarray[odd_even]; | |
1651 | bool possible = test_bit24(bitset, state); | |
1652 | if (!possible) { | |
1653 | #ifdef DEBUG_KEY_ELIMINATION | |
1654 | if (!quiet && known_target_key != -1 && state == test_state[odd_even]) { | |
1655 | printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even==EVEN_STATE?"even":"odd"); | |
1656 | sprintf(failstr, "Initial %s Byte Bitflip property", odd_even==EVEN_STATE?"even":"odd"); | |
1657 | } | |
1658 | #endif | |
1659 | return false; | |
1660 | } else { | |
1661 | return true; | |
1662 | } | |
1663 | } | |
1664 | ||
1665 | ||
1666 | static uint_fast8_t reverse(uint_fast8_t byte) | |
1667 | { | |
1668 | uint_fast8_t rev_byte = 0; | |
1669 | ||
1670 | for (uint8_t i = 0; i < 8; i++) { | |
1671 | rev_byte <<= 1; | |
1672 | rev_byte |= (byte >> i) & 0x01; | |
1673 | } | |
1674 | ||
1675 | return rev_byte; | |
1676 | } | |
1677 | ||
1678 | ||
1679 | static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) | |
1680 | { | |
1681 | uint32_t masks[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, | |
1682 | {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; | |
1683 | ||
1684 | for (uint16_t i = 1; i < 256; i++) { | |
1685 | uint_fast8_t bytes_diff = reverse(i); // start with most common bits | |
1686 | uint_fast8_t byte2 = byte ^ bytes_diff; | |
1687 | uint_fast8_t num_common = trailing_zeros(bytes_diff); | |
1688 | uint32_t mask = masks[odd_even][num_common]; | |
1689 | bool found_match = false; | |
1690 | for (uint8_t remaining_bits = 0; remaining_bits <= (~mask & 0xff); remaining_bits++) { | |
1691 | if (remaining_bits_match(num_common, bytes_diff, state, (state & mask) | remaining_bits, odd_even)) { | |
1692 | #ifdef DEBUG_KEY_ELIMINATION | |
1693 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even, true)) { | |
1694 | #else | |
1695 | if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even)) { | |
1696 | #endif | |
1697 | found_match = true; | |
1698 | break; | |
1699 | } | |
1700 | } | |
1701 | } | |
1702 | if (!found_match) { | |
1703 | #ifdef DEBUG_KEY_ELIMINATION | |
1704 | if (known_target_key != -1 && state == test_state[odd_even]) { | |
1705 | printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", | |
1706 | odd_even==ODD_STATE?"odd":"even", | |
1707 | test_state[odd_even], | |
1708 | byte, byte2, num_common); | |
1709 | if (failstr[0] == '\0') { | |
1710 | sprintf(failstr, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even?"odd":"even"); | |
1711 | } | |
1712 | } | |
1713 | #endif | |
1714 | return false; | |
1715 | } | |
1716 | } | |
1717 | ||
1718 | return true; | |
1719 | } | |
1720 | ||
1721 | ||
1722 | static void bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_list, uint32_t *len, odd_even_t odd_even) | |
1723 | { | |
1724 | uint32_t *p = state_list; | |
1725 | for (uint32_t state = next_state(bitarray, -1L); state < (1<<24); state = next_state(bitarray, state)) { | |
1726 | if (all_bitflips_match(byte, state, odd_even)) { | |
1727 | *p++ = state; | |
1728 | } | |
1729 | } | |
1730 | // add End Of List marker | |
1731 | *p = 0xffffffff; | |
1732 | *len = p - state_list; | |
1733 | } | |
1734 | ||
1735 | ||
1736 | static void add_cached_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) | |
1737 | { | |
1738 | candidates->states[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl; | |
1739 | candidates->len[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len; | |
1740 | return; | |
1741 | } | |
1742 | ||
1743 | ||
1744 | static void add_matching_states(statelist_t *candidates, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) | |
1745 | { | |
1746 | uint32_t worstcase_size = 1<<20; | |
1747 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1748 | if (candidates->states[odd_even] == NULL) { | |
1749 | PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); | |
1750 | exit(4); | |
1751 | } | |
1752 | uint32_t *candidates_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); | |
1753 | if (candidates_bitarray == NULL) { | |
1754 | PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); | |
1755 | free(candidates->states[odd_even]); | |
1756 | exit(4); | |
1757 | } | |
1758 | ||
1759 | uint32_t *bitarray_a0 = part_sum_a0_bitarrays[odd_even][part_sum_a0/2]; | |
1760 | uint32_t *bitarray_a8 = part_sum_a8_bitarrays[odd_even][part_sum_a8/2]; | |
1761 | uint32_t *bitarray_bitflips = nonces[best_first_bytes[0]].states_bitarray[odd_even]; | |
1762 | ||
1763 | // for (uint32_t i = 0; i < (1<<19); i++) { | |
1764 | // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; | |
1765 | // } | |
1766 | bitarray_AND4(candidates_bitarray, bitarray_a0, bitarray_a8, bitarray_bitflips); | |
1767 | ||
1768 | bitarray_to_list(best_first_bytes[0], candidates_bitarray, candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); | |
1769 | if (candidates->len[odd_even] == 0) { | |
1770 | free(candidates->states[odd_even]); | |
1771 | candidates->states[odd_even] = NULL; | |
1772 | } else if (candidates->len[odd_even] + 1 < worstcase_size) { | |
1773 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1774 | } | |
1775 | free_bitarray(candidates_bitarray); | |
1776 | ||
1777 | ||
1778 | pthread_mutex_lock(&statelist_cache_mutex); | |
1779 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl = candidates->states[odd_even]; | |
