]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | ||
18 | void LFSetupFPGAForADC(int divisor, bool lf_field) | |
19 | { | |
20 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
21 | if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) | |
22 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
23 | else if (divisor == 0) | |
24 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
25 | else | |
26 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); | |
27 | ||
28 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); | |
29 | ||
30 | // Connect the A/D to the peak-detected low-frequency path. | |
31 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
32 | // Give it a bit of time for the resonant antenna to settle. | |
33 | SpinDelay(50); | |
34 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
35 | FpgaSetupSsc(); | |
36 | } | |
37 | ||
38 | void AcquireRawAdcSamples125k(int divisor) | |
39 | { | |
40 | LFSetupFPGAForADC(divisor, true); | |
41 | DoAcquisition125k(-1); | |
42 | } | |
43 | ||
44 | void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) | |
45 | { | |
46 | LFSetupFPGAForADC(divisor, false); | |
47 | DoAcquisition125k(trigger_threshold); | |
48 | } | |
49 | ||
50 | // split into two routines so we can avoid timing issues after sending commands // | |
51 | void DoAcquisition125k(int trigger_threshold) | |
52 | { | |
53 | uint8_t *dest = (uint8_t *)BigBuf; | |
54 | int n = sizeof(BigBuf); | |
55 | int i; | |
56 | ||
57 | memset(dest, 0, n); | |
58 | i = 0; | |
59 | for(;;) { | |
60 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
61 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
62 | LED_D_ON(); | |
63 | } | |
64 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
65 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
66 | LED_D_OFF(); | |
67 | if (trigger_threshold != -1 && dest[i] < trigger_threshold) | |
68 | continue; | |
69 | else | |
70 | trigger_threshold = -1; | |
71 | if (++i >= n) break; | |
72 | } | |
73 | } | |
74 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", | |
75 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); | |
76 | } | |
77 | ||
78 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) | |
79 | { | |
80 | int at134khz; | |
81 | ||
82 | /* Make sure the tag is reset */ | |
83 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
84 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
85 | SpinDelay(2500); | |
86 | ||
87 | // see if 'h' was specified | |
88 | if (command[strlen((char *) command) - 1] == 'h') | |
89 | at134khz = TRUE; | |
90 | else | |
91 | at134khz = FALSE; | |
92 | ||
93 | if (at134khz) | |
94 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
95 | else | |
96 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
97 | ||
98 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
99 | ||
100 | // Give it a bit of time for the resonant antenna to settle. | |
101 | SpinDelay(50); | |
102 | // And a little more time for the tag to fully power up | |
103 | SpinDelay(2000); | |
104 | ||
105 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
106 | FpgaSetupSsc(); | |
107 | ||
108 | // now modulate the reader field | |
109 | while(*command != '\0' && *command != ' ') { | |
110 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
111 | LED_D_OFF(); | |
112 | SpinDelayUs(delay_off); | |
113 | if (at134khz) | |
114 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
115 | else | |
116 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
117 | ||
118 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
119 | LED_D_ON(); | |
120 | if(*(command++) == '0') | |
121 | SpinDelayUs(period_0); | |
122 | else | |
123 | SpinDelayUs(period_1); | |
124 | } | |
125 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
126 | LED_D_OFF(); | |
127 | SpinDelayUs(delay_off); | |
128 | if (at134khz) | |
129 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
130 | else | |
131 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
132 | ||
133 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
134 | ||
135 | // now do the read | |
136 | DoAcquisition125k(-1); | |
137 | } | |
138 | ||
139 | /* blank r/w tag data stream | |
140 | ...0000000000000000 01111111 | |
141 | 1010101010101010101010101010101010101010101010101010101010101010 | |
142 | 0011010010100001 | |
143 | 01111111 | |
144 | 101010101010101[0]000... | |
145 | ||
146 | [5555fe852c5555555555555555fe0000] | |
147 | */ | |
148 | void ReadTItag(void) | |
149 | { | |
150 | // some hardcoded initial params | |
151 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
152 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
153 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
154 | #define FSAMPLE 2000000 | |
155 | #define FREQLO 123200 | |
156 | #define FREQHI 134200 | |
157 | ||
158 | signed char *dest = (signed char *)BigBuf; | |
159 | int n = sizeof(BigBuf); | |
160 | // int *dest = GraphBuffer; | |
161 | // int n = GraphTraceLen; | |
162 | ||
163 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
164 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
165 | ||
166 | int i, cycles=0, samples=0; | |
167 | // how many sample points fit in 16 cycles of each frequency | |
168 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
169 | // when to tell if we're close enough to one freq or another | |
170 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
171 | ||
172 | // TI tags charge at 134.2Khz | |
173 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
174 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
175 | ||
176 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
177 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
178 | // whether we're modulating the antenna (high) | |
179 | // or listening to the antenna (low) | |
180 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
181 | ||
182 | // get TI tag data into the buffer | |
183 | AcquireTiType(); | |
184 | ||
185 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
186 | ||
187 | for (i=0; i<n-1; i++) { | |
188 | // count cycles by looking for lo to hi zero crossings | |
189 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
190 | cycles++; | |
191 | // after 16 cycles, measure the frequency | |
192 | if (cycles>15) { | |
193 | cycles=0; | |
194 | samples=i-samples; // number of samples in these 16 cycles | |
195 | ||
196 | // TI bits are coming to us lsb first so shift them | |
197 | // right through our 128 bit right shift register | |
198 | shift0 = (shift0>>1) | (shift1 << 31); | |
199 | shift1 = (shift1>>1) | (shift2 << 31); | |
200 | shift2 = (shift2>>1) | (shift3 << 31); | |
201 | shift3 >>= 1; | |
202 | ||
203 | // check if the cycles fall close to the number | |
204 | // expected for either the low or high frequency | |
205 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
206 | // low frequency represents a 1 | |
207 | shift3 |= (1<<31); | |
208 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
209 | // high frequency represents a 0 | |
210 | } else { | |
211 | // probably detected a gay waveform or noise | |
212 | // use this as gaydar or discard shift register and start again | |
213 | shift3 = shift2 = shift1 = shift0 = 0; | |
214 | } | |
215 | samples = i; | |
216 | ||
217 | // for each bit we receive, test if we've detected a valid tag | |
218 | ||
219 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
220 | // remember the bits are backwards | |
221 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
222 | // if start and end bytes match, we have a tag so break out of the loop | |
223 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
224 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
225 | break; | |
226 | } | |
227 | } | |
228 | } | |
229 | } | |
230 | } | |
231 | ||
232 | // if flag is set we have a tag | |
233 | if (cycles!=0xF0B) { | |
234 | DbpString("Info: No valid tag detected."); | |
235 | } else { | |
236 | // put 64 bit data into shift1 and shift0 | |
237 | shift0 = (shift0>>24) | (shift1 << 8); | |
238 | shift1 = (shift1>>24) | (shift2 << 8); | |
239 | ||
240 | // align 16 bit crc into lower half of shift2 | |
241 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
242 | ||
243 | // if r/w tag, check ident match | |
244 | if ( shift3&(1<<15) ) { | |
245 | DbpString("Info: TI tag is rewriteable"); | |
246 | // only 15 bits compare, last bit of ident is not valid | |
247 | if ( ((shift3>>16)^shift0)&0x7fff ) { | |
248 | DbpString("Error: Ident mismatch!"); | |
249 | } else { | |
250 | DbpString("Info: TI tag ident is valid"); | |
251 | } | |
252 | } else { | |
