]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency demod/decode commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include "lfdemod.h" | |
14 | ||
15 | ||
16 | uint8_t justNoise(uint8_t *BitStream, size_t size) | |
17 | { | |
18 | static const uint8_t THRESHOLD = 123; | |
19 | //test samples are not just noise | |
20 | uint8_t justNoise1 = 1; | |
21 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ | |
22 | justNoise1 = BitStream[idx] < THRESHOLD; | |
23 | } | |
24 | return justNoise1; | |
25 | } | |
26 | ||
27 | //by marshmellow | |
28 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise | |
29 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) | |
30 | { | |
31 | *high=0; | |
32 | *low=255; | |
33 | // get high and low thresholds | |
34 | for (int i=0; i < size; i++){ | |
35 | if (BitStream[i] > *high) *high = BitStream[i]; | |
36 | if (BitStream[i] < *low) *low = BitStream[i]; | |
37 | } | |
38 | if (*high < 123) return -1; // just noise | |
39 | *high = (int)(((*high-128)*(((float)fuzzHi)/100))+128); | |
40 | *low = (int)(((*low-128)*(((float)fuzzLo)/100))+128); | |
41 | return 1; | |
42 | } | |
43 | ||
44 | // by marshmellow | |
45 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType | |
46 | // returns 1 if passed | |
47 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) | |
48 | { | |
49 | uint8_t ans = 0; | |
50 | for (uint8_t i = 0; i < bitLen; i++){ | |
51 | ans ^= ((bits >> i) & 1); | |
52 | } | |
53 | //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); | |
54 | return (ans == pType); | |
55 | } | |
56 | ||
57 | //by marshmellow | |
58 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length | |
59 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) | |
60 | { | |
61 | uint8_t foundCnt=0; | |
62 | for (int idx=0; idx < *size - pLen; idx++){ | |
63 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ | |
64 | //first index found | |
65 | foundCnt++; | |
66 | if (foundCnt == 1){ | |
67 | *startIdx = idx; | |
68 | } | |
69 | if (foundCnt == 2){ | |
70 | *size = idx - *startIdx; | |
71 | return 1; | |
72 | } | |
73 | } | |
74 | } | |
75 | return 0; | |
76 | } | |
77 | ||
78 | //by marshmellow | |
79 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
80 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) | |
81 | { | |
82 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
83 | // otherwise could be a void with no arguments | |
84 | //set defaults | |
85 | uint32_t i = 0; | |
86 | if (BitStream[1]>1){ //allow only 1s and 0s | |
87 | // PrintAndLog("no data found"); | |
88 | return 0; | |
89 | } | |
90 | // 111111111 bit pattern represent start of frame | |
91 | // include 0 in front to help get start pos | |
92 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; | |
93 | uint32_t idx = 0; | |
94 | uint32_t parityBits = 0; | |
95 | uint8_t errChk = 0; | |
96 | uint8_t FmtLen = 10; | |
97 | *startIdx = 0; | |
98 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); | |
99 | if (errChk == 0 || *size < 64) return 0; | |
100 | if (*size > 64) FmtLen = 22; | |
101 | *startIdx += 1; //get rid of 0 from preamble | |
102 | idx = *startIdx + 9; | |
103 | for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits) | |
104 | parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5); | |
105 | //check even parity | |
106 | if (parityTest(parityBits, 5, 0) == 0){ | |
107 | //parity failed quit | |
108 | return 0; | |
109 | } | |
110 | //set uint64 with ID from BitStream | |
111 | for (uint8_t ii=0; ii<4; ii++){ | |
112 | *hi = (*hi << 1) | (*lo >> 63); | |
113 | *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); | |
114 | } | |
115 | } | |
116 | if (errChk != 0) return 1; | |
117 | //skip last 5 bit parity test for simplicity. | |
118 | // *size = 64 | 128; | |
119 | return 0; | |
120 | } | |
121 | ||
122 | //by marshmellow | |
123 | //takes 3 arguments - clock, invert, maxErr as integers | |
124 | //attempts to demodulate ask while decoding manchester | |
125 | //prints binary found and saves in graphbuffer for further commands | |
126 | int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr) | |
127 | { | |
128 | int i; | |
129 | //int clk2=*clk; | |
130 | int start = DetectASKClock(BinStream, *size, clk, 20); //clock default | |
131 | if (*clk==0) return -3; | |
132 | if (start < 0) return -3; | |
133 | // if autodetected too low then adjust //MAY NEED ADJUSTMENT | |
134 | //if (clk2==0 && *clk<8) *clk =64; | |
135 | //if (clk2==0 && *clk<32) *clk=32; | |
136 | if (*invert != 0 && *invert != 1) *invert=0; | |
137 | uint32_t initLoopMax = 200; | |
138 | if (initLoopMax > *size) initLoopMax=*size; | |
139 | // Detect high and lows | |
140 | // 25% fuzz in case highs and lows aren't clipped [marshmellow] | |
141 | int high, low, ans; | |
142 | ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75); | |
143 | if (ans<1) return -2; //just noise | |
144 | ||
145 | // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
146 | int lastBit = 0; //set first clock check | |
147 | uint32_t bitnum = 0; //output counter | |
148 | int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
149 | if (*clk<=32) tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
150 | int iii = 0; | |
151 | uint32_t gLen = *size; | |
152 | if (gLen > 3000) gLen=3000; | |
153 | //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance | |
154 | if (!maxErr) gLen=*clk*2; | |
155 | uint8_t errCnt =0; | |
156 | uint16_t MaxBits = 500; | |
157 | uint32_t bestStart = *size; | |
158 | int bestErrCnt = maxErr+1; | |
159 | // PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
160 | // loop to find first wave that works | |
161 | for (iii=0; iii < gLen; ++iii){ | |
162 | if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){ | |
163 | lastBit=iii-*clk; | |
164 | errCnt=0; | |
165 | // loop through to see if this start location works | |
166 | for (i = iii; i < *size; ++i) { | |
167 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
168 | lastBit+=*clk; | |
169 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
170 | //low found and we are expecting a bar | |
171 | lastBit+=*clk; | |
172 | } else { | |
173 | //mid value found or no bar supposed to be here | |
174 | if ((i-lastBit)>(*clk+tol)){ | |
175 | //should have hit a high or low based on clock!! | |
176 | ||
177 | //debug | |
178 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
179 | ||
180 | errCnt++; | |
181 | lastBit+=*clk;//skip over until hit too many errors | |
182 | if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over | |
183 | } | |
184 | } | |
185 | if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits | |
186 | } | |
187 | //we got more than 64 good bits and not all errors | |
188 | if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) { | |
189 | //possible good read | |
190 | if (errCnt==0){ | |
191 | bestStart=iii; | |
192 | bestErrCnt=errCnt; | |
193 | break; //great read - finish | |
194 | } | |
195 | if (errCnt<bestErrCnt){ //set this as new best run | |
196 | bestErrCnt=errCnt; | |
197 | bestStart = iii; | |
198 | } | |
199 | } | |
200 | } | |
201 | } | |
202 | if (bestErrCnt<=maxErr){ | |
203 | //best run is good enough set to best run and set overwrite BinStream | |
204 | iii=bestStart; | |
205 | lastBit = bestStart - *clk; | |
206 | bitnum=0; | |
207 | for (i = iii; i < *size; ++i) { | |
208 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
209 | lastBit += *clk; | |
210 | BinStream[bitnum] = *invert; | |
211 | bitnum++; | |
212 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
213 | //low found and we are expecting a bar | |
214 | lastBit+=*clk; | |
215 | BinStream[bitnum] = 1-*invert; | |
216 | bitnum++; | |
217 | } else { | |
218 | //mid value found or no bar supposed to be here | |
219 | if ((i-lastBit)>(*clk+tol)){ | |
220 | //should have hit a high or low based on clock!! | |