1780 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len = candidates->len[odd_even]; | |
1781 | sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].cache_status = COMPLETED; | |
1782 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1783 | ||
1784 | return; | |
1785 | } | |
1786 | ||
1787 | ||
1788 | static statelist_t *add_more_candidates(void) | |
1789 | { | |
1790 | statelist_t *new_candidates = candidates; | |
1791 | if (candidates == NULL) { | |
1792 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); | |
1793 | new_candidates = candidates; | |
1794 | } else { | |
1795 | new_candidates = candidates; | |
1796 | while (new_candidates->next != NULL) { | |
1797 | new_candidates = new_candidates->next; | |
1798 | } | |
1799 | new_candidates = new_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); | |
1800 | } | |
1801 | new_candidates->next = NULL; | |
1802 | new_candidates->len[ODD_STATE] = 0; | |
1803 | new_candidates->len[EVEN_STATE] = 0; | |
1804 | new_candidates->states[ODD_STATE] = NULL; | |
1805 | new_candidates->states[EVEN_STATE] = NULL; | |
1806 | return new_candidates; | |
1807 | } | |
1808 | ||
1809 | ||
1810 | static void add_bitflip_candidates(uint8_t byte) | |
1811 | { | |
1812 | statelist_t *candidates = add_more_candidates(); | |
1813 | ||
1814 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
1815 | uint32_t worstcase_size = nonces[byte].num_states_bitarray[odd_even] + 1; | |
1816 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1817 | if (candidates->states[odd_even] == NULL) { | |
1818 | PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); | |
1819 | exit(4); | |
1820 | } | |
1821 | ||
1822 | bitarray_to_list(byte, nonces[byte].states_bitarray[odd_even], candidates->states[odd_even], &(candidates->len[odd_even]), odd_even); | |
1823 | ||
1824 | if (candidates->len[odd_even] + 1 < worstcase_size) { | |
1825 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1826 | } | |
1827 | } | |
1828 | return; | |
1829 | } | |
1830 | ||
1831 | ||
1832 | static bool TestIfKeyExists(uint64_t key) | |
1833 | { | |
1834 | struct Crypto1State *pcs; | |
1835 | pcs = crypto1_create(key); | |
1836 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
1837 | ||
1838 | uint32_t state_odd = pcs->odd & 0x00ffffff; | |
1839 | uint32_t state_even = pcs->even & 0x00ffffff; | |
1840 | ||
1841 | uint64_t count = 0; | |
1842 | for (statelist_t *p = candidates; p != NULL; p = p->next) { | |
1843 | bool found_odd = false; | |
1844 | bool found_even = false; | |
1845 | uint32_t *p_odd = p->states[ODD_STATE]; | |
1846 | uint32_t *p_even = p->states[EVEN_STATE]; | |
1847 | if (p_odd != NULL && p_even != NULL) { | |
1848 | while (*p_odd != 0xffffffff) { | |
1849 | if ((*p_odd & 0x00ffffff) == state_odd) { | |
1850 | found_odd = true; | |
1851 | break; | |
1852 | } | |
1853 | p_odd++; | |
1854 | } | |
1855 | while (*p_even != 0xffffffff) { | |
1856 | if ((*p_even & 0x00ffffff) == state_even) { | |
1857 | found_even = true; | |
1858 | } | |
1859 | p_even++; | |
1860 | } | |
1861 | count += (uint64_t)(p_odd - p->states[ODD_STATE]) * (uint64_t)(p_even - p->states[EVEN_STATE]); | |
1862 | } | |
1863 | if (found_odd && found_even) { | |
1864 | num_keys_tested += count; | |
1865 | hardnested_print_progress(num_acquired_nonces, "(Test: Key found)", 0.0, 0); | |
1866 | crypto1_destroy(pcs); | |
1867 | return true; | |
1868 | } | |
1869 | } | |
1870 | ||
1871 | num_keys_tested += count; | |
1872 | hardnested_print_progress(num_acquired_nonces, "(Test: Key NOT found)", 0.0, 0); | |
1873 | ||
1874 | crypto1_destroy(pcs); | |
1875 | return false; | |
1876 | } | |
1877 | ||
1878 | ||
1879 | static work_status_t book_of_work[NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS]; | |
1880 | ||
1881 | ||
1882 | static void init_book_of_work(void) | |
1883 | { | |
1884 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
1885 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
1886 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
1887 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
1888 | book_of_work[p][q][r][s] = TO_BE_DONE; | |
1889 | } | |
1890 | } | |
1891 | } | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | ||
1896 | static void *generate_candidates_worker_thread(void *args) | |
1897 | { | |
1898 | uint16_t *sum_args = (uint16_t *)args; | |
1899 | uint16_t sum_a0 = sums[sum_args[0]]; | |
1900 | uint16_t sum_a8 = sums[sum_args[1]]; | |
1901 | // uint16_t my_thread_number = sums[2]; | |
1902 | ||
1903 | bool there_might_be_more_work = true; | |
1904 | do { | |
1905 | there_might_be_more_work = false; | |
1906 | for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { | |
1907 | for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { | |
1908 | if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) { | |
1909 | // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", | |
1910 | // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); | |
1911 | for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { | |
1912 | for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { | |
1913 | if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) { | |
1914 | pthread_mutex_lock(&book_of_work_mutex); | |
1915 | if (book_of_work[p][q][r][s] != TO_BE_DONE) { // this has been done or is currently been done by another thread. Look for some other work. | |