253 | DbpString("Info: TI tag is readonly"); | |
254 | } | |
255 | ||
256 | // WARNING the order of the bytes in which we calc crc below needs checking | |
257 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
258 | // bytes in reverse or something | |
259 | // calculate CRC | |
260 | uint32_t crc=0; | |
261 | ||
262 | crc = update_crc16(crc, (shift0)&0xff); | |
263 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
264 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
265 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
266 | crc = update_crc16(crc, (shift1)&0xff); | |
267 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
268 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
269 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
270 | ||
271 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
272 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
273 | if (crc != (shift2&0xffff)) { | |
274 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
275 | } else { | |
276 | DbpString("Info: CRC is good"); | |
277 | } | |
278 | } | |
279 | } | |
280 | ||
281 | void WriteTIbyte(uint8_t b) | |
282 | { | |
283 | int i = 0; | |
284 | ||
285 | // modulate 8 bits out to the antenna | |
286 | for (i=0; i<8; i++) | |
287 | { | |
288 | if (b&(1<<i)) { | |
289 | // stop modulating antenna | |
290 | LOW(GPIO_SSC_DOUT); | |
291 | SpinDelayUs(1000); | |
292 | // modulate antenna | |
293 | HIGH(GPIO_SSC_DOUT); | |
294 | SpinDelayUs(1000); | |
295 | } else { | |
296 | // stop modulating antenna | |
297 | LOW(GPIO_SSC_DOUT); | |
298 | SpinDelayUs(300); | |
299 | // modulate antenna | |
300 | HIGH(GPIO_SSC_DOUT); | |
301 | SpinDelayUs(1700); | |
302 | } | |
303 | } | |
304 | } | |
305 | ||
306 | void AcquireTiType(void) | |
307 | { | |
308 | int i, j, n; | |
309 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
310 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
311 | #define TIBUFLEN 1250 | |
312 | ||
313 | // clear buffer | |
314 | memset(BigBuf,0,sizeof(BigBuf)); | |
315 | ||
316 | // Set up the synchronous serial port | |
317 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
318 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
319 | ||
320 | // steal this pin from the SSP and use it to control the modulation | |
321 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
322 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
323 | ||
324 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
325 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
326 | ||
327 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
328 | // 48/2 = 24 MHz clock must be divided by 12 | |
329 | AT91C_BASE_SSC->SSC_CMR = 12; | |
330 | ||
331 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
332 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
333 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
334 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
335 | ||
336 | LED_D_ON(); | |
337 | ||
338 | // modulate antenna | |
339 | HIGH(GPIO_SSC_DOUT); | |
340 | ||
341 | // Charge TI tag for 50ms. | |
342 | SpinDelay(50); | |
343 | ||
344 | // stop modulating antenna and listen | |
345 | LOW(GPIO_SSC_DOUT); | |
346 | ||
347 | LED_D_OFF(); | |
348 | ||
349 | i = 0; | |
350 | for(;;) { | |
351 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
352 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
353 | i++; if(i >= TIBUFLEN) break; | |
354 | } | |
355 | WDT_HIT(); | |
356 | } | |
357 | ||
358 | // return stolen pin to SSP | |
359 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
360 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
361 | ||
362 | char *dest = (char *)BigBuf; | |
363 | n = TIBUFLEN*32; | |
364 | // unpack buffer | |
365 | for (i=TIBUFLEN-1; i>=0; i--) { | |
366 | for (j=0; j<32; j++) { | |
367 | if(BigBuf[i] & (1 << j)) { | |
368 | dest[--n] = 1; | |
369 | } else { | |
370 | dest[--n] = -1; | |
371 | } | |
372 | } | |
373 | } | |
374 | } | |
375 | ||
376 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
377 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
378 | // if not provided a valid crc will be computed from the data and written. | |
379 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
380 | { | |
381 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
382 | if(crc == 0) { | |
383 | crc = update_crc16(crc, (idlo)&0xff); | |
384 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
385 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
386 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
387 | crc = update_crc16(crc, (idhi)&0xff); | |
388 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
389 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
390 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
391 | } | |
392 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
393 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
394 | ||
395 | // TI tags charge at 134.2Khz | |
396 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
397 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
398 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
399 | // whether we're modulating the antenna (high) | |
400 | // or listening to the antenna (low) | |
401 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
402 | LED_A_ON(); | |
403 | ||
404 | // steal this pin from the SSP and use it to control the modulation | |
405 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
406 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
407 | ||
408 | // writing algorithm: | |
409 | // a high bit consists of a field off for 1ms and field on for 1ms | |
410 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
411 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
412 | // start by writing 0xBB (keyword) and 0xEB (password) | |
413 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
414 | // finally end with 0x0300 (write frame) | |
415 | // all data is sent lsb firts | |
416 | // finish with 15ms programming time | |
417 | ||
418 | // modulate antenna | |
419 | HIGH(GPIO_SSC_DOUT); | |
420 | SpinDelay(50); // charge time | |
421 | ||
422 | WriteTIbyte(0xbb); // keyword | |
423 | WriteTIbyte(0xeb); // password | |
424 | WriteTIbyte( (idlo )&0xff ); | |
425 | WriteTIbyte( (idlo>>8 )&0xff ); | |
426 | WriteTIbyte( (idlo>>16)&0xff ); | |
427 | WriteTIbyte( (idlo>>24)&0xff ); | |
428 | WriteTIbyte( (idhi )&0xff ); | |
429 | WriteTIbyte( (idhi>>8 )&0xff ); | |
430 | WriteTIbyte( (idhi>>16)&0xff ); | |
431 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
432 | WriteTIbyte( (crc )&0xff ); // crc lo | |
433 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
434 | WriteTIbyte(0x00); // write frame lo | |
435 | WriteTIbyte(0x03); // write frame hi | |
436 | HIGH(GPIO_SSC_DOUT); | |
437 | SpinDelay(50); // programming time | |
438 | ||
439 | LED_A_OFF(); | |
440 | ||
441 | // get TI tag data into the buffer | |
442 | AcquireTiType(); | |
443 | ||
444 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
445 | DbpString("Now use tiread to check"); | |
446 | } | |
447 | ||
448 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
449 | { | |
450 | int i; | |
451 | uint8_t *tab = (uint8_t *)BigBuf; | |
452 | ||
453 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
454 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
455 | ||
456 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
457 | ||
458 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
459 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
460 | ||
461 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
462 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
463 | ||
464 | i = 0; | |
465 | for(;;) { | |
466 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
467 | if(BUTTON_PRESS()) { | |
468 | DbpString("Stopped"); | |
469 | return; | |
470 | } | |
471 | WDT_HIT(); | |
472 | } | |
473 | ||
474 | if (ledcontrol) | |
475 | LED_D_ON(); | |
476 | ||
477 | if(tab[i]) | |
478 | OPEN_COIL(); | |
479 | else | |
480 | SHORT_COIL(); | |
481 | ||
482 | if (ledcontrol) | |
483 | LED_D_OFF(); | |
484 | ||
485 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
486 | if(BUTTON_PRESS()) { | |
487 | DbpString("Stopped"); | |
488 | return; | |
489 | } | |
490 | WDT_HIT(); | |
491 | } | |
492 | ||
493 | i++; | |
494 | if(i == period) { | |
495 | i = 0; | |
496 | if (gap) { | |
497 | SHORT_COIL(); | |
498 | SpinDelayUs(gap); | |
499 | } | |
500 | } | |
501 | } | |
502 | } | |
503 | ||
504 | #define DEBUG_FRAME_CONTENTS 1 | |
505 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
506 | { | |
507 | } | |
508 | ||
509 | // compose fc/8 fc/10 waveform | |
