]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Sept 2005 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Utility functions used in many places, not specific to any piece of code. | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "util.h" | |
12 | ||
13 | void print_result(char *name, uint8_t *buf, size_t len) { | |
14 | uint8_t *p = buf; | |
15 | ||
16 | if ( len % 16 == 0 ) { | |
17 | for(; p-buf < len; p += 16) | |
18 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
19 | name, | |
20 | p-buf, | |
21 | len, | |
22 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15] | |
23 | ); | |
24 | } | |
25 | else { | |
26 | for(; p-buf < len; p += 8) | |
27 | Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", | |
28 | name, | |
29 | p-buf, | |
30 | len, | |
31 | p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); | |
32 | } | |
33 | } | |
34 | ||
35 | size_t nbytes(size_t nbits) { | |
36 | return (nbits >> 3)+((nbits % 8) > 0); | |
37 | } | |
38 | ||
39 | uint32_t SwapBits(uint32_t value, int nrbits) { | |
40 | uint32_t newvalue = 0; | |
41 | for(int i = 0; i < nrbits; i++) { | |
42 | newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i); | |
43 | } | |
44 | return newvalue; | |
45 | } | |
46 | ||
47 | /* | |
48 | ref http://www.csm.ornl.gov/~dunigan/crc.html | |
49 | Returns the value v with the bottom b [0,32] bits reflected. | |
50 | Example: reflect(0x3e23L,3) == 0x3e26 | |
51 | */ | |
52 | uint32_t reflect(uint32_t v, int b) { | |
53 | uint32_t t = v; | |
54 | for ( int i = 0; i < b; ++i) { | |
55 | if (t & 1) | |
56 | v |= BITMASK((b-1)-i); | |
57 | else | |
58 | v &= ~BITMASK((b-1)-i); | |
59 | t>>=1; | |
60 | } | |
61 | return v; | |
62 | } | |
63 | ||
64 | void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) { | |
65 | while (len--) { | |
66 | dest[len] = (uint8_t) n; | |
67 | n >>= 8; | |
68 | } | |
69 | } | |
70 | ||
71 | uint64_t bytes_to_num(uint8_t* src, size_t len) { | |
72 | uint64_t num = 0; | |
73 | while (len--) { | |
74 | num = (num << 8) | (*src); | |
75 | src++; | |
76 | } | |
77 | return num; | |
78 | } | |
79 | ||
80 | // RotateLeft - Ultralight, Desfire | |
81 | void rol(uint8_t *data, const size_t len) { | |
82 | uint8_t first = data[0]; | |
83 | for (size_t i = 0; i < len-1; i++) { | |
84 | data[i] = data[i+1]; | |
85 | } | |
86 | data[len-1] = first; | |
87 | } | |
88 | ||
89 | void lsl (uint8_t *data, size_t len) { | |
90 | for (size_t n = 0; n < len - 1; n++) { | |
91 | data[n] = (data[n] << 1) | (data[n+1] >> 7); | |
92 | } | |
93 | data[len - 1] <<= 1; | |
94 | } | |
95 | ||
96 | int32_t le24toh (uint8_t data[3]) { | |
97 | return (data[2] << 16) | (data[1] << 8) | data[0]; | |
98 | } | |
99 | ||
100 | void LEDsoff() { | |
101 | LED_A_OFF(); | |
102 | LED_B_OFF(); | |
103 | LED_C_OFF(); | |
104 | LED_D_OFF(); | |
105 | } | |
106 | ||
107 | // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8] | |
108 | void LED(int led, int ms) { | |
109 | if (led & LED_RED) | |
110 | LED_C_ON(); | |
111 | if (led & LED_ORANGE) | |
112 | LED_A_ON(); | |
113 | if (led & LED_GREEN) | |
114 | LED_B_ON(); | |
115 | if (led & LED_RED2) | |
116 | LED_D_ON(); | |
117 | ||
118 | if (!ms) | |
119 | return; | |
120 | ||
121 | SpinDelay(ms); | |
122 | ||
123 | if (led & LED_RED) | |
124 | LED_C_OFF(); | |
125 | if (led & LED_ORANGE) | |
126 | LED_A_OFF(); | |
127 | if (led & LED_GREEN) | |
128 | LED_B_OFF(); | |
129 | if (led & LED_RED2) | |
130 | LED_D_OFF(); | |
131 | } | |
132 | ||
133 | // Determine if a button is double clicked, single clicked, | |
134 | // not clicked, or held down (for ms || 1sec) | |
135 | // In general, don't use this function unless you expect a | |
136 | // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead | |
137 | int BUTTON_CLICKED(int ms) { | |
138 | // Up to 500ms in between clicks to mean a double click | |
139 | int ticks = (48000 * (ms ? ms : 1000)) >> 10; | |
140 | ||
141 | // If we're not even pressed, forget about it! | |
142 | if (!BUTTON_PRESS()) | |
143 | return BUTTON_NO_CLICK; | |
144 | ||
145 | // Borrow a PWM unit for my real-time clock | |
146 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
147 | // 48 MHz / 1024 gives 46.875 kHz | |
148 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
149 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
150 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
151 | ||
152 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
153 | ||
154 | int letoff = 0; | |
155 | for(;;) | |
156 | { | |
157 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
158 | ||
159 | // We haven't let off the button yet | |
160 | if (!letoff) | |
161 | { | |
162 | // We just let it off! | |
163 | if (!BUTTON_PRESS()) | |
164 | { | |
165 | letoff = 1; | |
166 | ||
167 | // reset our timer for 500ms | |
168 | start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
169 | ticks = (48000 * (500)) >> 10; | |
170 | } | |
171 | ||
172 | // Still haven't let it off | |
173 | else | |
174 | // Have we held down a full second? | |
175 | if (now == (uint16_t)(start + ticks)) | |
176 | return BUTTON_HOLD; | |
177 | } | |
178 | ||
179 | // We already let off, did we click again? | |
180 | else | |
181 | // Sweet, double click! | |
182 | if (BUTTON_PRESS()) | |
183 | return BUTTON_DOUBLE_CLICK; | |
184 | ||
185 | // Have we ran out of time to double click? | |
186 | else | |