1916 | pthread_mutex_unlock(&book_of_work_mutex); | |
1917 | continue; | |
1918 | } | |
1919 | ||
1920 | pthread_mutex_lock(&statelist_cache_mutex); | |
1921 | if (sl_cache[p][r][ODD_STATE].cache_status == WORK_IN_PROGRESS | |
1922 | || sl_cache[q][s][EVEN_STATE].cache_status == WORK_IN_PROGRESS) { // defer until not blocked by another thread. | |
1923 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1924 | pthread_mutex_unlock(&book_of_work_mutex); | |
1925 | there_might_be_more_work = true; | |
1926 | continue; | |
1927 | } | |
1928 | ||
1929 | // we finally can do some work. | |
1930 | book_of_work[p][q][r][s] = WORK_IN_PROGRESS; | |
1931 | statelist_t *current_candidates = add_more_candidates(); | |
1932 | ||
1933 | // Check for cached results and add them first | |
1934 | bool odd_completed = false; | |
1935 | if (sl_cache[p][r][ODD_STATE].cache_status == COMPLETED) { | |
1936 | add_cached_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
1937 | odd_completed = true; | |
1938 | } | |
1939 | bool even_completed = false; | |
1940 | if (sl_cache[q][s][EVEN_STATE].cache_status == COMPLETED) { | |
1941 | add_cached_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
1942 | even_completed = true; | |
1943 | } | |
1944 | ||
1945 | bool work_required = true; | |
1946 | ||
1947 | // if there had been two cached results, there is no more work to do | |
1948 | if (even_completed && odd_completed) { | |
1949 | work_required = false; | |
1950 | } | |
1951 | ||
1952 | // if there had been one cached empty result, there is no need to calculate the other part: | |
1953 | if (work_required) { | |
1954 | if (even_completed && !current_candidates->len[EVEN_STATE]) { | |
1955 | current_candidates->len[ODD_STATE] = 0; | |
1956 | current_candidates->states[ODD_STATE] = NULL; | |
1957 | work_required = false; | |
1958 | } | |
1959 | if (odd_completed && !current_candidates->len[ODD_STATE]) { | |
1960 | current_candidates->len[EVEN_STATE] = 0; | |
1961 | current_candidates->states[EVEN_STATE] = NULL; | |
1962 | work_required = false; | |
1963 | } | |
1964 | } | |
1965 | ||
1966 | if (!work_required) { | |
1967 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1968 | pthread_mutex_unlock(&book_of_work_mutex); | |
1969 | } else { | |
1970 | // we really need to calculate something | |
1971 | if (even_completed) { // we had one cache hit with non-zero even states | |
1972 | // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r); | |
1973 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; | |
1974 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1975 | pthread_mutex_unlock(&book_of_work_mutex); | |
1976 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
1977 | work_required = false; | |
1978 | } else if (odd_completed) { // we had one cache hit with non-zero odd_states | |
1979 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); | |
1980 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; | |
1981 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1982 | pthread_mutex_unlock(&book_of_work_mutex); | |
1983 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
1984 | work_required = false; | |
1985 | } | |
1986 | } | |
1987 | ||
1988 | if (work_required) { // we had no cached result. Need to calculate both odd and even | |
1989 | sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; | |
1990 | sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; | |
1991 | pthread_mutex_unlock(&statelist_cache_mutex); | |
1992 | pthread_mutex_unlock(&book_of_work_mutex); | |
1993 | ||
1994 | add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE); | |
1995 | if(current_candidates->len[ODD_STATE]) { | |
1996 | // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); | |
1997 | add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE); | |
1998 | } else { // no need to calculate even states yet | |
1999 | pthread_mutex_lock(&statelist_cache_mutex); | |
2000 | sl_cache[q][s][EVEN_STATE].cache_status = TO_BE_DONE; | |
2001 | pthread_mutex_unlock(&statelist_cache_mutex); | |
2002 | current_candidates->len[EVEN_STATE] = 0; | |
2003 | current_candidates->states[EVEN_STATE] = NULL; | |
2004 | } | |
2005 | } | |
2006 | ||
2007 | // update book of work | |
2008 | pthread_mutex_lock(&book_of_work_mutex); | |
2009 | book_of_work[p][q][r][s] = COMPLETED; | |
2010 | pthread_mutex_unlock(&book_of_work_mutex); | |
2011 | ||
2012 | // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { | |
2013 | // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", | |
2014 | // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], | |
2015 | // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], | |
2016 | // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); | |
2017 | // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); | |
2018 | // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); | |
2019 | // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; | |
2020 | // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); | |
2021 | // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { | |
2022 | // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n"); | |
2023 | // //exit(2); | |
2024 | // } | |
2025 | // } | |
2026 | } | |
2027 | } | |
2028 | } | |
2029 | } | |
2030 | } | |
2031 | } | |
2032 | } while (there_might_be_more_work); | |
2033 | ||
2034 | return NULL; | |
2035 | } | |