221 | ||
222 | //debug | |
223 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
224 | if (bitnum > 0){ | |
225 | BinStream[bitnum]=77; | |
226 | bitnum++; | |
227 | } | |
228 | ||
229 | lastBit+=*clk;//skip over error | |
230 | } | |
231 | } | |
232 | if (bitnum >=MaxBits) break; | |
233 | } | |
234 | *size=bitnum; | |
235 | } else{ | |
236 | *invert=bestStart; | |
237 | *clk=iii; | |
238 | return -1; | |
239 | } | |
240 | return bestErrCnt; | |
241 | } | |
242 | ||
243 | //by marshmellow | |
244 | //encode binary data into binary manchester | |
245 | int ManchesterEncode(uint8_t *BitStream, size_t size) | |
246 | { | |
247 | size_t modIdx=20000, i=0; | |
248 | if (size>modIdx) return -1; | |
249 | for (size_t idx=0; idx < size; idx++){ | |
250 | BitStream[idx+modIdx++] = BitStream[idx]; | |
251 | BitStream[idx+modIdx++] = BitStream[idx]^1; | |
252 | } | |
253 | for (; i<(size*2); i++){ | |
254 | BitStream[i] = BitStream[i+20000]; | |
255 | } | |
256 | return i; | |
257 | } | |
258 | ||
259 | //by marshmellow | |
260 | //take 10 and 01 and manchester decode | |
261 | //run through 2 times and take least errCnt | |
262 | int manrawdecode(uint8_t * BitStream, size_t *size) | |
263 | { | |
264 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; | |
265 | size_t i, ii; | |
266 | uint16_t bestErr = 1000, bestRun = 0; | |
267 | if (size == 0) return -1; | |
268 | for (ii=0;ii<2;++ii){ | |
269 | i=0; | |
270 | for (i=i+ii;i<*size-2;i+=2){ | |
271 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
272 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
273 | } else { | |
274 | errCnt++; | |
275 | } | |
276 | if(bitnum>MaxBits) break; | |
277 | } | |
278 | if (bestErr>errCnt){ | |
279 | bestErr=errCnt; | |
280 | bestRun=ii; | |
281 | } | |
282 | errCnt=0; | |
283 | } | |
284 | errCnt=bestErr; | |
285 | if (errCnt<20){ | |
286 | ii=bestRun; | |
287 | i=0; | |
288 | for (i=i+ii; i < *size-2; i+=2){ | |
289 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
290 | BitStream[bitnum++]=0; | |
291 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
292 | BitStream[bitnum++]=1; | |
293 | } else { | |
294 | BitStream[bitnum++]=77; | |
295 | //errCnt++; | |
296 | } | |
297 | if(bitnum>MaxBits) break; | |
298 | } | |
299 | *size=bitnum; | |
300 | } | |
301 | return errCnt; | |
302 | } | |
303 | ||
304 | //by marshmellow | |
305 | //take 01 or 10 = 1 and 11 or 00 = 0 | |
306 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 | |
307 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding | |
308 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) | |
309 | { | |
310 | uint16_t bitnum=0; | |
311 | uint32_t errCnt =0; | |
312 | size_t i=offset; | |
313 | uint16_t MaxBits=512; | |
314 | //if not enough samples - error | |
315 | if (*size < 51) return -1; | |
316 | //check for phase change faults - skip one sample if faulty | |
317 | uint8_t offsetA = 1, offsetB = 1; | |
318 | for (; i<48; i+=2){ | |
319 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; | |
320 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; | |
321 | } | |
322 | if (!offsetA && offsetB) offset++; | |
323 | for (i=offset; i<*size-3; i+=2){ | |
324 | //check for phase error | |
325 | if (BitStream[i+1]==BitStream[i+2]) { | |
326 | BitStream[bitnum++]=77; | |
327 | errCnt++; | |
328 | } | |
329 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ | |
330 | BitStream[bitnum++]=1^invert; | |
331 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ | |
332 | BitStream[bitnum++]=invert; | |
333 | } else { | |
334 | BitStream[bitnum++]=77; | |
335 | errCnt++; | |
336 | } | |
337 | if(bitnum>MaxBits) break; | |
338 | } | |
339 | *size=bitnum; | |
340 | return errCnt; | |
341 | } | |
342 | ||
343 | //by marshmellow | |
344 | void askAmp(uint8_t *BitStream, size_t size) | |
345 | { | |
346 | int shift = 127; | |
347 | int shiftedVal=0; | |
348 | for(int i = 1; i<size; i++){ | |
349 | if (BitStream[i]-BitStream[i-1]>=30) //large jump up | |
350 | shift=127; | |
351 | else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down | |
352 | shift=-127; | |
353 | ||
354 | shiftedVal=BitStream[i]+shift; | |
355 | ||
356 | if (shiftedVal>255) | |
357 | shiftedVal=255; | |
358 | else if (shiftedVal<0) | |
359 | shiftedVal=0; | |
360 | BitStream[i-1] = shiftedVal; | |
361 | } | |
362 | return; | |
363 | } | |
364 | ||
365 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) | |
366 | { | |
367 | size_t bitCnt=0, smplCnt=0, errCnt=0; | |
368 | uint8_t waveHigh = 0; | |
369 | //PrintAndLog("clk: %d", clk); | |
370 | for (size_t i=0; i < *size; i++){ | |
371 | if (BinStream[i] >= high && waveHigh){ | |
372 | smplCnt++; | |
373 | } else if (BinStream[i] <= low && !waveHigh){ | |
374 | smplCnt++; | |
375 | } else { //transition | |
376 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ | |
377 | if (smplCnt > clk-(clk/4)-1) { //full clock | |
378 | if (smplCnt > clk + (clk/4)+1) { //too many samples | |
379 | errCnt++; | |
380 | BinStream[bitCnt++]=77; | |
381 | } else if (waveHigh) { | |
382 | BinStream[bitCnt++] = invert; | |
383 | BinStream[bitCnt++] = invert; | |
384 | } else if (!waveHigh) { | |
385 | BinStream[bitCnt++] = invert ^ 1; | |
386 | BinStream[bitCnt++] = invert ^ 1; | |
387 | } | |
388 | waveHigh ^= 1; | |
389 | smplCnt = 0; | |
390 | } else if (smplCnt > (clk/2) - (clk/4)-1) { | |
391 | if (waveHigh) { | |
392 | BinStream[bitCnt++] = invert; | |
393 | } else if (!waveHigh) { | |
394 | BinStream[bitCnt++] = invert ^ 1; | |
395 | } | |
396 | waveHigh ^= 1; | |
397 | smplCnt = 0; | |
398 | } else if (!bitCnt) { | |
399 | //first bit | |
400 | waveHigh = (BinStream[i] >= high); | |
401 | smplCnt = 1; | |
402 | } else { | |
403 | smplCnt++; | |
404 | //transition bit oops | |
405 | } | |
406 | } else { //haven't hit new high or new low yet | |
407 | smplCnt++; | |
408 | } | |
409 | } | |
410 | } | |
411 | *size = bitCnt; | |
412 | return errCnt; | |
413 | } | |
414 | ||
415 | //by marshmellow | |
416 | //takes 3 arguments - clock, invert and maxErr as integers | |
417 | //attempts to demodulate ask only | |
418 | int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp) | |
419 | { | |
420 | uint32_t i; | |
421 | if (*size==0) return -1; | |
422 | int start = DetectASKClock(BinStream, *size, clk, 20); //clock default | |
423 | if (*clk==0) return -1; | |
424 | if (start<0) return -1; | |
425 | if (*invert != 0 && *invert != 1) *invert =0; | |
426 | if (amp==1) askAmp(BinStream, *size); | |
427 | ||
428 | uint32_t initLoopMax = 200; | |
429 | if (initLoopMax > *size) initLoopMax=*size; | |
430 | // Detect high and lows | |
431 | //25% clip in case highs and lows aren't clipped [marshmellow] | |
432 | uint8_t clip = 75; | |
433 | int high, low, ans; | |
434 | ans = getHiLo(BinStream, initLoopMax, &high, &low, clip, clip); | |
435 | if (ans<1) return -1; //just noise | |
436 | ||
437 | if (DetectCleanAskWave(BinStream, *size, high, low)) { | |
438 | //PrintAndLog("Clean"); | |
439 | return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); | |
440 | } | |
441 | ||
442 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
443 | int lastBit = 0; //set first clock check | |
444 | uint32_t bitnum = 0; //output counter | |
445 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock | |
446 | // if they fall + or - this value + clock from last valid wave | |
447 | if (*clk == 32) tol=0; //clock tolerance may not be needed anymore currently set to | |
448 | // + or - 1 but could be increased for poor waves or removed entirely | |
449 | uint32_t iii = 0; | |
450 | uint32_t gLen = *size; | |
451 | if (gLen > 500) gLen=500; | |
452 | //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance | |
453 | if (!maxErr) gLen = *clk * 2; | |
454 | uint8_t errCnt =0; | |
455 | uint32_t bestStart = *size; | |
456 | uint32_t bestErrCnt = maxErr; //(*size/1000); | |