187 | if (now == (uint16_t)(start + ticks)) | |
188 | // At least we did a single click | |
189 | return BUTTON_SINGLE_CLICK; | |
190 | ||
191 | WDT_HIT(); | |
192 | } | |
193 | ||
194 | // We should never get here | |
195 | return BUTTON_ERROR; | |
196 | } | |
197 | ||
198 | // Determine if a button is held down | |
199 | int BUTTON_HELD(int ms) { | |
200 | // If button is held for one second | |
201 | int ticks = (48000 * (ms ? ms : 1000)) >> 10; | |
202 | ||
203 | // If we're not even pressed, forget about it! | |
204 | if (!BUTTON_PRESS()) | |
205 | return BUTTON_NO_CLICK; | |
206 | ||
207 | // Borrow a PWM unit for my real-time clock | |
208 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
209 | // 48 MHz / 1024 gives 46.875 kHz | |
210 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
211 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
212 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
213 | ||
214 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
215 | ||
216 | for(;;) | |
217 | { | |
218 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
219 | ||
220 | // As soon as our button let go, we didn't hold long enough | |
221 | if (!BUTTON_PRESS()) | |
222 | return BUTTON_SINGLE_CLICK; | |
223 | ||
224 | // Have we waited the full second? | |
225 | else | |
226 | if (now == (uint16_t)(start + ticks)) | |
227 | return BUTTON_HOLD; | |
228 | ||
229 | WDT_HIT(); | |
230 | } | |
231 | ||
232 | // We should never get here | |
233 | return BUTTON_ERROR; | |
234 | } | |
235 | ||
236 | // attempt at high resolution microsecond timer | |
237 | // beware: timer counts in 21.3uS increments (1024/48Mhz) | |
238 | void SpinDelayUs(int us) { | |
239 | int ticks = (48*us) >> 10; | |
240 | ||
241 | // Borrow a PWM unit for my real-time clock | |
242 | AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); | |
243 | // 48 MHz / 1024 gives 46.875 kHz | |
244 | AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); | |
245 | AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; | |
246 | AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; | |
247 | ||
248 | uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
249 | ||
250 | for(;;) { | |
251 | uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; | |
252 | if (now == (uint16_t)(start + ticks)) | |
253 | return; | |
254 | ||
255 | WDT_HIT(); | |
256 | } | |
257 | } | |
258 | ||
259 | void SpinDelay(int ms) { | |
260 | // convert to uS and call microsecond delay function | |
261 | SpinDelayUs(ms*1000); | |
262 | } | |
263 | ||
264 | /* Similar to FpgaGatherVersion this formats stored version information | |
265 | * into a string representation. It takes a pointer to the struct version_information, | |
266 | * verifies the magic properties, then stores a formatted string, prefixed by | |
267 | * prefix in dst. | |
268 | */ | |
269 | void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) { | |
270 | struct version_information *v = (struct version_information*)version_information; | |
271 | dst[0] = 0; | |
272 | strncat(dst, prefix, len-1); | |
273 | if(v->magic != VERSION_INFORMATION_MAGIC) { | |
274 | strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1); | |
275 | return; | |
276 | } | |
277 | if(v->versionversion != 1) { | |
278 | strncat(dst, "Version information not understood\n", len - strlen(dst) - 1); | |
279 | return; | |
280 | } | |
281 | if(!v->present) { | |
282 | strncat(dst, "Version information not available\n", len - strlen(dst) - 1); | |
283 | return; | |
284 | } | |
285 | ||
286 | strncat(dst, v->gitversion, len - strlen(dst) - 1); | |
287 | if(v->clean == 0) { | |
288 | strncat(dst, "-unclean", len - strlen(dst) - 1); | |
289 | } else if(v->clean == 2) { | |
290 | strncat(dst, "-suspect", len - strlen(dst) - 1); | |
291 | } | |
292 | ||
293 | strncat(dst, " ", len - strlen(dst) - 1); | |
294 | strncat(dst, v->buildtime, len - strlen(dst) - 1); | |
295 | strncat(dst, "\n", len - strlen(dst) - 1); | |
296 | } | |
297 | ||
298 | // ------------------------------------------------------------------------- | |
299 | // timer lib | |
300 | // ------------------------------------------------------------------------- | |
301 | // test procedure: | |
302 | // | |
303 | // ti = GetTickCount(); | |
304 | // SpinDelay(1000); | |
305 | // ti = GetTickCount() - ti; | |
306 | // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount()); | |
307 | ||
308 | void StartTickCount() { | |
309 | // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz. | |
310 | // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register. | |
311 | uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency | |
312 | // set RealTimeCounter divider to count at 1kHz: | |
313 | AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf); | |
314 | // note: worst case precision is approx 2.5% | |
315 | } | |
316 | ||
317 | /* | |
318 | * Get the current count. | |
319 | */ | |
320 | uint32_t RAMFUNC GetTickCount(){ | |
321 | return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2; | |
322 | } | |
323 | ||
324 | // ------------------------------------------------------------------------- | |
325 | // microseconds timer | |
326 | // ------------------------------------------------------------------------- | |
327 | void StartCountUS() { | |
328 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