2036 | ||
2037 | ||
2038 | static void generate_candidates(uint8_t sum_a0_idx, uint8_t sum_a8_idx) | |
2039 | { | |
2040 | // printf("Generating crypto1 state candidates... \n"); | |
2041 | ||
2042 | // estimate maximum candidate states | |
2043 | // maximum_states = 0; | |
2044 | // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { | |
2045 | // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { | |
2046 | // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { | |
2047 | // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2]) | |
2048 | // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); | |
2049 | // } | |
2050 | // } | |
2051 | // } | |
2052 | // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); | |
2053 | ||
2054 | init_statelist_cache(); | |
2055 | init_book_of_work(); | |
2056 | ||
2057 | // create mutexes for accessing the statelist cache and our "book of work" | |
2058 | pthread_mutex_init(&statelist_cache_mutex, NULL); | |
2059 | pthread_mutex_init(&book_of_work_mutex, NULL); | |
2060 | ||
2061 | // create and run worker threads | |
2062 | pthread_t thread_id[NUM_REDUCTION_WORKING_THREADS]; | |
2063 | ||
2064 | uint16_t sums[NUM_REDUCTION_WORKING_THREADS][3]; | |
2065 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { | |
2066 | sums[i][0] = sum_a0_idx; | |
2067 | sums[i][1] = sum_a8_idx; | |
2068 | sums[i][2] = i+1; | |
2069 | pthread_create(thread_id + i, NULL, generate_candidates_worker_thread, sums[i]); | |
2070 | } | |
2071 | ||
2072 | // wait for threads to terminate: | |
2073 | for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) { | |
2074 | pthread_join(thread_id[i], NULL); | |
2075 | } | |
2076 | ||
2077 | // clean up mutex | |
2078 | pthread_mutex_destroy(&statelist_cache_mutex); | |
2079 | ||
2080 | maximum_states = 0; | |
2081 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2082 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2083 | } | |
2084 | ||
2085 | for (uint8_t i = 0; i < NUM_SUMS; i++) { | |
2086 | if (nonces[best_first_bytes[0]].sum_a8_guess[i].sum_a8_idx == sum_a8_idx) { | |
2087 | nonces[best_first_bytes[0]].sum_a8_guess[i].num_states = maximum_states; | |
2088 | break; | |
2089 | } | |
2090 | } | |
2091 | update_expected_brute_force(best_first_bytes[0]); | |
2092 | ||
2093 | hardnested_print_progress(num_acquired_nonces, "Apply Sum(a8) and all bytes bitflip properties", nonces[best_first_bytes[0]].expected_num_brute_force, 0); | |
2094 | } | |
2095 | ||
2096 | ||
2097 | static void free_candidates_memory(statelist_t *sl) | |
2098 | { | |
2099 | if (sl == NULL) { | |
2100 | return; | |
2101 | } else { | |
2102 | free_candidates_memory(sl->next); | |
2103 | free(sl); | |
2104 | } | |
2105 | } | |
2106 | ||
2107 | ||
2108 | static void pre_XOR_nonces(void) | |
2109 | { | |
2110 | // prepare acquired nonces for faster brute forcing. | |
2111 | ||
2112 | // XOR the cryptoUID and its parity | |
2113 | for (uint16_t i = 0; i < 256; i++) { | |
2114 | noncelistentry_t *test_nonce = nonces[i].first; | |
2115 | while (test_nonce != NULL) { | |
2116 | test_nonce->nonce_enc ^= cuid; | |
2117 | test_nonce->par_enc ^= oddparity8(cuid >> 0 & 0xff) << 0; | |
2118 | test_nonce->par_enc ^= oddparity8(cuid >> 8 & 0xff) << 1; | |
2119 | test_nonce->par_enc ^= oddparity8(cuid >> 16 & 0xff) << 2; | |
2120 | test_nonce->par_enc ^= oddparity8(cuid >> 24 & 0xff) << 3; | |
2121 | test_nonce = test_nonce->next; | |
2122 | } | |
2123 | } | |
2124 | } | |
2125 | ||
2126 | ||
2127 | static bool brute_force(void) | |
2128 | { | |
2129 | if (known_target_key != -1) { | |
2130 | TestIfKeyExists(known_target_key); | |
2131 | } | |
2132 | return brute_force_bs(NULL, candidates, cuid, num_acquired_nonces, maximum_states, nonces, best_first_bytes); | |
2133 | } | |
2134 | ||
2135 | ||
2136 | static uint16_t SumProperty(struct Crypto1State *s) | |
2137 | { | |
2138 | uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); | |
2139 | uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); | |
2140 | return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); | |
2141 | } | |
2142 | ||
2143 | ||
2144 | static void Tests() | |
2145 | { | |
2146 | ||
2147 | /* #define NUM_STATISTICS 100000 | |
2148 | uint32_t statistics_odd[17]; | |
2149 | uint64_t statistics[257]; | |
2150 | uint32_t statistics_even[17]; | |
2151 | struct Crypto1State cs; | |
2152 | uint64_t time1 = msclock(); | |
2153 | ||
2154 | for (uint16_t i = 0; i < 257; i++) { | |
2155 | statistics[i] = 0; | |
2156 | } | |
2157 | for (uint16_t i = 0; i < 17; i++) { | |
2158 | statistics_odd[i] = 0; | |
2159 | statistics_even[i] = 0; | |
2160 | } | |
2161 | ||
2162 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2163 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2164 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2165 | uint16_t sum_property = SumProperty(&cs); | |
2166 | statistics[sum_property] += 1; | |
2167 | sum_property = PartialSumProperty(cs.even, EVEN_STATE); | |
2168 | statistics_even[sum_property]++; | |
2169 | sum_property = PartialSumProperty(cs.odd, ODD_STATE); | |
2170 | statistics_odd[sum_property]++; | |
2171 | if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
2172 | } | |
2173 | ||
2174 | printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2175 | for (uint16_t i = 0; i < 257; i++) { | |
2176 | if (statistics[i] != 0) { | |