457 | uint8_t midBit=0; | |
458 | uint16_t MaxBits=1000; | |
459 | ||
460 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
461 | //loop to find first wave that works | |
462 | for (iii=start; iii < gLen; ++iii){ | |
463 | if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){ | |
464 | lastBit=iii-*clk; | |
465 | errCnt=0; | |
466 | //loop through to see if this start location works | |
467 | for (i = iii; i < *size; ++i) { | |
468 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
469 | lastBit+=*clk; | |
470 | midBit=0; | |
471 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
472 | //low found and we are expecting a bar | |
473 | lastBit+=*clk; | |
474 | midBit=0; | |
475 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
476 | //mid bar? | |
477 | midBit=1; | |
478 | } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
479 | //mid bar? | |
480 | midBit=1; | |
481 | } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ | |
482 | //no mid bar found | |
483 | midBit=1; | |
484 | } else { | |
485 | //mid value found or no bar supposed to be here | |
486 | ||
487 | if ((i-lastBit)>(*clk+tol)){ | |
488 | //should have hit a high or low based on clock!! | |
489 | //debug | |
490 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
491 | ||
492 | errCnt++; | |
493 | lastBit+=*clk;//skip over until hit too many errors | |
494 | if (errCnt > maxErr){ | |
495 | //errCnt=0; | |
496 | break; | |
497 | } | |
498 | } | |
499 | } | |
500 | if ((i-iii)>(MaxBits * *clk)) break; //got enough bits | |
501 | } | |
502 | //we got more than 64 good bits and not all errors | |
503 | if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) { | |
504 | //possible good read | |
505 | if (errCnt==0){ | |
506 | bestStart=iii; | |
507 | bestErrCnt=errCnt; | |
508 | break; //great read - finish | |
509 | } | |
510 | if (errCnt<bestErrCnt){ //set this as new best run | |
511 | bestErrCnt=errCnt; | |
512 | bestStart = iii; | |
513 | } | |
514 | } | |
515 | } | |
516 | } | |
517 | if (bestErrCnt<=maxErr){ | |
518 | //best run is good enough - set to best run and overwrite BinStream | |
519 | iii = bestStart; | |
520 | lastBit = bestStart - *clk; | |
521 | bitnum=0; | |
522 | for (i = iii; i < *size; ++i) { | |
523 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
524 | lastBit += *clk; | |
525 | BinStream[bitnum] = *invert; | |
526 | bitnum++; | |
527 | midBit=0; | |
528 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
529 | //low found and we are expecting a bar | |
530 | lastBit+=*clk; | |
531 | BinStream[bitnum] = 1 - *invert; | |
532 | bitnum++; | |
533 | midBit=0; | |
534 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
535 | //mid bar? | |
536 | midBit=1; | |
537 | BinStream[bitnum] = 1 - *invert; | |
538 | bitnum++; | |
539 | } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
540 | //mid bar? | |
541 | midBit=1; | |
542 | BinStream[bitnum] = *invert; | |
543 | bitnum++; | |
544 | } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ | |
545 | //no mid bar found | |
546 | midBit=1; | |
547 | if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1]; | |
548 | bitnum++; | |
549 | ||
550 | } else { | |
551 | //mid value found or no bar supposed to be here | |
552 | if ((i-lastBit)>(*clk+tol)){ | |
553 | //should have hit a high or low based on clock!! | |
554 | ||
555 | //debug | |
556 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
557 | if (bitnum > 0){ | |
558 | BinStream[bitnum]=77; | |
559 | bitnum++; | |
560 | } | |
561 | lastBit+=*clk;//skip over error | |
562 | } | |
563 | } | |
564 | if (bitnum >= MaxBits) break; | |
565 | } | |
566 | *size=bitnum; | |
567 | } else{ | |
568 | *invert=bestStart; | |
569 | *clk=iii; | |
570 | return -1; | |
571 | } | |
572 | return bestErrCnt; | |
573 | } | |
574 | ||
575 | // demod gProxIIDemod | |
576 | // error returns as -x | |
577 | // success returns start position in BitStream | |
578 | // BitStream must contain previously askrawdemod and biphasedemoded data | |
579 | int gProxII_Demod(uint8_t BitStream[], size_t *size) | |
580 | { | |
581 | size_t startIdx=0; | |
582 | uint8_t preamble[] = {1,1,1,1,1,0}; | |
583 | ||
584 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); | |
585 | if (errChk == 0) return -3; //preamble not found | |
586 | if (*size != 96) return -2; //should have found 96 bits | |
587 | //check first 6 spacer bits to verify format | |
588 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ | |
589 | //confirmed proper separator bits found | |
590 | //return start position | |
591 | return (int) startIdx; | |
592 | } | |
593 | return -5; | |
594 | } | |
595 | ||
596 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
597 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) | |
598 | { | |
599 | uint32_t last_transition = 0; | |
600 | uint32_t idx = 1; | |
601 | //uint32_t maxVal=0; | |
602 | if (fchigh==0) fchigh=10; | |
603 | if (fclow==0) fclow=8; | |
604 | //set the threshold close to 0 (graph) or 128 std to avoid static | |
605 | uint8_t threshold_value = 123; | |
606 | ||
607 | // sync to first lo-hi transition, and threshold | |
608 | ||
609 | // Need to threshold first sample | |
610 | ||
611 | if(dest[0] < threshold_value) dest[0] = 0; | |
612 | else dest[0] = 1; | |
613 | ||
614 | size_t numBits = 0; | |
615 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
616 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
617 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
618 | for(idx = 1; idx < size; idx++) { | |
619 | // threshold current value | |
620 | ||
621 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
622 | else dest[idx] = 1; | |
623 | ||
624 | // Check for 0->1 transition | |
625 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
626 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
627 | //do nothing with extra garbage | |
628 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
629 | dest[numBits]=1; | |
630 | } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage | |
631 | //do nothing with beginning garbage | |
632 | } else { //9+ = 10 waves | |
633 | dest[numBits]=0; | |
634 | } | |
635 | last_transition = idx; | |
636 | numBits++; | |
637 | } | |
638 | } | |
639 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
640 | } | |
641 | ||
642 | uint32_t myround2(float f) | |
643 | { | |
644 | if (f >= 2000) return 2000;//something bad happened | |
645 | return (uint32_t) (f + (float)0.5); | |
646 | } | |
647 | ||
648 | //translate 11111100000 to 10 | |
649 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, | |
650 | uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
651 | { | |
652 | uint8_t lastval=dest[0]; | |
653 | uint32_t idx=0; | |
654 | size_t numBits=0; | |
655 | uint32_t n=1; | |
656 | float lowWaves = (((float)(rfLen))/((float)fclow)); | |
657 | float highWaves = (((float)(rfLen))/((float)fchigh)); | |
658 | for( idx=1; idx < size; idx++) { | |
659 | ||
660 | if (dest[idx]==lastval) { | |
661 | n++; | |
662 | continue; | |
663 | } | |
664 | n++; | |
665 | //if lastval was 1, we have a 1->0 crossing | |
666 | if (dest[idx-1]==1) { | |
667 | if (!numBits && n < (uint8_t)lowWaves) { | |
668 | n=0; | |
669 | lastval = dest[idx]; | |
670 | continue; | |
671 | } | |
672 | n=myround2(((float)n)/lowWaves); | |
673 | } else {// 0->1 crossing | |
674 | //test first bitsample too small | |
675 | if (!numBits && n < (uint8_t)highWaves) { | |
676 | n=0; | |
677 | lastval = dest[idx]; | |
678 | continue; | |
679 | } | |
680 | n = myround2(((float)n)/highWaves); //-1 for fudge factor | |
681 | } | |
682 | if (n == 0) n = 1; | |
683 | ||
684 | if(n < maxConsequtiveBits) //Consecutive | |
685 | { | |
686 | if(invert==0){ //invert bits | |
687 | memset(dest+numBits, dest[idx-1] , n); | |
688 | }else{ | |
689 | memset(dest+numBits, dest[idx-1]^1 , n); | |
690 | } | |
691 | numBits += n; | |
