]>
Commit | Line | Data |
---|---|---|
1 | //Peter Fillmore - 2014 | |
2 | // | |
3 | //-------------------------------------------------------------------------------- | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //-------------------------------------------------------------------------------- | |
8 | //-------------------------------------------------------------------------------- | |
9 | //Routines to support EMV transactions | |
10 | //-------------------------------------------------------------------------------- | |
11 | #include "emvcmd.h" | |
12 | ||
13 | static emvtags currentcard; //use to hold emv tags for the reader/card during communications | |
14 | //static tUart Uart; | |
15 | ||
16 | // The FPGA will report its internal sending delay in | |
17 | uint16_t FpgaSendQueueDelay; | |
18 | //variables used for timing purposes: | |
19 | //these are in ssp_clk cycles: | |
20 | //static uint32_t NextTransferTime; | |
21 | //static uint32_t LastTimeProxToAirStart; | |
22 | //static uint32_t LastProxToAirDuration; | |
23 | ||
24 | //load individual tag into current card | |
25 | void EMVloadvalue(uint32_t tag, uint8_t *datain){ | |
26 | //Dbprintf("TAG=%i\n", tag); | |
27 | //Dbprintf("DATA=%s\n", datain); | |
28 | emv_settag(tag, datain, ¤tcard); | |
29 | } | |
30 | ||
31 | void EMVReadRecord(uint8_t arg0, uint8_t arg1,emvtags *currentcard) | |
32 | { | |
33 | uint8_t record = arg0; | |
34 | uint8_t sfi = arg1 & 0x0F; //convert arg1 to number | |
35 | uint8_t receivedAnswer[MAX_FRAME_SIZE]; | |
36 | ||
37 | //uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; | |
38 | ||
39 | //variables | |
40 | tlvtag inputtag; //create the tag structure | |
41 | //perform read | |
42 | //write the result to the provided card | |
43 | if(!emv_readrecord(record,sfi,receivedAnswer)) { | |
44 | if(EMV_DBGLEVEL >= 1) Dbprintf("readrecord failed"); | |
45 | } | |
46 | if(*(receivedAnswer+1) == 0x70){ | |
47 | decode_ber_tlv_item(receivedAnswer+1, &inputtag); | |
48 | emv_decode_field(inputtag.value, inputtag.valuelength, currentcard); | |
49 | } | |
50 | else | |
51 | { | |
52 | if(EMV_DBGLEVEL >= 1) | |
53 | Dbprintf("Record not found SFI=%i RECORD=%i", sfi, record); | |
54 | } | |
55 | return; | |
56 | } | |
57 | ||
58 | void EMVSelectAID(uint8_t *AID, uint8_t AIDlen, emvtags* inputcard) | |
59 | { | |
60 | uint8_t receivedAnswer[MAX_FRAME_SIZE]; | |
61 | //uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; | |
62 | ||
63 | //variables | |
64 | tlvtag inputtag; //create the tag structure | |
65 | //perform select | |
66 | if(!emv_select(AID, AIDlen, receivedAnswer)){ | |
67 | if(EMV_DBGLEVEL >= 1) Dbprintf("AID Select failed"); | |
68 | return; | |
69 | } | |
70 | //write the result to the provided card | |
71 | if(*(receivedAnswer+1) == 0x6F){ | |
72 | //decode the 6F template | |
73 | decode_ber_tlv_item(receivedAnswer+1, &inputtag); | |
74 | //store 84 and A5 tags | |
75 | emv_decode_field(inputtag.value, inputtag.valuelength, ¤tcard); | |
76 | //decode the A5 tag | |
77 | if(currentcard.tag_A5_len > 0) | |
78 | emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, ¤tcard); | |
79 | ||
80 | //copy this result to the DFName | |
81 | if(currentcard.tag_84_len == 0) | |
82 | memcpy(currentcard.tag_DFName, currentcard.tag_84, currentcard.tag_84_len); | |
83 | ||
84 | //decode the BF0C result, assuming 1 directory entry for now | |
85 | if(currentcard.tag_BF0C_len !=0){ | |
86 | emv_decode_field(currentcard.tag_BF0C, currentcard.tag_BF0C_len, ¤tcard);} | |