510 | static void fc(int c, int *n) { | |
511 | uint8_t *dest = (uint8_t *)BigBuf; | |
512 | int idx; | |
513 | ||
514 | // for when we want an fc8 pattern every 4 logical bits | |
515 | if(c==0) { | |
516 | dest[((*n)++)]=1; | |
517 | dest[((*n)++)]=1; | |
518 | dest[((*n)++)]=0; | |
519 | dest[((*n)++)]=0; | |
520 | dest[((*n)++)]=0; | |
521 | dest[((*n)++)]=0; | |
522 | dest[((*n)++)]=0; | |
523 | dest[((*n)++)]=0; | |
524 | } | |
525 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
526 | if(c==8) { | |
527 | for (idx=0; idx<6; idx++) { | |
528 | dest[((*n)++)]=1; | |
529 | dest[((*n)++)]=1; | |
530 | dest[((*n)++)]=0; | |
531 | dest[((*n)++)]=0; | |
532 | dest[((*n)++)]=0; | |
533 | dest[((*n)++)]=0; | |
534 | dest[((*n)++)]=0; | |
535 | dest[((*n)++)]=0; | |
536 | } | |
537 | } | |
538 | ||
539 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
540 | if(c==10) { | |
541 | for (idx=0; idx<5; idx++) { | |
542 | dest[((*n)++)]=1; | |
543 | dest[((*n)++)]=1; | |
544 | dest[((*n)++)]=1; | |
545 | dest[((*n)++)]=0; | |
546 | dest[((*n)++)]=0; | |
547 | dest[((*n)++)]=0; | |
548 | dest[((*n)++)]=0; | |
549 | dest[((*n)++)]=0; | |
550 | dest[((*n)++)]=0; | |
551 | dest[((*n)++)]=0; | |
552 | } | |
553 | } | |
554 | } | |
555 | ||
556 | // prepare a waveform pattern in the buffer based on the ID given then | |
557 | // simulate a HID tag until the button is pressed | |
558 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
559 | { | |
560 | int n=0, i=0; | |
561 | /* | |
562 | HID tag bitstream format | |
563 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
564 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
565 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
566 | A fc8 is inserted before every 4 bits | |
567 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
568 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
569 | */ | |
570 | ||
571 | if (hi>0xFFF) { | |
572 | DbpString("Tags can only have 44 bits."); | |
573 | return; | |
574 | } | |
575 | fc(0,&n); | |
576 | // special start of frame marker containing invalid bit sequences | |
577 | fc(8, &n); fc(8, &n); // invalid | |
578 | fc(8, &n); fc(10, &n); // logical 0 | |
579 | fc(10, &n); fc(10, &n); // invalid | |
580 | fc(8, &n); fc(10, &n); // logical 0 | |
581 | ||
582 | WDT_HIT(); | |
583 | // manchester encode bits 43 to 32 | |
584 | for (i=11; i>=0; i--) { | |
585 | if ((i%4)==3) fc(0,&n); | |
586 | if ((hi>>i)&1) { | |
587 | fc(10, &n); fc(8, &n); // low-high transition | |
588 | } else { | |
589 | fc(8, &n); fc(10, &n); // high-low transition | |
590 | } | |
591 | } | |
592 | ||
593 | WDT_HIT(); | |
594 | // manchester encode bits 31 to 0 | |
595 | for (i=31; i>=0; i--) { | |
596 | if ((i%4)==3) fc(0,&n); | |
597 | if ((lo>>i)&1) { | |
598 | fc(10, &n); fc(8, &n); // low-high transition | |
599 | } else { | |
600 | fc(8, &n); fc(10, &n); // high-low transition | |
601 | } | |
602 | } | |
603 | ||
604 | if (ledcontrol) | |
605 | LED_A_ON(); | |
606 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
607 | ||
608 | if (ledcontrol) | |
609 | LED_A_OFF(); | |
610 | } | |
611 | ||
612 | ||
613 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
614 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
615 | { | |
616 | uint8_t *dest = (uint8_t *)BigBuf; | |
617 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; | |
618 | uint32_t hi2=0, hi=0, lo=0; | |
619 | ||
620 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
621 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
622 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
623 | ||
624 | // Connect the A/D to the peak-detected low-frequency path. | |
625 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
626 | ||
627 | // Give it a bit of time for the resonant antenna to settle. | |
628 | SpinDelay(50); | |
629 | ||
630 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
631 | FpgaSetupSsc(); | |
632 | ||
633 | for(;;) { | |
634 | WDT_HIT(); | |
635 | if (ledcontrol) | |
636 | LED_A_ON(); | |
637 | if(BUTTON_PRESS()) { | |
638 | DbpString("Stopped"); | |
639 | if (ledcontrol) | |
640 | LED_A_OFF(); | |
641 | return; | |
642 | } | |
643 | ||
644 | i = 0; | |
645 | m = sizeof(BigBuf); | |
646 | memset(dest,128,m); | |
647 | for(;;) { | |
648 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
649 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
650 | if (ledcontrol) | |
651 | LED_D_ON(); | |
652 | } | |
653 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
654 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
655 | // we don't care about actual value, only if it's more or less than a | |
656 | // threshold essentially we capture zero crossings for later analysis | |
657 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
658 | i++; | |
659 | if (ledcontrol) | |
660 | LED_D_OFF(); | |
661 | if(i >= m) { | |
662 | break; | |
663 | } | |
664 | } | |
665 | } | |
666 | ||
667 | // FSK demodulator | |
668 | ||
669 | // sync to first lo-hi transition | |
670 | for( idx=1; idx<m; idx++) { | |
671 | if (dest[idx-1]<dest[idx]) | |
672 | lastval=idx; | |
673 | break; | |
674 | } | |
675 | WDT_HIT(); | |
676 | ||
677 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
678 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
679 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
680 | for( i=0; idx<m; idx++) { | |
681 | if (dest[idx-1]<dest[idx]) { | |
682 | dest[i]=idx-lastval; | |
683 | if (dest[i] <= 8) { | |
684 | dest[i]=1; | |
685 | } else { | |
686 | dest[i]=0; | |
687 | } | |
688 | ||
689 | lastval=idx; | |
690 | i++; | |
691 | } | |
692 | } | |
693 | m=i; | |
694 | WDT_HIT(); | |
695 | ||
696 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
697 | lastval=dest[0]; | |
698 | idx=0; | |
699 | i=0; | |
700 | n=0; | |
701 | for( idx=0; idx<m; idx++) { | |
702 | if (dest[idx]==lastval) { | |
703 | n++; | |
704 | } else { | |
705 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
706 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
707 | // swallowed up by rounding | |
708 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
709 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
710 | // like 111000 | |
711 | if (dest[idx-1]) { | |
712 | n=(n+1)/6; // fc/8 in sets of 6 | |
713 | } else { | |
714 | n=(n+1)/5; // fc/10 in sets of 5 | |
715 | } | |
716 | switch (n) { // stuff appropriate bits in buffer | |
717 | case 0: | |
718 | case 1: // one bit | |
719 | dest[i++]=dest[idx-1]; | |
720 | break; | |
721 | case 2: // two bits | |
722 | dest[i++]=dest[idx-1]; | |
723 | dest[i++]=dest[idx-1]; | |
724 | break; | |
725 | case 3: // 3 bit start of frame markers | |
726 | dest[i++]=dest[idx-1]; | |
727 | dest[i++]=dest[idx-1]; | |
728 | dest[i++]=dest[idx-1]; | |
729 | break; | |
730 | // When a logic 0 is immediately followed by the start of the next transmisson | |
731 | // (special pattern) a pattern of 4 bit duration lengths is created. | |
732 | case 4: | |
733 | dest[i++]=dest[idx-1]; | |
734 | dest[i++]=dest[idx-1]; | |
735 | dest[i++]=dest[idx-1]; | |
736 | dest[i++]=dest[idx-1]; | |
737 | break; | |
738 | default: // this shouldn't happen, don't stuff any bits | |
739 | break; | |
740 | } | |
741 | n=0; | |
742 | lastval=dest[idx]; | |
743 | } | |
744 | } | |
745 | m=i; | |
746 | WDT_HIT(); | |
747 | ||
748 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
749 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
750 | for( idx=0; idx<m-6; idx++) { | |
751 | // search for a start of frame marker | |
752 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
753 | { | |
754 | found=1; | |
755 | idx+=6; | |
756 | if (found && (hi2|hi|lo)) { | |
757 | if (hi2 != 0){ | |
758 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
759 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
760 | } | |
761 | else { | |
762 | Dbprintf("TAG ID: %x%08x (%d)", | |
763 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
764 | } | |
765 | /* if we're only looking for one tag */ | |
766 | if (findone) | |
767 | { | |
768 | *high = hi; | |
769 | *low = lo; | |
770 | return; | |
771 | } | |
772 | hi2=0; | |
773 | hi=0; | |
774 | lo=0; | |
775 | found=0; | |
776 | } | |
777 | } | |
778 | if (found) { | |
779 | if (dest[idx] && (!dest[idx+1]) ) { | |
780 | hi2=(hi2<<1)|(hi>>31); | |
781 | hi=(hi<<1)|(lo>>31); | |
782 | lo=(lo<<1)|0; | |
783 | } else if ( (!dest[idx]) && dest[idx+1]) { | |
784 | hi2=(hi2<<1)|(hi>>31); | |
785 | hi=(hi<<1)|(lo>>31); | |
786 | lo=(lo<<1)|1; | |
787 | } else { | |
788 | found=0; | |
789 | hi2=0; | |
790 | hi=0; | |
791 | lo=0; | |
792 | } | |