692 | } | |
693 | n=0; | |
694 | lastval=dest[idx]; | |
695 | }//end for | |
696 | ||
697 | // if valid extra bits at the end were all the same frequency - add them in | |
698 | if (n > lowWaves && n > highWaves) { | |
699 | if (dest[idx-2]==1) { | |
700 | n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); | |
701 | } else { | |
702 | n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor | |
703 | } | |
704 | memset(dest, dest[idx-1]^invert , n); | |
705 | numBits += n; | |
706 | } | |
707 | return numBits; | |
708 | } | |
709 | //by marshmellow (from holiman's base) | |
710 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
711 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
712 | { | |
713 | // FSK demodulator | |
714 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
715 | size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow); | |
716 | return size; | |
717 | } | |
718 | ||
719 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
720 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
721 | { | |
722 | if (justNoise(dest, *size)) return -1; | |
723 | ||
724 | size_t numStart=0, size2=*size, startIdx=0; | |
725 | // FSK demodulator | |
726 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
727 | if (*size < 96) return -2; | |
728 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 | |
729 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; | |
730 | // find bitstring in array | |
731 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
732 | if (errChk == 0) return -3; //preamble not found | |
733 | ||
734 | numStart = startIdx + sizeof(preamble); | |
735 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
736 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
737 | if (dest[idx] == dest[idx+1]){ | |
738 | return -4; //not manchester data | |
739 | } | |
740 | *hi2 = (*hi2<<1)|(*hi>>31); | |
741 | *hi = (*hi<<1)|(*lo>>31); | |
742 | //Then, shift in a 0 or one into low | |
743 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
744 | *lo=(*lo<<1)|1; | |
745 | else // 0 1 | |
746 | *lo=(*lo<<1)|0; | |
747 | } | |
748 | return (int)startIdx; | |
749 | } | |
750 | ||
751 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it | |
752 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
753 | { | |
754 | if (justNoise(dest, *size)) return -1; | |
755 | ||
756 | size_t numStart=0, size2=*size, startIdx=0; | |
757 | // FSK demodulator | |
758 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a | |
759 | if (*size < 96) return -2; | |
760 | ||
761 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 | |
762 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; | |
763 | ||
764 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
765 | if (errChk == 0) return -3; //preamble not found | |
766 | ||
767 | numStart = startIdx + sizeof(preamble); | |
768 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID | |
769 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ | |
770 | if (dest[idx] == dest[idx+1]) | |
771 | return -4; //not manchester data | |
772 | *hi2 = (*hi2<<1)|(*hi>>31); | |
773 | *hi = (*hi<<1)|(*lo>>31); | |
774 | //Then, shift in a 0 or one into low | |
775 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
776 | *lo=(*lo<<1)|1; | |
777 | else // 0 1 | |
778 | *lo=(*lo<<1)|0; | |
779 | } | |
780 | return (int)startIdx; | |
781 | } | |
782 | ||
783 | uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) | |
784 | { | |
785 | uint32_t num = 0; | |
786 | for(int i = 0 ; i < numbits ; i++) | |
787 | { | |
788 | num = (num << 1) | (*src); | |
789 | src++; | |
790 | } | |
791 | return num; | |
792 | } | |
793 | ||
794 | int IOdemodFSK(uint8_t *dest, size_t size) | |
795 | { | |
796 | if (justNoise(dest, size)) return -1; | |
797 | //make sure buffer has data | |
798 | if (size < 66*64) return -2; | |
799 | // FSK demodulator | |
800 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 | |
801 | if (size < 65) return -3; //did we get a good demod? | |
802 | //Index map | |
803 | //0 10 20 30 40 50 60 | |
804 | //| | | | | | | | |
805 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
806 | //----------------------------------------------------------------------------- | |
807 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
808 | // | |
809 | //XSF(version)facility:codeone+codetwo | |
810 | //Handle the data | |
811 | size_t startIdx = 0; | |
812 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; | |
813 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); | |
814 | if (errChk == 0) return -4; //preamble not found | |
815 | ||
816 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ | |
817 | //confirmed proper separator bits found | |
818 | //return start position | |
819 | return (int) startIdx; | |
820 | } | |
821 | return -5; | |
822 | } | |
823 | ||
824 | // by marshmellow | |
825 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), | |
826 | // Parity Type (1 for odd 0 for even), and binary Length (length to run) | |
827 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) | |
828 | { | |
829 | uint32_t parityWd = 0; | |
830 | size_t j = 0, bitCnt = 0; | |
831 | for (int word = 0; word < (bLen); word+=pLen){ | |
832 | for (int bit=0; bit < pLen; bit++){ | |
833 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; | |
834 | BitStream[j++] = (BitStream[startIdx+word+bit]); | |
835 | } | |
836 | j--; | |
837 | // if parity fails then return 0 | |
838 | if (parityTest(parityWd, pLen, pType) == 0) return -1; | |
839 | bitCnt+=(pLen-1); | |
840 | parityWd = 0; | |
841 | } | |
842 | // if we got here then all the parities passed | |
843 | //return ID start index and size | |
844 | return bitCnt; | |
845 | } | |
846 | ||
847 | // by marshmellow | |
848 | // FSK Demod then try to locate an AWID ID | |
849 | int AWIDdemodFSK(uint8_t *dest, size_t *size) | |
850 | { | |
851 | //make sure buffer has enough data | |
852 | if (*size < 96*50) return -1; | |
853 | ||
854 | if (justNoise(dest, *size)) return -2; | |
855 | ||
856 | // FSK demodulator | |
857 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
858 | if (*size < 96) return -3; //did we get a good demod? | |
859 | ||
860 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; | |
861 | size_t startIdx = 0; | |
862 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
863 | if (errChk == 0) return -4; //preamble not found | |
864 | if (*size != 96) return -5; | |
865 | return (int)startIdx; | |
866 | } | |
867 | ||
868 | // by marshmellow | |
869 | // FSK Demod then try to locate an Farpointe Data (pyramid) ID | |
870 | int PyramiddemodFSK(uint8_t *dest, size_t *size) | |
871 | { | |
872 | //make sure buffer has data | |
873 | if (*size < 128*50) return -5; | |
874 | ||
875 | //test samples are not just noise | |
876 | if (justNoise(dest, *size)) return -1; | |
877 | ||
878 | // FSK demodulator | |
879 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 | |
880 | if (*size < 128) return -2; //did we get a good demod? | |
881 | ||
882 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; | |
883 | size_t startIdx = 0; | |
884 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); | |
885 | if (errChk == 0) return -4; //preamble not found | |
886 | if (*size != 128) return -3; | |
887 | return (int)startIdx; | |
888 | } | |
889 | ||
890 | ||
891 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low) | |
892 | { | |
893 | uint16_t allPeaks=1; | |
894 | uint16_t cntPeaks=0; | |
895 | size_t loopEnd = 572; | |
896 | if (loopEnd > size) loopEnd = size; | |
897 | for (size_t i=60; i<loopEnd; i++){ | |
898 | if (dest[i]>low && dest[i]<high) | |
899 | allPeaks=0; | |
900 | else | |
901 | cntPeaks++; | |
902 | } | |
903 | if (allPeaks == 0){ | |
904 | if (cntPeaks > 300) return 1; | |
905 | } | |
906 | return allPeaks; | |
907 | } | |
908 | ||
909 | int DetectStrongAskClock(uint8_t dest[], size_t size) | |