2177 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); | |
2178 | } | |
2179 | } | |
2180 | for (uint16_t i = 0; i <= 16; i++) { | |
2181 | if (statistics_odd[i] != 0) { | |
2182 | printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); | |
2183 | } | |
2184 | } | |
2185 | for (uint16_t i = 0; i <= 16; i++) { | |
2186 | if (statistics_odd[i] != 0) { | |
2187 | printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); | |
2188 | } | |
2189 | } | |
2190 | */ | |
2191 | ||
2192 | /* #define NUM_STATISTICS 100000000LL | |
2193 | uint64_t statistics_a0[257]; | |
2194 | uint64_t statistics_a8[257][257]; | |
2195 | struct Crypto1State cs; | |
2196 | uint64_t time1 = msclock(); | |
2197 | ||
2198 | for (uint16_t i = 0; i < 257; i++) { | |
2199 | statistics_a0[i] = 0; | |
2200 | for (uint16_t j = 0; j < 257; j++) { | |
2201 | statistics_a8[i][j] = 0; | |
2202 | } | |
2203 | } | |
2204 | ||
2205 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2206 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2207 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2208 | uint16_t sum_property_a0 = SumProperty(&cs); | |
2209 | statistics_a0[sum_property_a0]++; | |
2210 | uint8_t first_byte = rand() & 0xff; | |
2211 | crypto1_byte(&cs, first_byte, true); | |
2212 | uint16_t sum_property_a8 = SumProperty(&cs); | |
2213 | statistics_a8[sum_property_a0][sum_property_a8] += 1; | |
2214 | if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
2215 | } | |
2216 | ||
2217 | printf("\nTests: Probability Distribution of a8 depending on a0:\n"); | |
2218 | printf("\n "); | |
2219 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2220 | printf("%7d ", sums[i]); | |
2221 | } | |
2222 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); | |
2223 | printf("a0: "); | |
2224 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2225 | printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); | |
2226 | } | |
2227 | printf("\n"); | |
2228 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2229 | printf("%3d ", sums[i]); | |
2230 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
2231 | printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); | |
2232 | } | |
2233 | printf("\n"); | |
2234 | } | |
2235 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2236 | */ | |
2237 | ||
2238 | /* #define NUM_STATISTICS 100000LL | |
2239 | uint64_t statistics_a8[257]; | |
2240 | struct Crypto1State cs; | |
2241 | uint64_t time1 = msclock(); | |
2242 | ||
2243 | printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); | |
2244 | printf("\n "); | |
2245 | for (uint16_t i = 0; i < NUM_SUMS; i++) { | |
2246 | printf("%7d ", sums[i]); | |
2247 | } | |
2248 | printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); | |
2249 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { | |
2250 | for (uint16_t i = 0; i < 257; i++) { | |
2251 | statistics_a8[i] = 0; | |
2252 | } | |
2253 | for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
2254 | cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2255 | cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
2256 | crypto1_byte(&cs, first_byte, true); | |
2257 | uint16_t sum_property_a8 = SumProperty(&cs); | |
2258 | statistics_a8[sum_property_a8] += 1; | |
2259 | } | |
2260 | printf("%03x ", first_byte); | |
2261 | for (uint16_t j = 0; j < NUM_SUMS; j++) { | |
2262 | printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); | |
2263 | } | |
2264 | printf("\n"); | |
2265 | } | |
2266 | printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); | |
2267 | */ | |
2268 | ||
2269 | /* printf("Tests: Sum Probabilities based on Partial Sums\n"); | |
2270 | for (uint16_t i = 0; i < 257; i++) { | |
2271 | statistics[i] = 0; | |
2272 | } | |
2273 | uint64_t num_states = 0; | |
2274 | for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { | |
2275 | for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { | |
2276 | uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; | |
2277 | statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
2278 | num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
2279 | } | |
2280 | } | |
2281 | printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); | |
2282 | for (uint16_t i = 0; i < 257; i++) { | |
2283 | if (statistics[i] != 0) { | |
2284 | printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); | |
2285 | } | |
2286 | } | |
2287 | */ | |
2288 | ||
2289 | /* struct Crypto1State *pcs; | |
2290 | pcs = crypto1_create(0xffffffffffff); | |
2291 | printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2292 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2293 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2294 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2295 | best_first_bytes[0], | |
2296 | SumProperty(pcs), | |
2297 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2298 | //test_state_odd = pcs->odd & 0x00ffffff; | |
2299 | //test_state_even = pcs->even & 0x00ffffff; | |
2300 | crypto1_destroy(pcs); | |
2301 | pcs = crypto1_create(0xa0a1a2a3a4a5); | |
2302 | printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2303 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2304 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2305 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2306 | best_first_bytes[0], | |
2307 | SumProperty(pcs), | |