793 | idx++; | |
794 | } | |
795 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
796 | { | |
797 | found=1; | |
798 | idx+=6; | |
799 | if (found && (hi|lo)) { | |
800 | if (hi2 != 0){ | |
801 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
802 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
803 | } | |
804 | else { | |
805 | Dbprintf("TAG ID: %x%08x (%d)", | |
806 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
807 | } | |
808 | /* if we're only looking for one tag */ | |
809 | if (findone) | |
810 | { | |
811 | *high = hi; | |
812 | *low = lo; | |
813 | return; | |
814 | } | |
815 | hi2=0; | |
816 | hi=0; | |
817 | lo=0; | |
818 | found=0; | |
819 | } | |
820 | } | |
821 | } | |
822 | WDT_HIT(); | |
823 | } | |
824 | } | |
825 | ||
826 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
827 | { | |
828 | uint8_t *dest = (uint8_t *)BigBuf; | |
829 | int m=0, n=0, i=0, idx=0, lastval=0; | |
830 | int found=0; | |
831 | uint32_t code=0, code2=0; | |
832 | //uint32_t hi2=0, hi=0, lo=0; | |
833 | ||
834 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
835 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
836 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
837 | ||
838 | // Connect the A/D to the peak-detected low-frequency path. | |
839 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
840 | ||
841 | // Give it a bit of time for the resonant antenna to settle. | |
842 | SpinDelay(50); | |
843 | ||
844 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
845 | FpgaSetupSsc(); | |
846 | ||
847 | for(;;) { | |
848 | WDT_HIT(); | |
849 | if (ledcontrol) | |
850 | LED_A_ON(); | |
851 | if(BUTTON_PRESS()) { | |
852 | DbpString("Stopped"); | |
853 | if (ledcontrol) | |
854 | LED_A_OFF(); | |
855 | return; | |
856 | } | |
857 | ||
858 | i = 0; | |
859 | m = sizeof(BigBuf); | |
860 | memset(dest,128,m); | |
861 | for(;;) { | |
862 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
863 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
864 | if (ledcontrol) | |
865 | LED_D_ON(); | |
866 | } | |
867 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
868 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
869 | // we don't care about actual value, only if it's more or less than a | |
870 | // threshold essentially we capture zero crossings for later analysis | |
871 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
872 | i++; | |
873 | if (ledcontrol) | |
874 | LED_D_OFF(); | |
875 | if(i >= m) { | |
876 | break; | |
877 | } | |
878 | } | |
879 | } | |
880 | ||
881 | // FSK demodulator | |
882 | ||
883 | // sync to first lo-hi transition | |
884 | for( idx=1; idx<m; idx++) { | |
885 | if (dest[idx-1]<dest[idx]) | |
886 | lastval=idx; | |
887 | break; | |
888 | } | |
889 | WDT_HIT(); | |
890 | ||
891 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
892 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
893 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
894 | for( i=0; idx<m; idx++) { | |
895 | if (dest[idx-1]<dest[idx]) { | |
896 | dest[i]=idx-lastval; | |
897 | if (dest[i] <= 8) { | |
898 | dest[i]=1; | |
899 | } else { | |
900 | dest[i]=0; | |
901 | } | |
902 | ||
903 | lastval=idx; | |
904 | i++; | |
905 | } | |
906 | } | |
907 | m=i; | |
908 | WDT_HIT(); | |
909 | ||
910 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
911 | lastval=dest[0]; | |
912 | idx=0; | |
913 | i=0; | |
914 | n=0; | |
915 | for( idx=0; idx<m; idx++) { | |
916 | if (dest[idx]==lastval) { | |
917 | n++; | |
918 | } else { | |
919 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
920 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
921 | // swallowed up by rounding | |
922 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
923 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
924 | // like 111000 | |
925 | if (dest[idx-1]) { | |
926 | n=(n+1)/7; // fc/8 in sets of 7 | |
927 | } else { | |
928 | n=(n+1)/6; // fc/10 in sets of 6 | |
929 | } | |
930 | switch (n) { // stuff appropriate bits in buffer | |
931 | case 0: | |
932 | case 1: // one bit | |
933 | dest[i++]=dest[idx-1]^1; | |
934 | //Dbprintf("%d",dest[idx-1]); | |
935 | break; | |
936 | case 2: // two bits | |
937 | dest[i++]=dest[idx-1]^1; | |
938 | dest[i++]=dest[idx-1]^1; | |
939 | //Dbprintf("%d",dest[idx-1]); | |
940 | //Dbprintf("%d",dest[idx-1]); | |
941 | break; | |
942 | case 3: // 3 bit start of frame markers | |
943 | for(int j=0; j<3; j++){ | |
944 | dest[i++]=dest[idx-1]^1; | |
945 | // Dbprintf("%d",dest[idx-1]); | |
946 | } | |
947 | break; | |
948 | case 4: | |
949 | for(int j=0; j<4; j++){ | |
950 | dest[i++]=dest[idx-1]^1; | |
951 | // Dbprintf("%d",dest[idx-1]); | |
952 | } | |
953 | break; | |
954 | case 5: | |
955 | for(int j=0; j<5; j++){ | |
956 | dest[i++]=dest[idx-1]^1; | |
957 | // Dbprintf("%d",dest[idx-1]); | |
958 | } | |
959 | break; | |
960 | case 6: | |
961 | for(int j=0; j<6; j++){ | |
962 | dest[i++]=dest[idx-1]^1; | |
963 | // Dbprintf("%d",dest[idx-1]); | |
964 | } | |
965 | break; | |
966 | case 7: | |
967 | for(int j=0; j<7; j++){ | |
968 | dest[i++]=dest[idx-1]^1; | |
969 | // Dbprintf("%d",dest[idx-1]); | |
970 | } | |
971 | break; | |
972 | case 8: | |
973 | for(int j=0; j<8; j++){ | |
974 | dest[i++]=dest[idx-1]^1; | |
975 | // Dbprintf("%d",dest[idx-1]); | |
976 | } | |
977 | break; | |
978 | case 9: | |
979 | for(int j=0; j<9; j++){ | |
980 | dest[i++]=dest[idx-1]^1; | |
981 | // Dbprintf("%d",dest[idx-1]); | |
982 | } | |
983 | break; | |
984 | case 10: | |
985 | for(int j=0; j<10; j++){ | |
986 | dest[i++]=dest[idx-1]^1; | |
987 | // Dbprintf("%d",dest[idx-1]); | |
988 | } | |
989 | break; | |
990 | case 11: | |
991 | for(int j=0; j<11; j++){ | |
992 | dest[i++]=dest[idx-1]^1; | |
993 | // Dbprintf("%d",dest[idx-1]); | |
994 | } | |
995 | break; | |
996 | case 12: | |
997 | for(int j=0; j<12; j++){ | |
998 | dest[i++]=dest[idx-1]^1; | |
999 | // Dbprintf("%d",dest[idx-1]); | |
1000 | } | |
1001 | break; | |
1002 | default: // this shouldn't happen, don't stuff any bits | |
1003 | //Dbprintf("%d",dest[idx-1]); | |
1004 | break; | |
1005 | } | |
1006 | n=0; | |
1007 | lastval=dest[idx]; | |
1008 | } | |
1009 | }//end for | |
1010 | /*for(int j=0; j<64;j+=8){ | |
1011 | Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]); | |
1012 | } | |
1013 | Dbprintf("\n");*/ | |
1014 | m=i; | |
1015 | WDT_HIT(); | |
1016 | ||
1017 | for( idx=0; idx<m-9; idx++) { | |
1018 | if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){ | |
1019 | found=1; | |
1020 | //idx+=9; | |
1021 | if (found) { | |
1022 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]); | |
1023 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]); | |
1024 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]); | |
1025 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]); | |
1026 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]); | |
1027 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]); | |
1028 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]); | |
1029 | Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1030 | ||
1031 | short version='\x00'; | |
1032 | char unknown='\x00'; | |
1033 | uint16_t number=0; | |
1034 | for(int j=14;j<18;j++){ | |
1035 | //Dbprintf("%d",dest[idx+j]); | |
1036 | version <<=1; | |
1037 | if (dest[idx+j]) version |= 1; | |
1038 | } | |
1039 | for(int j=19;j<27;j++){ | |
1040 | //Dbprintf("%d",dest[idx+j]); | |
1041 | unknown <<=1; | |
1042 | if (dest[idx+j]) unknown |= 1; | |
1043 | } | |
1044 | for(int j=36;j<45;j++){ | |
1045 | //Dbprintf("%d",dest[idx+j]); | |
1046 | number <<=1; | |
1047 | if (dest[idx+j]) number |= 1; | |
1048 | } | |
1049 | for(int j=46;j<53;j++){ | |
1050 | //Dbprintf("%d",dest[idx+j]); | |
1051 | number <<=1; | |
1052 | if (dest[idx+j]) number |= 1; | |
1053 | } | |
1054 | for(int j=0; j<32; j++){ | |
1055 | code <<=1; | |
1056 | if(dest[idx+j]) code |= 1; | |
1057 | } | |
1058 | for(int j=32; j<64; j++){ | |
1059 | code2 <<=1; | |
1060 | if(dest[idx+j]) code2 |= 1; | |
1061 | } | |
1062 | ||
1063 | Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2); | |
1064 | if (ledcontrol) | |
1065 | LED_D_OFF(); | |
1066 | } | |
1067 | // if we're only looking for one tag | |
1068 | if (findone){ | |
1069 | //*high = hi; | |
1070 | //*low = lo; | |
1071 | LED_A_OFF(); | |
1072 | return; | |
1073 | } | |
1074 | ||
1075 | //hi=0; | |
1076 | //lo=0; | |
1077 | found=0; | |
1078 | } | |
1079 | ||
1080 | } | |
1081 | } | |
1082 | WDT_HIT(); | |
1083 | } | |
1084 | ||
1085 | /*------------------------------ | |
1086 | * T5555/T5557/T5567 routines | |
1087 | *------------------------------ | |