910 | { | |
911 | int clk[]={0,8,16,32,40,50,64,100,128,256}; | |
912 | size_t idx = 40; | |
913 | uint8_t high=0; | |
914 | size_t cnt = 0; | |
915 | size_t highCnt = 0; | |
916 | size_t highCnt2 = 0; | |
917 | for (;idx < size; idx++){ | |
918 | if (dest[idx]>128) { | |
919 | if (!high){ | |
920 | high=1; | |
921 | if (cnt > highCnt){ | |
922 | if (highCnt != 0) highCnt2 = highCnt; | |
923 | highCnt = cnt; | |
924 | } else if (cnt > highCnt2) { | |
925 | highCnt2 = cnt; | |
926 | } | |
927 | cnt=1; | |
928 | } else { | |
929 | cnt++; | |
930 | } | |
931 | } else if (dest[idx] <= 128){ | |
932 | if (high) { | |
933 | high=0; | |
934 | if (cnt > highCnt) { | |
935 | if (highCnt != 0) highCnt2 = highCnt; | |
936 | highCnt = cnt; | |
937 | } else if (cnt > highCnt2) { | |
938 | highCnt2 = cnt; | |
939 | } | |
940 | cnt=1; | |
941 | } else { | |
942 | cnt++; | |
943 | } | |
944 | } | |
945 | } | |
946 | uint8_t tol; | |
947 | for (idx=8; idx>0; idx--){ | |
948 | tol = clk[idx]/8; | |
949 | if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol) | |
950 | return clk[idx]; | |
951 | if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol) | |
952 | return clk[idx]; | |
953 | } | |
954 | return -1; | |
955 | } | |
956 | ||
957 | // by marshmellow | |
958 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
959 | // maybe somehow adjust peak trimming value based on samples to fix? | |
960 | // return start index of best starting position for that clock and return clock (by reference) | |
961 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) | |
962 | { | |
963 | int i=0; | |
964 | int clk[]={8,16,32,40,50,64,100,128,256}; | |
965 | int loopCnt = 256; //don't need to loop through entire array... | |
966 | if (size == 0) return -1; | |
967 | if (size<loopCnt) loopCnt = size; | |
968 | //if we already have a valid clock quit | |
969 | ||
970 | for (;i<8;++i) | |
971 | if (clk[i] == *clock) return 0; | |
972 | ||
973 | //get high and low peak | |
974 | int peak, low; | |
975 | getHiLo(dest, loopCnt, &peak, &low, 75, 75); | |
976 | ||
977 | //test for large clean peaks | |
978 | if (DetectCleanAskWave(dest, size, peak, low)==1){ | |
979 | int ans = DetectStrongAskClock(dest, size); | |
980 | for (i=7; i>0; i--){ | |
981 | if (clk[i] == ans) { | |
982 | *clock=ans; | |
983 | return 0; | |
984 | } | |
985 | } | |
986 | } | |
987 | int ii; | |
988 | int clkCnt; | |
989 | int tol = 0; | |
990 | int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
991 | int bestStart[]={0,0,0,0,0,0,0,0,0}; | |
992 | int errCnt=0; | |
993 | //test each valid clock from smallest to greatest to see which lines up | |
994 | for(clkCnt=0; clkCnt < 8; clkCnt++){ | |
995 | if (clk[clkCnt] == 32){ | |
996 | tol=1; | |
997 | }else{ | |
998 | tol=0; | |
999 | } | |
1000 | if (!maxErr) loopCnt=clk[clkCnt]*2; | |
1001 | bestErr[clkCnt]=1000; | |
1002 | //try lining up the peaks by moving starting point (try first 256) | |
1003 | for (ii=0; ii < loopCnt; ii++){ | |
1004 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ | |
1005 | errCnt=0; | |
1006 | // now that we have the first one lined up test rest of wave array | |
1007 | for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ | |
1008 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
1009 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
1010 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
1011 | }else{ //error no peak detected | |
1012 | errCnt++; | |
1013 | } | |
1014 | } | |
1015 | //if we found no errors then we can stop here | |
1016 | // this is correct one - return this clock | |
1017 | //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); | |
1018 | if(errCnt==0 && clkCnt<6) { | |
1019 | *clock = clk[clkCnt]; | |
1020 | return ii; | |
1021 | } | |
1022 | //if we found errors see if it is lowest so far and save it as best run | |
1023 | if(errCnt<bestErr[clkCnt]){ | |
1024 | bestErr[clkCnt]=errCnt; | |
1025 | bestStart[clkCnt]=ii; | |
1026 | } | |
1027 | } | |
1028 | } | |
1029 | } | |
1030 | uint8_t iii=0; | |
1031 | uint8_t best=0; | |
1032 | for (iii=0; iii<8; ++iii){ | |
1033 | if (bestErr[iii]<bestErr[best]){ | |
1034 | if (bestErr[iii]==0) bestErr[iii]=1; | |
1035 | // current best bit to error ratio vs new bit to error ratio | |
1036 | if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){ | |
1037 | best = iii; | |
1038 | } | |
1039 | } | |
1040 | } | |
1041 | if (bestErr[best]>maxErr) return -1; | |
1042 | *clock=clk[best]; | |
1043 | return bestStart[best]; | |
1044 | } | |
1045 | ||
1046 | //by marshmellow | |
1047 | //detect psk clock by reading each phase shift | |
1048 | // a phase shift is determined by measuring the sample length of each wave | |
1049 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) | |
1050 | { | |
1051 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock | |
1052 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
1053 | if (size == 0) return 0; | |
1054 | if (size<loopCnt) loopCnt = size; | |
1055 | ||
1056 | //if we already have a valid clock quit | |
1057 | size_t i=1; | |
1058 | for (; i < 8; ++i) | |
1059 | if (clk[i] == clock) return clock; | |
1060 | ||
1061 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1062 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; | |
1063 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; | |
1064 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
1065 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
1066 | countFC(dest, size, &fc); | |
1067 | //PrintAndLog("DEBUG: FC: %d",fc); | |
1068 | ||
1069 | //find first full wave | |
1070 | for (i=0; i<loopCnt; i++){ | |
1071 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1072 | if (waveStart == 0) { | |
1073 | waveStart = i+1; | |
1074 | //PrintAndLog("DEBUG: waveStart: %d",waveStart); | |
1075 | } else { | |
1076 | waveEnd = i+1; | |
1077 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); | |
1078 | waveLenCnt = waveEnd-waveStart; | |
1079 | if (waveLenCnt > fc){ | |
1080 | firstFullWave = waveStart; | |
1081 | fullWaveLen=waveLenCnt; | |
1082 | break; | |
1083 | } | |
1084 | waveStart=0; | |
1085 | } | |
1086 | } | |
1087 | } | |
1088 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); | |
1089 | ||
1090 | //test each valid clock from greatest to smallest to see which lines up | |
1091 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ | |
1092 | lastClkBit = firstFullWave; //set end of wave as clock align | |
1093 | waveStart = 0; | |
1094 | errCnt=0; | |
1095 | peakcnt=0; | |
1096 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); | |
1097 | ||
1098 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ | |
1099 | //top edge of wave = start of new wave | |
1100 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1101 | if (waveStart == 0) { | |
1102 | waveStart = i+1; | |
1103 | waveLenCnt=0; | |
1104 | } else { //waveEnd | |
1105 | waveEnd = i+1; | |
1106 | waveLenCnt = waveEnd-waveStart; | |
1107 | if (waveLenCnt > fc){ | |
1108 | //if this wave is a phase shift | |
1109 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); | |
1110 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit | |
1111 | peakcnt++; | |
1112 | lastClkBit+=clk[clkCnt]; | |
1113 | } else if (i<lastClkBit+8){ | |
1114 | //noise after a phase shift - ignore | |
1115 | } else { //phase shift before supposed to based on clock | |
1116 | errCnt++; | |
1117 | } | |
1118 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ | |
1119 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit | |
1120 | } | |
1121 | waveStart=i+1; | |
1122 | } | |
1123 | } | |
1124 | } | |
1125 | if (errCnt == 0){ | |
1126 | return clk[clkCnt]; | |
1127 | } | |
1128 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
1129 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; | |
1130 | } | |
1131 | //all tested with errors | |