2308 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2309 | //test_state_odd = pcs->odd & 0x00ffffff; | |
2310 | //test_state_even = pcs->even & 0x00ffffff; | |
2311 | crypto1_destroy(pcs); | |
2312 | pcs = crypto1_create(0xa6b9aa97b955); | |
2313 | printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2314 | SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2315 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
2316 | printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
2317 | best_first_bytes[0], | |
2318 | SumProperty(pcs), | |
2319 | pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
2320 | test_state_odd = pcs->odd & 0x00ffffff; | |
2321 | test_state_even = pcs->even & 0x00ffffff; | |
2322 | crypto1_destroy(pcs); | |
2323 | */ | |
2324 | ||
2325 | // printf("\nTests: Sorted First Bytes:\n"); | |
2326 | // for (uint16_t i = 0; i < 20; i++) { | |
2327 | // uint8_t best_byte = best_first_bytes[i]; | |
2328 | // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n", | |
2329 | // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); | |
2330 | // for (uint16_t j = 0; j < 3; j++) { | |
2331 | // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); | |
2332 | // } | |
2333 | // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n", | |
2334 | // nonces[best_byte].sum_a8_guess[0].num_states, | |
2335 | // nonces[best_byte].sum_a8_guess[1].num_states, | |
2336 | // nonces[best_byte].sum_a8_guess[2].num_states, | |
2337 | // nonces[best_byte].expected_num_brute_force); | |
2338 | // } | |
2339 | ||
2340 | // printf("\nTests: Actual BitFlipProperties of best byte:\n"); | |
2341 | // printf("[%02x]:", best_first_bytes[0]); | |
2342 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
2343 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; | |
2344 | // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { | |
2345 | // printf(" %03" PRIx16 , bitflip_prop); | |
2346 | // } | |
2347 | // } | |
2348 | // printf("\n"); | |
2349 | ||
2350 | // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); | |
2351 | // printf("[%02x]:", best_first_byte_smallest_bitarray); | |
2352 | // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { | |
2353 | // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; | |
2354 | // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { | |
2355 | // printf(" %03" PRIx16 , bitflip_prop); | |
2356 | // } | |
2357 | // } | |
2358 | // printf("\n"); | |
2359 | ||
2360 | if (known_target_key != -1) { | |
2361 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2362 | uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even]; | |
2363 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2364 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", | |
2365 | odd_even==EVEN_STATE?"even":"odd ", | |
2366 | best_first_bytes[0]); | |
2367 | } | |
2368 | } | |
2369 | } | |
2370 | ||
2371 | if (known_target_key != -1) { | |
2372 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2373 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; | |
2374 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2375 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", | |
2376 | odd_even==EVEN_STATE?"even":"odd "); | |
2377 | } | |
2378 | } | |
2379 | } | |
2380 | ||
2381 | // if (known_target_key != -1) { | |
2382 | // int16_t p = -1, q = -1, r = -1, s = -1; | |
2383 | ||
2384 | // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); | |
2385 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2386 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); | |
2387 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
2388 | // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; | |
2389 | // if (test_bit24(bitset, test_state[odd_even])) { | |
2390 | // printf("%d ", i); | |
2391 | // if (odd_even == ODD_STATE) { | |
2392 | // p = 2*i; | |
2393 | // } else { | |
2394 | // q = 2*i; | |
2395 | // } | |
2396 | // } | |
2397 | // } | |
2398 | // printf("\n"); | |
2399 | // } | |
2400 | ||
2401 | // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); | |
2402 | // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2403 | // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); | |
2404 | // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { | |
2405 | // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; | |
2406 | // if (test_bit24(bitset, test_state[odd_even])) { | |
2407 | // printf("%d ", i); | |
2408 | // if (odd_even == ODD_STATE) { | |
2409 | // r = 2*i; | |
2410 | // } else { | |
2411 | // s = 2*i; | |
2412 | // } | |
2413 | // } | |
2414 | // } | |
2415 | // printf("\n"); | |
2416 | // } | |
2417 | ||
2418 | // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); | |
2419 | // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); | |
2420 | // } | |
2421 | ||
2422 | /* printf("\nTests: parity performance\n"); | |
2423 | uint64_t time1p = msclock(); | |
2424 | uint32_t par_sum = 0; | |
2425 | for (uint32_t i = 0; i < 100000000; i++) { | |
2426 | par_sum += parity(i); | |
2427 | } | |
2428 | printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); | |
2429 | ||
2430 | time1p = msclock(); | |
2431 | par_sum = 0; | |
2432 | for (uint32_t i = 0; i < 100000000; i++) { | |
2433 | par_sum += evenparity32(i); | |
2434 | } | |
2435 | printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); | |