1088 | */ | |
1089 | ||
1090 | /* T55x7 configuration register definitions */ | |
1091 | #define T55x7_POR_DELAY 0x00000001 | |
1092 | #define T55x7_ST_TERMINATOR 0x00000008 | |
1093 | #define T55x7_PWD 0x00000010 | |
1094 | #define T55x7_MAXBLOCK_SHIFT 5 | |
1095 | #define T55x7_AOR 0x00000200 | |
1096 | #define T55x7_PSKCF_RF_2 0 | |
1097 | #define T55x7_PSKCF_RF_4 0x00000400 | |
1098 | #define T55x7_PSKCF_RF_8 0x00000800 | |
1099 | #define T55x7_MODULATION_DIRECT 0 | |
1100 | #define T55x7_MODULATION_PSK1 0x00001000 | |
1101 | #define T55x7_MODULATION_PSK2 0x00002000 | |
1102 | #define T55x7_MODULATION_PSK3 0x00003000 | |
1103 | #define T55x7_MODULATION_FSK1 0x00004000 | |
1104 | #define T55x7_MODULATION_FSK2 0x00005000 | |
1105 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
1106 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
1107 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
1108 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
1109 | #define T55x7_BITRATE_RF_8 0 | |
1110 | #define T55x7_BITRATE_RF_16 0x00040000 | |
1111 | #define T55x7_BITRATE_RF_32 0x00080000 | |
1112 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
1113 | #define T55x7_BITRATE_RF_50 0x00100000 | |
1114 | #define T55x7_BITRATE_RF_64 0x00140000 | |
1115 | #define T55x7_BITRATE_RF_100 0x00180000 | |
1116 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
1117 | ||
1118 | /* T5555 (Q5) configuration register definitions */ | |
1119 | #define T5555_ST_TERMINATOR 0x00000001 | |
1120 | #define T5555_MAXBLOCK_SHIFT 0x00000001 | |
1121 | #define T5555_MODULATION_MANCHESTER 0 | |
1122 | #define T5555_MODULATION_PSK1 0x00000010 | |
1123 | #define T5555_MODULATION_PSK2 0x00000020 | |
1124 | #define T5555_MODULATION_PSK3 0x00000030 | |
1125 | #define T5555_MODULATION_FSK1 0x00000040 | |
1126 | #define T5555_MODULATION_FSK2 0x00000050 | |
1127 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
1128 | #define T5555_MODULATION_DIRECT 0x00000070 | |
1129 | #define T5555_INVERT_OUTPUT 0x00000080 | |
1130 | #define T5555_PSK_RF_2 0 | |
1131 | #define T5555_PSK_RF_4 0x00000100 | |
1132 | #define T5555_PSK_RF_8 0x00000200 | |
1133 | #define T5555_USE_PWD 0x00000400 | |
1134 | #define T5555_USE_AOR 0x00000800 | |
1135 | #define T5555_BITRATE_SHIFT 12 | |
1136 | #define T5555_FAST_WRITE 0x00004000 | |
1137 | #define T5555_PAGE_SELECT 0x00008000 | |
1138 | ||
1139 | /* | |
1140 | * Relevant times in microsecond | |
1141 | * To compensate antenna falling times shorten the write times | |
1142 | * and enlarge the gap ones. | |
1143 | */ | |
1144 | #define START_GAP 250 | |
1145 | #define WRITE_GAP 160 | |
1146 | #define WRITE_0 144 // 192 | |
1147 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 | |
1148 | ||
1149 | // Write one bit to card | |
1150 | void T55xxWriteBit(int bit) | |
1151 | { | |
1152 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1153 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1154 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1155 | if (bit == 0) | |
1156 | SpinDelayUs(WRITE_0); | |
1157 | else | |
1158 | SpinDelayUs(WRITE_1); | |
1159 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1160 | SpinDelayUs(WRITE_GAP); | |
1161 | } | |
1162 | ||
1163 | // Write one card block in page 0, no lock | |
1164 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1165 | { | |
1166 | unsigned int i; | |
1167 | ||
1168 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1169 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1170 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1171 | ||
1172 | // Give it a bit of time for the resonant antenna to settle. | |
1173 | // And for the tag to fully power up | |
1174 | SpinDelay(150); | |
1175 | ||
1176 | // Now start writting | |
1177 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1178 | SpinDelayUs(START_GAP); | |
1179 | ||
1180 | // Opcode | |
1181 | T55xxWriteBit(1); | |
1182 | T55xxWriteBit(0); //Page 0 | |
1183 | if (PwdMode == 1){ | |
1184 | // Pwd | |
1185 | for (i = 0x80000000; i != 0; i >>= 1) | |
1186 | T55xxWriteBit(Pwd & i); | |
1187 | } | |
1188 | // Lock bit | |
1189 | T55xxWriteBit(0); | |
1190 | ||
1191 | // Data | |
1192 | for (i = 0x80000000; i != 0; i >>= 1) | |
1193 | T55xxWriteBit(Data & i); | |
1194 | ||
1195 | // Block | |
1196 | for (i = 0x04; i != 0; i >>= 1) | |
1197 | T55xxWriteBit(Block & i); | |
1198 | ||
1199 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1200 | // so wait a little more) | |
1201 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1203 | SpinDelay(20); | |
1204 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1205 | } | |
1206 | ||
1207 | // Read one card block in page 0 | |
1208 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
1209 | { | |
1210 | uint8_t *dest = (uint8_t *)BigBuf; | |
1211 | int m=0, i=0; | |
1212 | ||
1213 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1214 | m = sizeof(BigBuf); | |
1215 | // Clear destination buffer before sending the command | |
1216 | memset(dest, 128, m); | |
1217 | // Connect the A/D to the peak-detected low-frequency path. | |
1218 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1219 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1220 | FpgaSetupSsc(); | |
1221 | ||
1222 | LED_D_ON(); | |
1223 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1224 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1225 | ||
1226 | // Give it a bit of time for the resonant antenna to settle. | |
1227 | // And for the tag to fully power up | |
1228 | SpinDelay(150); | |
1229 | ||
1230 | // Now start writting | |
1231 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1232 | SpinDelayUs(START_GAP); | |
1233 | ||
1234 | // Opcode | |
1235 | T55xxWriteBit(1); | |
1236 | T55xxWriteBit(0); //Page 0 | |
1237 | if (PwdMode == 1){ | |
1238 | // Pwd | |
1239 | for (i = 0x80000000; i != 0; i >>= 1) | |
1240 | T55xxWriteBit(Pwd & i); | |
1241 | } | |
1242 | // Lock bit | |
1243 | T55xxWriteBit(0); | |
1244 | // Block | |
1245 | for (i = 0x04; i != 0; i >>= 1) | |
1246 | T55xxWriteBit(Block & i); | |
1247 | ||
1248 | // Turn field on to read the response | |
1249 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1250 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1251 | ||
1252 | // Now do the acquisition | |
1253 | i = 0; | |
1254 | for(;;) { | |
1255 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1256 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1257 | } | |
1258 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1259 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1260 | // we don't care about actual value, only if it's more or less than a | |
1261 | // threshold essentially we capture zero crossings for later analysis | |
1262 | // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
1263 | i++; | |
1264 | if (i >= m) break; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1269 | LED_D_OFF(); | |
1270 | DbpString("DONE!"); | |
1271 | } | |
1272 | ||
1273 | // Read card traceability data (page 1) | |
1274 | void T55xxReadTrace(void){ | |
1275 | uint8_t *dest = (uint8_t *)BigBuf; | |
1276 | int m=0, i=0; | |
1277 | ||
1278 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1279 | m = sizeof(BigBuf); | |
1280 | // Clear destination buffer before sending the command | |
1281 | memset(dest, 128, m); | |
1282 | // Connect the A/D to the peak-detected low-frequency path. | |
1283 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1284 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1285 | FpgaSetupSsc(); | |
1286 | ||
1287 | LED_D_ON(); | |
1288 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1289 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1290 | ||
1291 | // Give it a bit of time for the resonant antenna to settle. | |
1292 | // And for the tag to fully power up | |
1293 | SpinDelay(150); | |
1294 | ||
1295 | // Now start writting | |
1296 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1297 | SpinDelayUs(START_GAP); | |
1298 | ||
1299 | // Opcode | |
1300 | T55xxWriteBit(1); | |
1301 | T55xxWriteBit(1); //Page 1 | |
1302 | ||
1303 | // Turn field on to read the response | |
1304 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1305 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1306 | ||
1307 | // Now do the acquisition | |
1308 | i = 0; | |
1309 | for(;;) { | |
1310 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1311 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1312 | } | |
1313 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1314 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1315 | i++; | |