1132 | //return the highest clk with the most peaks found | |
1133 | uint8_t best=7; | |
1134 | for (i=7; i>=1; i--){ | |
1135 | if (peaksdet[i] > peaksdet[best]) { | |
1136 | best = i; | |
1137 | } | |
1138 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); | |
1139 | } | |
1140 | return clk[best]; | |
1141 | } | |
1142 | ||
1143 | //by marshmellow | |
1144 | //detect nrz clock by reading #peaks vs no peaks(or errors) | |
1145 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) | |
1146 | { | |
1147 | int i=0; | |
1148 | int clk[]={8,16,32,40,50,64,100,128,256}; | |
1149 | int loopCnt = 4096; //don't need to loop through entire array... | |
1150 | if (size == 0) return 0; | |
1151 | if (size<loopCnt) loopCnt = size; | |
1152 | ||
1153 | //if we already have a valid clock quit | |
1154 | for (; i < 8; ++i) | |
1155 | if (clk[i] == clock) return clock; | |
1156 | ||
1157 | //get high and low peak | |
1158 | int peak, low; | |
1159 | getHiLo(dest, loopCnt, &peak, &low, 75, 75); | |
1160 | ||
1161 | //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); | |
1162 | int ii; | |
1163 | uint8_t clkCnt; | |
1164 | uint8_t tol = 0; | |
1165 | int peakcnt=0; | |
1166 | int peaksdet[]={0,0,0,0,0,0,0,0}; | |
1167 | int maxPeak=0; | |
1168 | //test for large clipped waves | |
1169 | for (i=0; i<loopCnt; i++){ | |
1170 | if (dest[i] >= peak || dest[i] <= low){ | |
1171 | peakcnt++; | |
1172 | } else { | |
1173 | if (peakcnt>0 && maxPeak < peakcnt){ | |
1174 | maxPeak = peakcnt; | |
1175 | } | |
1176 | peakcnt=0; | |
1177 | } | |
1178 | } | |
1179 | peakcnt=0; | |
1180 | //test each valid clock from smallest to greatest to see which lines up | |
1181 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ | |
1182 | //ignore clocks smaller than largest peak | |
1183 | if (clk[clkCnt]<maxPeak) continue; | |
1184 | ||
1185 | //try lining up the peaks by moving starting point (try first 256) | |
1186 | for (ii=0; ii< loopCnt; ++ii){ | |
1187 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ | |
1188 | peakcnt=0; | |
1189 | // now that we have the first one lined up test rest of wave array | |
1190 | for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ | |
1191 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
1192 | peakcnt++; | |
1193 | } | |
1194 | } | |
1195 | if(peakcnt>peaksdet[clkCnt]) { | |
1196 | peaksdet[clkCnt]=peakcnt; | |
1197 | } | |
1198 | } | |
1199 | } | |
1200 | } | |
1201 | int iii=7; | |
1202 | int best=0; | |
1203 | for (iii=7; iii > 0; iii--){ | |
1204 | if (peaksdet[iii] > peaksdet[best]){ | |
1205 | best = iii; | |
1206 | } | |
1207 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); | |
1208 | } | |
1209 | return clk[best]; | |
1210 | } | |
1211 | ||
1212 | // by marshmellow | |
1213 | // convert psk1 demod to psk2 demod | |
1214 | // only transition waves are 1s | |
1215 | void psk1TOpsk2(uint8_t *BitStream, size_t size) | |
1216 | { | |
1217 | size_t i=1; | |
1218 | uint8_t lastBit=BitStream[0]; | |
1219 | for (; i<size; i++){ | |
1220 | if (BitStream[i]==77){ | |
1221 | //ignore errors | |
1222 | } else if (lastBit!=BitStream[i]){ | |
1223 | lastBit=BitStream[i]; | |
1224 | BitStream[i]=1; | |
1225 | } else { | |
1226 | BitStream[i]=0; | |
1227 | } | |
1228 | } | |
1229 | return; | |
1230 | } | |
1231 | ||
1232 | // by marshmellow | |
1233 | // convert psk2 demod to psk1 demod | |
1234 | // from only transition waves are 1s to phase shifts change bit | |
1235 | void psk2TOpsk1(uint8_t *BitStream, size_t size) | |
1236 | { | |
1237 | uint8_t phase=0; | |
1238 | for (size_t i=0; i<size; i++){ | |
1239 | if (BitStream[i]==1){ | |
1240 | phase ^=1; | |
1241 | } | |
1242 | BitStream[i]=phase; | |
1243 | } | |
1244 | return; | |
1245 | } | |
1246 | ||
1247 | // redesigned by marshmellow adjusted from existing decode functions | |
1248 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
1249 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) | |
1250 | { | |
1251 | //26 bit 40134 format (don't know other formats) | |
1252 | int i; | |
1253 | int long_wait=29;//29 leading zeros in format | |
1254 | int start; | |
1255 | int first = 0; | |
1256 | int first2 = 0; | |
1257 | int bitCnt = 0; | |
1258 | int ii; | |
1259 | // Finding the start of a UID | |
1260 | for (start = 0; start <= *size - 250; start++) { | |
1261 | first = bitStream[start]; | |
1262 | for (i = start; i < start + long_wait; i++) { | |
1263 | if (bitStream[i] != first) { | |
1264 | break; | |
1265 | } | |
1266 | } | |
1267 | if (i == (start + long_wait)) { | |
1268 | break; | |
1269 | } | |
1270 | } | |
1271 | if (start == *size - 250 + 1) { | |
1272 | // did not find start sequence | |
1273 | return -1; | |
1274 | } | |
1275 | // Inverting signal if needed | |
1276 | if (first == 1) { | |
1277 | for (i = start; i < *size; i++) { | |
1278 | bitStream[i] = !bitStream[i]; | |
1279 | } | |
1280 | *invert = 1; | |
1281 | }else *invert=0; | |
1282 | ||
1283 | int iii; | |
1284 | //found start once now test length by finding next one | |
1285 | for (ii=start+29; ii <= *size - 250; ii++) { | |
1286 | first2 = bitStream[ii]; | |
1287 | for (iii = ii; iii < ii + long_wait; iii++) { | |
1288 | if (bitStream[iii] != first2) { | |
1289 | break; | |
1290 | } | |
1291 | } | |
1292 | if (iii == (ii + long_wait)) { | |
1293 | break; | |
1294 | } | |
1295 | } | |
1296 | if (ii== *size - 250 + 1){ | |
1297 | // did not find second start sequence | |
1298 | return -2; | |
1299 | } | |
1300 | bitCnt=ii-start; | |
1301 | ||
1302 | // Dumping UID | |
1303 | i = start; | |
1304 | for (ii = 0; ii < bitCnt; ii++) { | |
1305 | bitStream[ii] = bitStream[i++]; | |
1306 | } | |
1307 | *size=bitCnt; | |
1308 | return 1; | |
1309 | } | |
1310 | ||
1311 | // by marshmellow - demodulate NRZ wave (both similar enough) | |
1312 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak | |
1313 | // there probably is a much simpler way to do this.... | |
1314 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr) | |
1315 | { | |
1316 | if (justNoise(dest, *size)) return -1; | |
1317 | *clk = DetectNRZClock(dest, *size, *clk); | |
1318 | if (*clk==0) return -2; | |
1319 | uint32_t i; | |
1320 | uint32_t gLen = 4096; | |
1321 | if (gLen>*size) gLen = *size; | |
1322 | int high, low; | |
1323 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low | |
1324 | int lastBit = 0; //set first clock check | |
1325 | uint32_t bitnum = 0; //output counter | |
1326 | uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
1327 | uint32_t iii = 0; | |
1328 | uint16_t errCnt =0; | |
1329 | uint16_t MaxBits = 1000; | |
1330 | uint32_t bestErrCnt = maxErr+1; | |
1331 | uint32_t bestPeakCnt = 0; | |
1332 | uint32_t bestPeakStart=0; | |
1333 | uint8_t bestFirstPeakHigh=0; | |
1334 | uint8_t firstPeakHigh=0; | |
1335 | uint8_t curBit=0; | |
1336 | uint8_t bitHigh=0; | |
1337 | uint8_t errBitHigh=0; | |
1338 | uint16_t peakCnt=0; | |
1339 | uint8_t ignoreWindow=4; | |
1340 | uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak | |
1341 | //loop to find first wave that works - align to clock | |
1342 | for (iii=0; iii < gLen; ++iii){ | |
1343 | if ((dest[iii]>=high) || (dest[iii]<=low)){ | |
1344 | if (dest[iii]>=high) firstPeakHigh=1; | |
1345 | else firstPeakHigh=0; | |
1346 | lastBit=iii-*clk; | |
1347 | peakCnt=0; | |
1348 | errCnt=0; | |
1349 | bitnum=0; | |
1350 | //loop through to see if this start location works | |
1351 | for (i = iii; i < *size; ++i) { | |
1352 | //if we found a high bar and we are at a clock bit | |
1353 | if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
1354 | bitHigh=1; | |
1355 | lastBit+=*clk; | |
1356 | bitnum++; | |
1357 | peakCnt++; | |
1358 | errBitHigh=0; | |
1359 | ignoreCnt=ignoreWindow; | |
1360 | //else if low bar found and we are at a clock point | |
1361 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
1362 | bitHigh=1; | |