2436 | */ | |
2437 | ||
2438 | } | |
2439 | ||
2440 | ||
2441 | static void Tests2(void) | |
2442 | { | |
2443 | if (known_target_key != -1) { | |
2444 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2445 | uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even]; | |
2446 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2447 | printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", | |
2448 | odd_even==EVEN_STATE?"even":"odd ", | |
2449 | best_first_byte_smallest_bitarray); | |
2450 | } | |
2451 | } | |
2452 | } | |
2453 | ||
2454 | if (known_target_key != -1) { | |
2455 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
2456 | uint32_t *bitset = all_bitflips_bitarray[odd_even]; | |
2457 | if (!test_bit24(bitset, test_state[odd_even])) { | |
2458 | printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", | |
2459 | odd_even==EVEN_STATE?"even":"odd "); | |
2460 | } | |
2461 | } | |
2462 | } | |
2463 | ||
2464 | } | |
2465 | ||
2466 | ||
2467 | static uint16_t real_sum_a8 = 0; | |
2468 | ||
2469 | static void set_test_state(uint8_t byte) | |
2470 | { | |
2471 | struct Crypto1State *pcs; | |
2472 | pcs = crypto1_create(known_target_key); | |
2473 | crypto1_byte(pcs, (cuid >> 24) ^ byte, true); | |
2474 | test_state[ODD_STATE] = pcs->odd & 0x00ffffff; | |
2475 | test_state[EVEN_STATE] = pcs->even & 0x00ffffff; | |
2476 | real_sum_a8 = SumProperty(pcs); | |
2477 | crypto1_destroy(pcs); | |
2478 | } | |
2479 | ||
2480 | ||
2481 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) | |
2482 | { | |
2483 | char progress_text[80]; | |
2484 | ||
2485 | srand((unsigned) time(NULL)); | |
2486 | brute_force_per_second = brute_force_benchmark(); | |
2487 | write_stats = false; | |
2488 | ||
2489 | if (tests) { | |
2490 | // set the correct locale for the stats printing | |
2491 | write_stats = true; | |
2492 | setlocale(LC_NUMERIC, ""); | |
2493 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { | |
2494 | PrintAndLog("Could not create/open file hardnested_stats.txt"); | |
2495 | return 3; | |
2496 | } | |
2497 | for (uint32_t i = 0; i < tests; i++) { | |
2498 | start_time = msclock(); | |
2499 | print_progress_header(); | |
2500 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); | |
2501 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2502 | sprintf(progress_text, "Starting Test #%" PRIu32 " ...", i+1); | |
2503 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2504 | if (trgkey != NULL) { | |
2505 | known_target_key = bytes_to_num(trgkey, 6); | |
2506 | } else { | |
2507 | known_target_key = -1; | |
2508 | } | |
2509 | ||
2510 | init_bitflip_bitarrays(); | |
2511 | init_part_sum_bitarrays(); | |
2512 | init_sum_bitarrays(); | |
2513 | init_allbitflips_array(); | |
2514 | init_nonce_memory(); | |
2515 | update_reduction_rate(0.0, true); | |
2516 | ||
2517 | simulate_acquire_nonces(); | |
2518 | ||
2519 | set_test_state(best_first_bytes[0]); | |
2520 | ||
2521 | Tests(); | |
2522 | free_bitflip_bitarrays(); | |
2523 | ||
2524 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[first_byte_Sum], log(p_K0[first_byte_Sum])/log(2.0)); | |
2525 | fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx], log(p_K[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx])/log(2.0)); | |
2526 | fprintf(fstats, "%" PRIu16 ";", real_sum_a8); | |
2527 | ||
2528 | #ifdef DEBUG_KEY_ELIMINATION | |
2529 | failstr[0] = '\0'; | |
2530 | #endif | |
2531 | bool key_found = false; | |
2532 | num_keys_tested = 0; | |
2533 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
2534 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; | |
2535 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; | |
2536 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2537 | fprintf(fstats, "%1.1f;%1.1f;", log(expected_brute_force1)/log(2.0), log(expected_brute_force2)/log(2.0)); | |
2538 | if (expected_brute_force1 < expected_brute_force2) { | |
2539 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); | |
2540 | set_test_state(best_first_byte_smallest_bitarray); | |
2541 | add_bitflip_candidates(best_first_byte_smallest_bitarray); | |
2542 | Tests2(); | |
2543 | maximum_states = 0; | |
2544 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2545 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2546 | } | |
2547 | //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
2548 | // fprintf("fstats, "%" PRIu64 ";", maximum_states); | |
2549 | best_first_bytes[0] = best_first_byte_smallest_bitarray; | |
2550 | pre_XOR_nonces(); | |
2551 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2552 | key_found = brute_force(); | |
2553 | free(candidates->states[ODD_STATE]); | |
2554 | free(candidates->states[EVEN_STATE]); | |
2555 | free_candidates_memory(candidates); | |
2556 | candidates = NULL; | |
2557 | } else { | |
2558 | pre_XOR_nonces(); | |
2559 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2560 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { | |
2561 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2562 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); | |
2563 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2564 | if (sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { | |
2565 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); | |
2566 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2567 | } | |