1316 | if (i >= m) break; | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1321 | LED_D_OFF(); | |
1322 | DbpString("DONE!"); | |
1323 | } | |
1324 | ||
1325 | /*-------------- Cloning routines -----------*/ | |
1326 | // Copy HID id to card and setup block 0 config | |
1327 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1328 | { | |
1329 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1330 | int last_block = 0; | |
1331 | ||
1332 | if (longFMT){ | |
1333 | // Ensure no more than 84 bits supplied | |
1334 | if (hi2>0xFFFFF) { | |
1335 | DbpString("Tags can only have 84 bits."); | |
1336 | return; | |
1337 | } | |
1338 | // Build the 6 data blocks for supplied 84bit ID | |
1339 | last_block = 6; | |
1340 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1341 | for (int i=0;i<4;i++) { | |
1342 | if (hi2 & (1<<(19-i))) | |
1343 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1344 | else | |
1345 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1346 | } | |
1347 | ||
1348 | data2 = 0; | |
1349 | for (int i=0;i<16;i++) { | |
1350 | if (hi2 & (1<<(15-i))) | |
1351 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1352 | else | |
1353 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1354 | } | |
1355 | ||
1356 | data3 = 0; | |
1357 | for (int i=0;i<16;i++) { | |
1358 | if (hi & (1<<(31-i))) | |
1359 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1360 | else | |
1361 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1362 | } | |
1363 | ||
1364 | data4 = 0; | |
1365 | for (int i=0;i<16;i++) { | |
1366 | if (hi & (1<<(15-i))) | |
1367 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1368 | else | |
1369 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1370 | } | |
1371 | ||
1372 | data5 = 0; | |
1373 | for (int i=0;i<16;i++) { | |
1374 | if (lo & (1<<(31-i))) | |
1375 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1376 | else | |
1377 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1378 | } | |
1379 | ||
1380 | data6 = 0; | |
1381 | for (int i=0;i<16;i++) { | |
1382 | if (lo & (1<<(15-i))) | |
1383 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1384 | else | |
1385 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1386 | } | |
1387 | } | |
1388 | else { | |
1389 | // Ensure no more than 44 bits supplied | |
1390 | if (hi>0xFFF) { | |
1391 | DbpString("Tags can only have 44 bits."); | |
1392 | return; | |
1393 | } | |
1394 | ||
1395 | // Build the 3 data blocks for supplied 44bit ID | |
1396 | last_block = 3; | |
1397 | ||
1398 | data1 = 0x1D000000; // load preamble | |
1399 | ||
1400 | for (int i=0;i<12;i++) { | |
1401 | if (hi & (1<<(11-i))) | |
1402 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1403 | else | |
1404 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1405 | } | |
1406 | ||
1407 | data2 = 0; | |
1408 | for (int i=0;i<16;i++) { | |
1409 | if (lo & (1<<(31-i))) | |
1410 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1411 | else | |
1412 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1413 | } | |
1414 | ||
1415 | data3 = 0; | |
1416 | for (int i=0;i<16;i++) { | |
1417 | if (lo & (1<<(15-i))) | |
1418 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1419 | else | |
1420 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1421 | } | |
1422 | } | |
1423 | ||
1424 | LED_D_ON(); | |
1425 | // Program the data blocks for supplied ID | |
1426 | // and the block 0 for HID format | |
1427 | T55xxWriteBlock(data1,1,0,0); | |
1428 | T55xxWriteBlock(data2,2,0,0); | |
1429 | T55xxWriteBlock(data3,3,0,0); | |
1430 | ||
1431 | if (longFMT) { // if long format there are 6 blocks | |
1432 | T55xxWriteBlock(data4,4,0,0); | |
1433 | T55xxWriteBlock(data5,5,0,0); | |
1434 | T55xxWriteBlock(data6,6,0,0); | |
1435 | } | |
1436 | ||
1437 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
1438 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | | |
1439 | T55x7_MODULATION_FSK2a | | |
1440 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1441 | 0,0,0); | |
1442 | ||
1443 | LED_D_OFF(); | |
1444 | ||
1445 | DbpString("DONE!"); | |
1446 | } | |
1447 | ||
1448 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1449 | { | |
1450 | int data1=0, data2=0; //up to six blocks for long format | |
1451 | ||
1452 | data1 = hi; // load preamble | |
1453 | data2 = lo; | |
1454 | ||
1455 | LED_D_ON(); | |
1456 | // Program the data blocks for supplied ID | |
1457 | // and the block 0 for HID format | |
1458 | T55xxWriteBlock(data1,1,0,0); | |
1459 | T55xxWriteBlock(data2,2,0,0); | |
1460 | ||
1461 | //Config Block | |
1462 | T55xxWriteBlock(0x00147040,0,0,0); | |
1463 | LED_D_OFF(); | |
1464 | ||
1465 | DbpString("DONE!"); | |
1466 | } | |
1467 | ||
1468 | // Define 9bit header for EM410x tags | |
1469 | #define EM410X_HEADER 0x1FF | |
1470 | #define EM410X_ID_LENGTH 40 | |
1471 | ||
1472 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) | |
1473 | { | |
1474 | int i, id_bit; | |
1475 | uint64_t id = EM410X_HEADER; | |
1476 | uint64_t rev_id = 0; // reversed ID | |
1477 | int c_parity[4]; // column parity | |
1478 | int r_parity = 0; // row parity | |
1479 | uint32_t clock = 0; | |
1480 | ||
1481 | // Reverse ID bits given as parameter (for simpler operations) | |
1482 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1483 | if (i < 32) { | |
1484 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1485 | id_lo >>= 1; | |
1486 | } else { | |
1487 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1488 | id_hi >>= 1; | |
1489 | } | |
1490 | } | |
1491 | ||
1492 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1493 | id_bit = rev_id & 1; | |
1494 | ||
1495 | if (i % 4 == 0) { | |
1496 | // Don't write row parity bit at start of parsing | |
1497 | if (i) | |
1498 | id = (id << 1) | r_parity; | |
1499 | // Start counting parity for new row | |
1500 | r_parity = id_bit; | |
1501 | } else { | |
1502 | // Count row parity | |
1503 | r_parity ^= id_bit; | |
1504 | } | |
1505 | ||
1506 | // First elements in column? | |
1507 | if (i < 4) | |
1508 | // Fill out first elements | |
1509 | c_parity[i] = id_bit; | |
1510 | else | |
1511 | // Count column parity | |
1512 | c_parity[i % 4] ^= id_bit; | |
1513 | ||
1514 | // Insert ID bit | |
1515 | id = (id << 1) | id_bit; | |
1516 | rev_id >>= 1; | |
1517 | } | |
1518 | ||
1519 | // Insert parity bit of last row | |
1520 | id = (id << 1) | r_parity; | |
1521 | ||
1522 | // Fill out column parity at the end of tag | |
1523 | for (i = 0; i < 4; ++i) | |
1524 | id = (id << 1) | c_parity[i]; | |
1525 | ||
1526 | // Add stop bit | |
1527 | id <<= 1; | |
1528 | ||
1529 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1530 | LED_D_ON(); | |
1531 | ||
1532 | // Write EM410x ID | |
1533 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); | |
1534 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
1535 | ||
1536 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
1537 | if (card) { | |
1538 | // Clock rate is stored in bits 8-15 of the card value | |
1539 | clock = (card & 0xFF00) >> 8; | |
1540 | Dbprintf("Clock rate: %d", clock); | |
1541 | switch (clock) | |
1542 | { | |
1543 | case 32: | |
1544 | clock = T55x7_BITRATE_RF_32; | |
1545 | break; | |
1546 | case 16: | |
1547 | clock = T55x7_BITRATE_RF_16; | |
1548 | break; | |
1549 | case 0: | |
1550 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1551 | // Fall through... | |
1552 | case 64: | |
1553 | clock = T55x7_BITRATE_RF_64; | |
1554 | break; | |
1555 | default: | |
1556 | Dbprintf("Invalid clock rate: %d", clock); | |
1557 | return; | |
1558 | } | |
1559 | ||
1560 | // Writing configuration for T55x7 tag | |
1561 | T55xxWriteBlock(clock | | |
1562 | T55x7_MODULATION_MANCHESTER | | |
1563 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1564 | 0, 0, 0); | |
1565 | } | |
1566 | else | |
1567 | // Writing configuration for T5555(Q5) tag | |
1568 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1569 | T5555_MODULATION_MANCHESTER | | |
1570 | 2 << T5555_MAXBLOCK_SHIFT, | |
1571 | 0, 0, 0); | |
1572 | ||
1573 | LED_D_OFF(); | |
1574 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1575 | (uint32_t)(id >> 32), (uint32_t)id); | |
1576 | } | |
1577 | ||
1578 | // Clone Indala 64-bit tag by UID to T55x7 | |
1579 | void CopyIndala64toT55x7(int hi, int lo) | |
1580 | { | |
1581 | ||
1582 | //Program the 2 data blocks for supplied 64bit UID | |
1583 | // and the block 0 for Indala64 format | |
1584 | T55xxWriteBlock(hi,1,0,0); | |
1585 | T55xxWriteBlock(lo,2,0,0); | |
1586 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) | |