1363 | lastBit+=*clk; | |
1364 | bitnum++; | |
1365 | peakCnt++; | |
1366 | errBitHigh=0; | |
1367 | ignoreCnt=ignoreWindow; | |
1368 | //else if no bars found | |
1369 | }else if(dest[i] < high && dest[i] > low) { | |
1370 | if (ignoreCnt==0){ | |
1371 | bitHigh=0; | |
1372 | if (errBitHigh==1){ | |
1373 | errCnt++; | |
1374 | } | |
1375 | errBitHigh=0; | |
1376 | } else { | |
1377 | ignoreCnt--; | |
1378 | } | |
1379 | //if we are past a clock point | |
1380 | if (i >= lastBit+*clk+tol){ //clock val | |
1381 | lastBit+=*clk; | |
1382 | bitnum++; | |
1383 | } | |
1384 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
1385 | }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){ | |
1386 | //error bar found no clock... | |
1387 | errBitHigh=1; | |
1388 | } | |
1389 | if (bitnum>=MaxBits) break; | |
1390 | } | |
1391 | //we got more than 64 good bits and not all errors | |
1392 | if (bitnum > (64) && (errCnt <= (maxErr))) { | |
1393 | //possible good read | |
1394 | if (errCnt == 0){ | |
1395 | //bestStart = iii; | |
1396 | bestFirstPeakHigh=firstPeakHigh; | |
1397 | bestErrCnt = errCnt; | |
1398 | bestPeakCnt = peakCnt; | |
1399 | bestPeakStart = iii; | |
1400 | break; //great read - finish | |
1401 | } | |
1402 | if (errCnt < bestErrCnt){ //set this as new best run | |
1403 | bestErrCnt = errCnt; | |
1404 | //bestStart = iii; | |
1405 | } | |
1406 | if (peakCnt > bestPeakCnt){ | |
1407 | bestFirstPeakHigh=firstPeakHigh; | |
1408 | bestPeakCnt=peakCnt; | |
1409 | bestPeakStart=iii; | |
1410 | } | |
1411 | } | |
1412 | } | |
1413 | } | |
1414 | //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); | |
1415 | if (bestErrCnt <= maxErr){ | |
1416 | //best run is good enough set to best run and set overwrite BinStream | |
1417 | iii=bestPeakStart; | |
1418 | lastBit=bestPeakStart-*clk; | |
1419 | bitnum=0; | |
1420 | memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); | |
1421 | bitnum += (bestPeakStart / *clk); | |
1422 | for (i = iii; i < *size; ++i) { | |
1423 | //if we found a high bar and we are at a clock bit | |
1424 | if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
1425 | bitHigh=1; | |
1426 | lastBit+=*clk; | |
1427 | curBit=1-*invert; | |
1428 | dest[bitnum]=curBit; | |
1429 | bitnum++; | |
1430 | errBitHigh=0; | |
1431 | ignoreCnt=ignoreWindow; | |
1432 | //else if low bar found and we are at a clock point | |
1433 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
1434 | bitHigh=1; | |
1435 | lastBit+=*clk; | |
1436 | curBit=*invert; | |
1437 | dest[bitnum]=curBit; | |
1438 | bitnum++; | |
1439 | errBitHigh=0; | |
1440 | ignoreCnt=ignoreWindow; | |
1441 | //else if no bars found | |
1442 | }else if(dest[i]<high && dest[i]>low) { | |
1443 | if (ignoreCnt==0){ | |
1444 | bitHigh=0; | |
1445 | //if peak is done was it an error peak? | |
1446 | if (errBitHigh==1){ | |
1447 | dest[bitnum]=77; | |
1448 | bitnum++; | |
1449 | errCnt++; | |
1450 | } | |
1451 | errBitHigh=0; | |
1452 | } else { | |
1453 | ignoreCnt--; | |
1454 | } | |
1455 | //if we are past a clock point | |
1456 | if (i>=lastBit+*clk+tol){ //clock val | |
1457 | lastBit+=*clk; | |
1458 | dest[bitnum]=curBit; | |
1459 | bitnum++; | |
1460 | } | |
1461 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
1462 | }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){ | |
1463 | //error bar found no clock... | |
1464 | errBitHigh=1; | |
1465 | } | |
1466 | if (bitnum >= MaxBits) break; | |
1467 | } | |
1468 | *size=bitnum; | |
1469 | } else{ | |
1470 | *size=bitnum; | |
1471 | return bestErrCnt; | |
1472 | } | |
1473 | ||
1474 | if (bitnum>16){ | |
1475 | *size=bitnum; | |
1476 | } else return -5; | |
1477 | return errCnt; | |
1478 | } | |
1479 | ||
1480 | //by marshmellow | |
1481 | //detects the bit clock for FSK given the high and low Field Clocks | |
1482 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) | |
1483 | { | |
1484 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; | |
1485 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1486 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
1487 | uint8_t rfLensFnd = 0; | |
1488 | uint8_t lastFCcnt=0; | |
1489 | uint32_t fcCounter = 0; | |
1490 | uint16_t rfCounter = 0; | |
1491 | uint8_t firstBitFnd = 0; | |
1492 | size_t i; | |
1493 | if (size == 0) return 0; | |
1494 | ||
1495 | uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); | |
1496 | rfLensFnd=0; | |
1497 | fcCounter=0; | |
1498 | rfCounter=0; | |
1499 | firstBitFnd=0; | |
1500 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); | |
1501 | // prime i to first up transition | |
1502 | for (i = 1; i < size-1; i++) | |
1503 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) | |
1504 | break; | |
1505 | ||
1506 | for (; i < size-1; i++){ | |
1507 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ | |
1508 | // new peak | |
1509 | fcCounter++; | |
1510 | rfCounter++; | |
1511 | // if we got less than the small fc + tolerance then set it to the small fc | |
1512 | if (fcCounter < fcLow+fcTol) | |
1513 | fcCounter = fcLow; | |
1514 | else //set it to the large fc | |
1515 | fcCounter = fcHigh; | |
1516 | ||
1517 | //look for bit clock (rf/xx) | |
1518 | if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){ | |
1519 | //not the same size as the last wave - start of new bit sequence | |
1520 | ||
1521 | if (firstBitFnd>1){ //skip first wave change - probably not a complete bit | |
1522 | for (int ii=0; ii<15; ii++){ | |
1523 | if (rfLens[ii]==rfCounter){ | |
1524 | rfCnts[ii]++; | |
1525 | rfCounter=0; | |
1526 | break; | |
1527 | } | |
1528 | } | |
1529 | if (rfCounter>0 && rfLensFnd<15){ | |
1530 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); | |
1531 | rfCnts[rfLensFnd]++; | |
1532 | rfLens[rfLensFnd++]=rfCounter; | |
1533 | } | |
1534 | } else { | |
1535 | firstBitFnd++; | |
1536 | } | |
1537 | rfCounter=0; | |
1538 | lastFCcnt=fcCounter; | |
1539 | } | |
1540 | fcCounter=0; | |
1541 | } else { | |
1542 | // count sample | |
1543 | fcCounter++; | |
1544 | rfCounter++; | |
1545 | } | |
1546 | } | |
1547 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; | |
1548 | ||
1549 | for (i=0; i<15; i++){ | |
1550 | //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); | |
1551 | //get highest 2 RF values (might need to get more values to compare or compare all?) | |
1552 | if (rfCnts[i]>rfCnts[rfHighest]){ | |
1553 | rfHighest3=rfHighest2; | |
1554 | rfHighest2=rfHighest; | |
1555 | rfHighest=i; | |
1556 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ | |
1557 | rfHighest3=rfHighest2; | |
1558 | rfHighest2=i; | |
1559 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ | |
1560 | rfHighest3=i; | |
1561 | } | |
1562 | } | |
1563 | // set allowed clock remainder tolerance to be 1 large field clock length+1 | |
1564 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off | |
1565 | uint8_t tol1 = fcHigh+1; | |
1566 | ||
1567 | //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); | |
1568 | ||
1569 | // loop to find the highest clock that has a remainder less than the tolerance | |
1570 | // compare samples counted divided by | |
1571 | int ii=7; | |
1572 | for (; ii>=0; ii--){ | |
1573 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ | |
1574 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ | |
1575 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ | |
1576 | break; | |
1577 | } | |
1578 | } | |
1579 | } | |
1580 | } | |
1581 | ||
1582 | if (ii<0) return 0; // oops we went too far | |
1583 | ||
1584 | return clk[ii]; | |
1585 | } | |
1586 | ||
1587 | //by marshmellow | |
1588 | //countFC is to detect the field clock lengths. | |
1589 | //counts and returns the 2 most common wave lengths | |
1590 | //mainly used for FSK field clock detection | |
1591 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC) | |
1592 | { | |
1593 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; | |