329 | // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0; | |
330 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
331 | ||
332 | // fast clock | |
333 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
334 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
335 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
336 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
337 | AT91C_BASE_TC0->TC_RA = 1; | |
338 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
339 | ||
340 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
341 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0 | |
342 | ||
343 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; | |
344 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; | |
345 | AT91C_BASE_TCB->TCB_BCR = 1; | |
346 | } | |
347 | ||
348 | uint32_t RAMFUNC GetCountUS(){ | |
349 | //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10); | |
350 | // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548 | |
351 | //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3); | |
352 | return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV << 1) / 3); | |
353 | } | |
354 | ||
355 | // static uint32_t GlobalUsCounter = 0; | |
356 | ||
357 | // uint32_t RAMFUNC GetDeltaCountUS(){ | |
358 | // uint32_t g_cnt = GetCountUS(); | |
359 | // uint32_t g_res = g_cnt - GlobalUsCounter; | |
360 | // GlobalUsCounter = g_cnt; | |
361 | // return g_res; | |
362 | // } | |
363 | ||
364 | ||
365 | // ------------------------------------------------------------------------- | |
366 | // Timer for iso14443 commands. Uses ssp_clk from FPGA | |
367 | // ------------------------------------------------------------------------- | |
368 | void StartCountSspClk() { | |
369 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers | |
370 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1 | |
371 | | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none | |
372 | | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0 | |
373 | ||
374 | // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs: | |
375 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1 | |
376 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz | |
377 | | AT91C_TC_CPCSTOP // Stop clock on RC compare | |
378 | | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event | |
379 | | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16) | |
380 | | AT91C_TC_ENETRG // Enable external trigger event | |
381 | | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare | |
382 | | AT91C_TC_WAVE // Waveform Mode | |
383 | | AT91C_TC_AEEVT_SET // Set TIOA1 on external event | |
384 | | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare | |
385 | AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04 | |
386 | ||
387 | // use TC0 to count TIOA1 pulses | |
388 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 | |
389 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1 | |
390 | | AT91C_TC_WAVE // Waveform Mode | |
391 | | AT91C_TC_WAVESEL_UP // just count | |
392 | | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare | |
393 | | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare | |
394 | AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2 | |
395 | AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow | |
396 | ||
397 | // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk) | |
398 | AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2 | |
399 | AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0 | |
400 | | AT91C_TC_WAVE // Waveform Mode | |
401 | | AT91C_TC_WAVESEL_UP; // just count | |
402 | ||
403 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0 | |
404 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1 | |
405 | AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2 | |
406 | ||
407 | // synchronize the counter with the ssp_frame signal. | |
408 | // Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present | |
409 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame) | |
410 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low | |
411 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high | |
412 | ||
413 | // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame | |
414 | // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge | |
415 | AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge) | |
416 | // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0) | |
417 | // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on, | |
418 | // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer. | |
419 | // (just started with the transfer of the 4th Bit). | |
420 | ||
421 | // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. | |
422 | // Therefore need to wait quite some time before we can use the counter. | |
423 | while (AT91C_BASE_TC2->TC_CV >= 1); | |
424 | } | |
425 | void ResetSspClk(void) { | |
426 | //enable clock of timer and software trigger | |
427 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
428 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
429 | AT91C_BASE_TC2->TC_CCR = AT91C_TC_SWTRG; | |
430 | } | |
431 | ||
432 | uint32_t RAMFUNC GetCountSspClk(){ | |
433 | uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV; | |
434 | if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2 | |
435 | return (AT91C_BASE_TC2->TC_CV << 16); | |
436 | return tmp_count; | |
437 | } | |
438 |