2568 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); | |
2569 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); | |
2570 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); | |
2571 | key_found = brute_force(); | |
2572 | free_statelist_cache(); | |
2573 | free_candidates_memory(candidates); | |
2574 | candidates = NULL; | |
2575 | if (!key_found) { | |
2576 | // update the statistics | |
2577 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; | |
2578 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; | |
2579 | // and calculate new expected number of brute forces | |
2580 | update_expected_brute_force(best_first_bytes[0]); | |
2581 | } | |
2582 | } | |
2583 | } | |
2584 | #ifdef DEBUG_KEY_ELIMINATION | |
2585 | fprintf(fstats, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found, failstr); | |
2586 | #else | |
2587 | fprintf(fstats, "%1.0f;%d\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found); | |
2588 | #endif | |
2589 | ||
2590 | free_nonces_memory(); | |
2591 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2592 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2593 | free_sum_bitarrays(); | |
2594 | free_part_sum_bitarrays(); | |
2595 | } | |
2596 | fclose(fstats); | |
2597 | } else { | |
2598 | start_time = msclock(); | |
2599 | print_progress_header(); | |
2600 | sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0)); | |
2601 | hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0); | |
2602 | init_bitflip_bitarrays(); | |
2603 | init_part_sum_bitarrays(); | |
2604 | init_sum_bitarrays(); | |
2605 | init_allbitflips_array(); | |
2606 | init_nonce_memory(); | |
2607 | update_reduction_rate(0.0, true); | |
2608 | ||
2609 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin | |
2610 | if (read_nonce_file() != 0) { | |
2611 | return 3; | |
2612 | } | |
2613 | hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES; | |
2614 | update_nonce_data(false); | |
2615 | float brute_force; | |
2616 | shrink_key_space(&brute_force); | |
2617 | } else { // acquire nonces. | |
2618 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); | |
2619 | if (is_OK != 0) { | |
2620 | return is_OK; | |
2621 | } | |
2622 | } | |
2623 | ||
2624 | if (trgkey != NULL) { | |
2625 | known_target_key = bytes_to_num(trgkey, 6); | |
2626 | set_test_state(best_first_bytes[0]); | |
2627 | } else { | |
2628 | known_target_key = -1; | |
2629 | } | |
2630 | ||
2631 | Tests(); | |
2632 | ||
2633 | free_bitflip_bitarrays(); | |
2634 | bool key_found = false; | |
2635 | num_keys_tested = 0; | |
2636 | uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; | |
2637 | uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; | |
2638 | float expected_brute_force1 = (float)num_odd * num_even / 2.0; | |
2639 | float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2640 | if (expected_brute_force1 < expected_brute_force2) { | |
2641 | hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0); | |
2642 | set_test_state(best_first_byte_smallest_bitarray); | |
2643 | add_bitflip_candidates(best_first_byte_smallest_bitarray); | |
2644 | Tests2(); | |
2645 | maximum_states = 0; | |
2646 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
2647 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
2648 | } | |
2649 | printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
2650 | best_first_bytes[0] = best_first_byte_smallest_bitarray; | |
2651 | pre_XOR_nonces(); | |
2652 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2653 | key_found = brute_force(); | |
2654 | free(candidates->states[ODD_STATE]); | |
2655 | free(candidates->states[EVEN_STATE]); | |
2656 | free_candidates_memory(candidates); | |
2657 | candidates = NULL; | |
2658 | } else { | |
2659 | pre_XOR_nonces(); | |
2660 | prepare_bf_test_nonces(nonces, best_first_bytes[0]); | |
2661 | for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) { | |
2662 | float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force; | |
2663 | sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]); | |
2664 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2665 | if (trgkey != NULL && sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) { | |
2666 | sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8); | |
2667 | hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); | |
2668 | } | |
2669 | // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); | |
2670 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx); | |
2671 | // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); | |
2672 | key_found = brute_force(); | |
2673 | free_statelist_cache(); | |
2674 | free_candidates_memory(candidates); | |
2675 | candidates = NULL; | |
2676 | if (!key_found) { | |
2677 | // update the statistics | |
2678 | nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0; | |
2679 | nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0; | |
2680 | // and calculate new expected number of brute forces | |
2681 | update_expected_brute_force(best_first_bytes[0]); | |
2682 | } | |
2683 | ||
2684 | } | |
2685 | } | |
2686 | ||
2687 | free_nonces_memory(); | |
2688 | free_bitarray(all_bitflips_bitarray[ODD_STATE]); | |
2689 | free_bitarray(all_bitflips_bitarray[EVEN_STATE]); | |
2690 | free_sum_bitarrays(); | |
2691 | free_part_sum_bitarrays(); | |
2692 | } | |
2693 | ||
2694 | return 0; | |
2695 | } |