1594 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; | |
1595 | uint8_t fcLensFnd = 0; | |
1596 | uint8_t lastFCcnt=0; | |
1597 | uint32_t fcCounter = 0; | |
1598 | size_t i; | |
1599 | if (size == 0) return 0; | |
1600 | ||
1601 | // prime i to first up transition | |
1602 | for (i = 1; i < size-1; i++) | |
1603 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) | |
1604 | break; | |
1605 | ||
1606 | for (; i < size-1; i++){ | |
1607 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ | |
1608 | // new up transition | |
1609 | fcCounter++; | |
1610 | ||
1611 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) | |
1612 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; | |
1613 | //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) | |
1614 | if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; | |
1615 | ||
1616 | // save last field clock count (fc/xx) | |
1617 | // find which fcLens to save it to: | |
1618 | for (int ii=0; ii<10; ii++){ | |
1619 | if (fcLens[ii]==fcCounter){ | |
1620 | fcCnts[ii]++; | |
1621 | fcCounter=0; | |
1622 | break; | |
1623 | } | |
1624 | } | |
1625 | if (fcCounter>0 && fcLensFnd<10){ | |
1626 | //add new fc length | |
1627 | fcCnts[fcLensFnd]++; | |
1628 | fcLens[fcLensFnd++]=fcCounter; | |
1629 | } | |
1630 | fcCounter=0; | |
1631 | } else { | |
1632 | // count sample | |
1633 | fcCounter++; | |
1634 | } | |
1635 | } | |
1636 | ||
1637 | uint8_t best1=9, best2=9, best3=9; | |
1638 | uint16_t maxCnt1=0; | |
1639 | // go through fclens and find which ones are bigest 2 | |
1640 | for (i=0; i<10; i++){ | |
1641 | // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); | |
1642 | // get the 3 best FC values | |
1643 | if (fcCnts[i]>maxCnt1) { | |
1644 | best3=best2; | |
1645 | best2=best1; | |
1646 | maxCnt1=fcCnts[i]; | |
1647 | best1=i; | |
1648 | } else if(fcCnts[i]>fcCnts[best2]){ | |
1649 | best3=best2; | |
1650 | best2=i; | |
1651 | } else if(fcCnts[i]>fcCnts[best3]){ | |
1652 | best3=i; | |
1653 | } | |
1654 | } | |
1655 | uint8_t fcH=0, fcL=0; | |
1656 | if (fcLens[best1]>fcLens[best2]){ | |
1657 | fcH=fcLens[best1]; | |
1658 | fcL=fcLens[best2]; | |
1659 | } else{ | |
1660 | fcH=fcLens[best2]; | |
1661 | fcL=fcLens[best1]; | |
1662 | } | |
1663 | ||
1664 | *mostFC=fcLens[best1]; | |
1665 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 | |
1666 | ||
1667 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; | |
1668 | // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); | |
1669 | ||
1670 | return fcs; | |
1671 | } | |
1672 | ||
1673 | //by marshmellow | |
1674 | //countPSK_FC is to detect the psk carrier clock length. | |
1675 | //counts and returns the 1 most common wave length | |
1676 | uint8_t countPSK_FC(uint8_t *BitStream, size_t size) | |
1677 | { | |
1678 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; | |
1679 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; | |
1680 | uint8_t fcLensFnd = 0; | |
1681 | uint32_t fcCounter = 0; | |
1682 | size_t i; | |
1683 | if (size == 0) return 0; | |
1684 | ||
1685 | // prime i to first up transition | |
1686 | for (i = 1; i < size-1; i++) | |
1687 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) | |
1688 | break; | |
1689 | ||
1690 | for (; i < size-1; i++){ | |
1691 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ | |
1692 | // new up transition | |
1693 | fcCounter++; | |
1694 | ||
1695 | // save last field clock count (fc/xx) | |
1696 | // find which fcLens to save it to: | |
1697 | for (int ii=0; ii<10; ii++){ | |
1698 | if (fcLens[ii]==fcCounter){ | |
1699 | fcCnts[ii]++; | |
1700 | fcCounter=0; | |
1701 | break; | |
1702 | } | |
1703 | } | |
1704 | if (fcCounter>0 && fcLensFnd<10){ | |
1705 | //add new fc length | |
1706 | fcCnts[fcLensFnd]++; | |
1707 | fcLens[fcLensFnd++]=fcCounter; | |
1708 | } | |
1709 | fcCounter=0; | |
1710 | } else { | |
1711 | // count sample | |
1712 | fcCounter++; | |
1713 | } | |
1714 | } | |
1715 | ||
1716 | uint8_t best1=9; | |
1717 | uint16_t maxCnt1=0; | |
1718 | // go through fclens and find which ones are bigest | |
1719 | for (i=0; i<10; i++){ | |
1720 | //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]); | |
1721 | // get the best FC value | |
1722 | if (fcCnts[i]>maxCnt1) { | |
1723 | maxCnt1=fcCnts[i]; | |
1724 | best1=i; | |
1725 | } | |
1726 | } | |
1727 | return fcLens[best1]; | |
1728 | } | |
1729 | ||
1730 | //by marshmellow - demodulate PSK1 wave | |
1731 | //uses wave lengths (# Samples) | |
1732 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) | |
1733 | { | |
1734 | uint16_t loopCnt = 4096; //don't need to loop through entire array... | |
1735 | if (size == 0) return -1; | |
1736 | if (*size<loopCnt) loopCnt = *size; | |
1737 | ||
1738 | uint8_t curPhase = *invert; | |
1739 | size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; | |
1740 | uint8_t fc=0, fullWaveLen=0, tol=1; | |
1741 | uint16_t errCnt=0, waveLenCnt=0; | |
1742 | fc = countPSK_FC(dest, *size); | |
1743 | if (fc!=2 && fc!=4 && fc!=8) return -1; | |
1744 | //PrintAndLog("DEBUG: FC: %d",fc); | |
1745 | *clock = DetectPSKClock(dest, *size, *clock); | |
1746 | if (*clock==0) return -1; | |
1747 | int avgWaveVal=0, lastAvgWaveVal=0; | |
1748 | //find first phase shift | |
1749 | for (i=0; i<loopCnt; i++){ | |
1750 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1751 | waveEnd = i+1; | |
1752 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); | |
1753 | waveLenCnt = waveEnd-waveStart; | |
1754 | if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave | |
1755 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); | |
1756 | firstFullWave = waveStart; | |
1757 | fullWaveLen=waveLenCnt; | |
1758 | //if average wave value is > graph 0 then it is an up wave or a 1 | |
1759 | if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128 | |
1760 | break; | |
1761 | } | |
1762 | waveStart = i+1; | |
1763 | avgWaveVal = 0; | |
1764 | } | |
1765 | avgWaveVal+=dest[i+2]; | |
1766 | } | |
1767 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); | |
1768 | lastClkBit = firstFullWave; //set start of wave as clock align | |
1769 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); | |
1770 | waveStart = 0; | |
1771 | errCnt=0; | |
1772 | size_t numBits=0; | |
1773 | //set skipped bits | |
1774 | memset(dest,curPhase^1,firstFullWave / *clock); | |
1775 | numBits += (firstFullWave / *clock); | |
1776 | dest[numBits++] = curPhase; //set first read bit | |
1777 | for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){ | |
1778 | //top edge of wave = start of new wave | |
1779 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ | |
1780 | if (waveStart == 0) { | |
1781 | waveStart = i+1; | |
1782 | waveLenCnt=0; | |
1783 | avgWaveVal = dest[i+1]; | |
1784 | } else { //waveEnd | |
1785 | waveEnd = i+1; | |
1786 | waveLenCnt = waveEnd-waveStart; | |
1787 | lastAvgWaveVal = avgWaveVal/waveLenCnt; | |
1788 | if (waveLenCnt > fc){ | |
1789 | //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); | |
1790 | //if this wave is a phase shift | |
1791 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); | |
1792 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit | |
1793 | curPhase^=1; | |
1794 | dest[numBits++] = curPhase; | |
1795 | lastClkBit += *clock; | |
1796 | } else if (i<lastClkBit+10+fc){ | |
1797 | //noise after a phase shift - ignore | |
1798 | } else { //phase shift before supposed to based on clock | |
1799 | errCnt++; | |
1800 | dest[numBits++] = 77; | |
1801 | } | |
1802 | } else if (i+1 > lastClkBit + *clock + tol + fc){ | |
1803 | lastClkBit += *clock; //no phase shift but clock bit | |
1804 | dest[numBits++] = curPhase; | |
1805 | } | |
1806 | avgWaveVal=0; | |
1807 | waveStart=i+1; | |
1808 | } | |
1809 | } | |
1810 | avgWaveVal+=dest[i+1]; | |
1811 | } | |
1812 | *size = numBits; | |
1813 | return errCnt; | |
1814 | } |