1587 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1588 | T55x7_MODULATION_PSK1 | | |
1589 | 2 << T55x7_MAXBLOCK_SHIFT, | |
1590 | 0, 0, 0); | |
1591 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1592 | // T5567WriteBlock(0x603E1042,0); | |
1593 | ||
1594 | DbpString("DONE!"); | |
1595 | ||
1596 | } | |
1597 | ||
1598 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1599 | { | |
1600 | ||
1601 | //Program the 7 data blocks for supplied 224bit UID | |
1602 | // and the block 0 for Indala224 format | |
1603 | T55xxWriteBlock(uid1,1,0,0); | |
1604 | T55xxWriteBlock(uid2,2,0,0); | |
1605 | T55xxWriteBlock(uid3,3,0,0); | |
1606 | T55xxWriteBlock(uid4,4,0,0); | |
1607 | T55xxWriteBlock(uid5,5,0,0); | |
1608 | T55xxWriteBlock(uid6,6,0,0); | |
1609 | T55xxWriteBlock(uid7,7,0,0); | |
1610 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1611 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1612 | T55x7_MODULATION_PSK1 | | |
1613 | 7 << T55x7_MAXBLOCK_SHIFT, | |
1614 | 0,0,0); | |
1615 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1616 | // T5567WriteBlock(0x603E10E2,0); | |
1617 | ||
1618 | DbpString("DONE!"); | |
1619 | ||
1620 | } | |
1621 | ||
1622 | ||
1623 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1624 | #define max(x,y) ( x<y ? y:x) | |
1625 | ||
1626 | int DemodPCF7931(uint8_t **outBlocks) { | |
1627 | uint8_t BitStream[256]; | |
1628 | uint8_t Blocks[8][16]; | |
1629 | uint8_t *GraphBuffer = (uint8_t *)BigBuf; | |
1630 | int GraphTraceLen = sizeof(BigBuf); | |
1631 | int i, j, lastval, bitidx, half_switch; | |
1632 | int clock = 64; | |
1633 | int tolerance = clock / 8; | |
1634 | int pmc, block_done; | |
1635 | int lc, warnings = 0; | |
1636 | int num_blocks = 0; | |
1637 | int lmin=128, lmax=128; | |
1638 | uint8_t dir; | |
1639 | ||
1640 | AcquireRawAdcSamples125k(0); | |
1641 | ||
1642 | lmin = 64; | |
1643 | lmax = 192; | |
1644 | ||
1645 | i = 2; | |
1646 | ||
1647 | /* Find first local max/min */ | |
1648 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1649 | while(i < GraphTraceLen) { | |
1650 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1651 | break; | |
1652 | i++; | |
1653 | } | |
1654 | dir = 0; | |
1655 | } | |
1656 | else { | |
1657 | while(i < GraphTraceLen) { | |
1658 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1659 | break; | |
1660 | i++; | |
1661 | } | |
1662 | dir = 1; | |
1663 | } | |
1664 | ||
1665 | lastval = i++; | |
1666 | half_switch = 0; | |
1667 | pmc = 0; | |
1668 | block_done = 0; | |
1669 | ||
1670 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1671 | { | |
1672 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1673 | { | |
1674 | lc = i - lastval; | |
1675 | lastval = i; | |
1676 | ||
1677 | // Switch depending on lc length: | |
1678 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1679 | if (abs(lc-clock/4) < tolerance) { | |
1680 | // 16T0 | |
1681 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1682 | /* It's a PMC ! */ | |
1683 | i += (128+127+16+32+33+16)-1; | |
1684 | lastval = i; | |
1685 | pmc = 0; | |
1686 | block_done = 1; | |
1687 | } | |
1688 | else { | |
1689 | pmc = i; | |
1690 | } | |
1691 | } else if (abs(lc-clock/2) < tolerance) { | |
1692 | // 32TO | |
1693 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1694 | /* It's a PMC ! */ | |
1695 | i += (128+127+16+32+33)-1; | |
1696 | lastval = i; | |
1697 | pmc = 0; | |
1698 | block_done = 1; | |
1699 | } | |
1700 | else if(half_switch == 1) { | |
1701 | BitStream[bitidx++] = 0; | |
1702 | half_switch = 0; | |
1703 | } | |
1704 | else | |
1705 | half_switch++; | |
1706 | } else if (abs(lc-clock) < tolerance) { | |
1707 | // 64TO | |
1708 | BitStream[bitidx++] = 1; | |
1709 | } else { | |
1710 | // Error | |
1711 | warnings++; | |
1712 | if (warnings > 10) | |
1713 | { | |
1714 | Dbprintf("Error: too many detection errors, aborting."); | |
1715 | return 0; | |
1716 | } | |
1717 | } | |
1718 | ||
1719 | if(block_done == 1) { | |
1720 | if(bitidx == 128) { | |
1721 | for(j=0; j<16; j++) { | |
1722 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1723 | 64*BitStream[j*8+6]+ | |
1724 | 32*BitStream[j*8+5]+ | |
1725 | 16*BitStream[j*8+4]+ | |
1726 | 8*BitStream[j*8+3]+ | |
1727 | 4*BitStream[j*8+2]+ | |
1728 | 2*BitStream[j*8+1]+ | |
1729 | BitStream[j*8]; | |
1730 | } | |
1731 | num_blocks++; | |
1732 | } | |
1733 | bitidx = 0; | |
1734 | block_done = 0; | |
1735 | half_switch = 0; | |
1736 | } | |
1737 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; | |
1738 | else dir = 1; | |
1739 | } | |
1740 | if(bitidx==255) | |
1741 | bitidx=0; | |
1742 | warnings = 0; | |
1743 | if(num_blocks == 4) break; | |
1744 | } | |
1745 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1746 | return num_blocks; | |
1747 | } | |
1748 | ||
1749 | int IsBlock0PCF7931(uint8_t *Block) { | |
1750 | // Assume RFU means 0 :) | |
1751 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1752 | return 1; | |
1753 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1754 | return 1; | |
1755 | return 0; | |
1756 | } | |
1757 | ||
1758 | int IsBlock1PCF7931(uint8_t *Block) { | |
1759 | // Assume RFU means 0 :) | |
1760 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1761 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1762 | return 1; | |
1763 | ||
1764 | return 0; | |
1765 | } | |
1766 | ||
1767 | #define ALLOC 16 | |
1768 | ||
1769 | void ReadPCF7931() { | |
1770 | uint8_t Blocks[8][17]; | |
1771 | uint8_t tmpBlocks[4][16]; | |
1772 | int i, j, ind, ind2, n; | |
1773 | int num_blocks = 0; | |
1774 | int max_blocks = 8; | |
1775 | int ident = 0; | |
1776 | int error = 0; | |
1777 | int tries = 0; | |
1778 | ||
1779 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1780 | ||
1781 | do { | |
1782 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1783 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1784 | if(!n) | |
1785 | error++; | |
1786 | if(error==10 && num_blocks == 0) { | |
1787 | Dbprintf("Error, no tag or bad tag"); | |
1788 | return; | |
1789 | } | |
1790 | else if (tries==20 || error==10) { | |
1791 | Dbprintf("Error reading the tag"); | |
1792 | Dbprintf("Here is the partial content"); | |
1793 | goto end; | |
1794 | } | |
1795 | ||
1796 | for(i=0; i<n; i++) | |
1797 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1798 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1799 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1800 | if(!ident) { | |
1801 | for(i=0; i<n; i++) { | |
1802 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1803 | // Found block 0 ? | |
1804 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1805 | // Found block 1! | |
1806 | // \o/ | |
1807 | ident = 1; | |
1808 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1809 | Blocks[0][ALLOC] = 1; | |
1810 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1811 | Blocks[1][ALLOC] = 1; | |
1812 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1813 | // Debug print | |
1814 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1815 | num_blocks = 2; | |
1816 | // Handle following blocks | |
1817 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1818 | if(j==n) j=0; | |
1819 | if(j==i) break; | |
1820 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1821 | Blocks[ind2][ALLOC] = 1; | |
1822 | } | |
1823 | break; | |
1824 | } | |
1825 | } | |
1826 | } | |
1827 | } | |
1828 | else { | |
1829 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1830 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1831 | for(j=0; j<max_blocks; j++) { | |
1832 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1833 | // Found an identical block | |
1834 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1835 | if(ind2 < 0) | |
1836 | ind2 = max_blocks; | |
1837 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1838 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1839 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1840 | Blocks[ind2][ALLOC] = 1; | |
1841 | num_blocks++; | |
1842 | if(num_blocks == max_blocks) goto end; | |
1843 | } | |
1844 | } | |
1845 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1846 | if(ind2 > max_blocks) | |
1847 | ind2 = 0; | |
1848 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1849 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1850 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1851 | Blocks[ind2][ALLOC] = 1; | |
1852 | num_blocks++; | |
1853 | if(num_blocks == max_blocks) goto end; | |
1854 | } | |
1855 | } | |
1856 | } | |
1857 | } | |
1858 | } | |
1859 | } | |
1860 | } | |
1861 | tries++; | |
1862 | if (BUTTON_PRESS()) return; | |
1863 | } while (num_blocks != max_blocks); | |
1864 | end: | |
1865 | Dbprintf("-----------------------------------------"); | |
1866 | Dbprintf("Memory content:"); | |
1867 | Dbprintf("-----------------------------------------"); | |
1868 | for(i=0; i<max_blocks; i++) { | |
1869 | if(Blocks[i][ALLOC]==1) | |
1870 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1871 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1872 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1873 | else | |
1874 | Dbprintf("<missing block %d>", i); | |
1875 | } | |
1876 | Dbprintf("-----------------------------------------"); | |
1877 | ||
1878 | return ; | |
1879 | } | |
1880 | ||
1881 | ||
1882 | //----------------------------------- | |
1883 | // EM4469 / EM4305 routines | |
1884 | //----------------------------------- | |
1885 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1886 | #define FWD_CMD_WRITE 0xA | |
1887 | #define FWD_CMD_READ 0x9 | |
1888 | #define FWD_CMD_DISABLE 0x5 | |
1889 | ||
1890 | ||
1891 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1892 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1893 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1894 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1895 | ||
1896 | //==================================================================== | |
1897 | // prepares command bits | |
1898 | // see EM4469 spec | |
1899 | //==================================================================== | |
1900 | //-------------------------------------------------------------------- | |
1901 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1902 | //-------------------------------------------------------------------- | |
1903 | ||
1904 | *forward_ptr++ = 0; //start bit | |
1905 | *forward_ptr++ = 0; //second pause for 4050 code | |
1906 | ||
1907 | *forward_ptr++ = cmd; | |
1908 | cmd >>= 1; | |
1909 | *forward_ptr++ = cmd; | |
1910 | cmd >>= 1; | |
1911 | *forward_ptr++ = cmd; | |
1912 | cmd >>= 1; | |
1913 | *forward_ptr++ = cmd; | |
1914 | ||
1915 | return 6; //return number of emited bits | |
1916 | } | |
1917 | ||
1918 | //==================================================================== | |
1919 | // prepares address bits | |
1920 | // see EM4469 spec | |
1921 | //==================================================================== | |
1922 | ||
1923 | //-------------------------------------------------------------------- | |
1924 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1925 | //-------------------------------------------------------------------- | |
1926 | ||
1927 | register uint8_t line_parity; | |
1928 | ||
1929 | uint8_t i; | |
1930 | line_parity = 0; | |
1931 | for(i=0;i<6;i++) { | |
1932 | *forward_ptr++ = addr; | |
1933 | line_parity ^= addr; | |
1934 | addr >>= 1; | |
1935 | } | |
1936 | ||
1937 | *forward_ptr++ = (line_parity & 1); | |
1938 | ||
1939 | return 7; //return number of emited bits | |
1940 | } | |
1941 | ||
1942 | //==================================================================== | |
1943 | // prepares data bits intreleaved with parity bits | |
1944 | // see EM4469 spec | |
1945 | //==================================================================== | |
1946 | ||
1947 | //-------------------------------------------------------------------- | |
1948 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1949 | //-------------------------------------------------------------------- | |
1950 | ||
1951 | register uint8_t line_parity; | |
1952 | register uint8_t column_parity; | |
1953 | register uint8_t i, j; | |
1954 | register uint16_t data; | |
1955 | ||
1956 | data = data_low; | |
1957 | column_parity = 0; | |
1958 | ||
1959 | for(i=0; i<4; i++) { | |
1960 | line_parity = 0; | |
1961 | for(j=0; j<8; j++) { | |
1962 | line_parity ^= data; | |
1963 | column_parity ^= (data & 1) << j; | |
1964 | *forward_ptr++ = data; | |
1965 | data >>= 1; | |
1966 | } | |
1967 | *forward_ptr++ = line_parity; | |
1968 | if(i == 1) | |
1969 | data = data_hi; | |
1970 | } | |
1971 | ||
1972 | for(j=0; j<8; j++) { | |
1973 | *forward_ptr++ = column_parity; | |
1974 | column_parity >>= 1; | |
1975 | } | |
1976 | *forward_ptr = 0; | |
1977 | ||
1978 | return 45; //return number of emited bits | |
1979 | } | |
1980 | ||
1981 | //==================================================================== | |
1982 | // Forward Link send function | |
1983 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1984 | // fwd_bit_count set with number of bits to be sent | |
1985 | //==================================================================== | |
1986 | void SendForward(uint8_t fwd_bit_count) { | |
1987 | ||
1988 | fwd_write_ptr = forwardLink_data; | |
1989 | fwd_bit_sz = fwd_bit_count; | |
1990 | ||
1991 | LED_D_ON(); | |
1992 | ||
1993 | //Field on | |
1994 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1995 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1996 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1997 | ||
1998 | // Give it a bit of time for the resonant antenna to settle. | |
1999 | // And for the tag to fully power up | |
2000 | SpinDelay(150); | |
2001 | ||
2002 | // force 1st mod pulse (start gap must be longer for 4305) | |
2003 | fwd_bit_sz--; //prepare next bit modulation | |
2004 | fwd_write_ptr++; | |
2005 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2006 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
2007 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
2008 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
2009 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
2010 | ||
2011 | // now start writting | |
2012 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
2013 | if(((*fwd_write_ptr++) & 1) == 1) | |
2014 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
2015 | else { | |
2016 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
2017 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2018 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
2019 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
2020 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
2021 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
2022 | } | |
2023 | } | |
2024 | } | |
2025 | ||
2026 | void EM4xLogin(uint32_t Password) { | |
2027 | ||
2028 | uint8_t fwd_bit_count; | |
2029 | ||
2030 | forward_ptr = forwardLink_data; | |
2031 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
2032 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
2033 | ||
2034 | SendForward(fwd_bit_count); | |
2035 | ||
2036 | //Wait for command to complete | |
2037 | SpinDelay(20); | |
2038 | ||
2039 | } | |
2040 | ||
2041 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
2042 | ||
2043 | uint8_t fwd_bit_count; | |
2044 | uint8_t *dest = (uint8_t *)BigBuf; | |
2045 | int m=0, i=0; | |
2046 | ||
2047 | //If password mode do login | |
2048 | if (PwdMode == 1) EM4xLogin(Pwd); | |
2049 | ||
2050 | forward_ptr = forwardLink_data; | |
2051 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
2052 | fwd_bit_count += Prepare_Addr( Address ); | |
2053 | ||
2054 | m = sizeof(BigBuf); | |
2055 | // Clear destination buffer before sending the command | |
2056 | memset(dest, 128, m); | |
2057 | // Connect the A/D to the peak-detected low-frequency path. | |
2058 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
2059 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
2060 | FpgaSetupSsc(); | |
2061 | ||
2062 | SendForward(fwd_bit_count); | |
2063 | ||
2064 | // Now do the acquisition | |
2065 | i = 0; | |
2066 | for(;;) { | |
2067 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
2068 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
2069 | } | |
2070 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
2071 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
2072 | i++; | |
2073 | if (i >= m) break; | |
2074 | } | |
2075 | } | |
2076 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2077 | LED_D_OFF(); | |
2078 | } | |
2079 | ||
2080 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
2081 | ||
2082 | uint8_t fwd_bit_count; | |
2083 | ||
2084 | //If password mode do login | |
2085 | if (PwdMode == 1) EM4xLogin(Pwd); | |
2086 | ||
2087 | forward_ptr = forwardLink_data; | |
2088 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
2089 | fwd_bit_count += Prepare_Addr( Address ); | |
2090 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
2091 | ||
2092 | SendForward(fwd_bit_count); | |
2093 | ||
2094 | //Wait for write to complete | |
2095 | SpinDelay(20); | |
2096 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
2097 | LED_D_OFF(); | |
2098 | } |