87 | //retrieve the AID, use the AID to decide what transaction flow to use | |
88 | if(currentcard.tag_61_len !=0){ | |
89 | emv_decode_field(currentcard.tag_61, currentcard.tag_61_len, ¤tcard);} | |
90 | } | |
91 | if(EMV_DBGLEVEL >= 2) | |
92 | DbpString("SELECT AID COMPLETED"); | |
93 | } | |
94 | ||
95 | int EMVGetProcessingOptions(uint8_t *PDOL, uint8_t PDOLlen, emvtags* inputcard) | |
96 | { | |
97 | uint8_t receivedAnswer[MAX_FRAME_SIZE]; | |
98 | //uint8_t receivedAnswerPar[MAX_PARITY_SIZE]; | |
99 | ||
100 | //variables | |
101 | tlvtag inputtag; //create the tag structure | |
102 | //perform pdol | |
103 | if(!emv_getprocessingoptions(PDOL, PDOLlen, receivedAnswer)){ | |
104 | if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed"); | |
105 | return 0; | |
106 | } | |
107 | //write the result to the provided card | |
108 | //FORMAT 1 received | |
109 | if(receivedAnswer[1] == 0x80){ | |
110 | //store AIP | |
111 | //decode tag 80 | |
112 | decode_ber_tlv_item(receivedAnswer+1, &inputtag); | |
113 | memcpy(currentcard.tag_82, &inputtag.value, sizeof(currentcard.tag_82)); | |
114 | memcpy(currentcard.tag_94, &inputtag.value[2], inputtag.valuelength - sizeof(currentcard.tag_82)); | |
115 | currentcard.tag_94_len = inputtag.valuelength - sizeof(currentcard.tag_82); | |
116 | } | |
117 | else if(receivedAnswer[1] == 0x77){ | |
118 | //decode the 77 template | |
119 | decode_ber_tlv_item(receivedAnswer+1, &inputtag); | |
120 | //store 82 and 94 tags (AIP, AFL) | |
121 | emv_decode_field(inputtag.value, inputtag.valuelength, ¤tcard); | |
122 | } | |
123 | if(EMV_DBGLEVEL >= 2) | |
124 | DbpString("GET PROCESSING OPTIONS COMPLETE"); | |
125 | return 1; | |
126 | } | |
127 | ||
128 | int EMVGetChallenge(emvtags* inputcard) | |
129 | { | |
130 | uint8_t receivedAnswer[MAX_FRAME_SIZE]; | |
131 | //variables | |
132 | //tlvtag inputtag; //create the tag structure | |
133 | //perform select | |
134 | if(!emv_getchallenge(receivedAnswer)){ | |
135 | if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed"); | |
136 | return 1; | |
137 | } | |
138 | return 0; | |
139 | } | |
140 | ||
141 | int EMVGenerateAC(uint8_t refcontrol, emvtags* inputcard) | |
142 | { | |
143 | uint8_t receivedAnswer[MAX_FRAME_SIZE]; | |
144 | uint8_t cdolcommand[MAX_FRAME_SIZE]; | |
145 | uint8_t cdolcommandlen = 0; | |
146 | tlvtag temptag; | |
147 | ||
148 | if(currentcard.tag_8C_len > 0) { | |
149 | emv_generateDOL(currentcard.tag_8C, currentcard.tag_8C_len, ¤tcard, cdolcommand, &cdolcommandlen); } | |
150 | else{ | |
151 | //cdolcommand = NULL; //cdol val is null | |
152 | cdolcommandlen = 0; | |
153 | } | |
154 | //variables | |
155 | //tlvtag inputtag; //create the tag structure | |
156 | //perform select | |
157 | if(!emv_generateAC(refcontrol, cdolcommand, cdolcommandlen,receivedAnswer)){ | |
158 | if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed"); | |
159 | return 1; | |
160 | } | |
161 | if(receivedAnswer[2] == 0x77) //format 2 data field returned | |
162 | { | |
163 | decode_ber_tlv_item(&receivedAnswer[2], &temptag); | |
164 | emv_decode_field(temptag.value, temptag.valuelength, ¤tcard); | |
165 | } | |
166 | ||
167 | return 0; | |
168 | } | |
169 | ||
170 | //function to perform paywave transaction | |
171 | //takes in TTQ, amount authorised, unpredicable number and transaction currency code | |
172 | int EMV_PaywaveTransaction() | |
173 | { | |
174 | uint8_t cardMode = 0; | |
175 | //determine mode of transaction from TTQ | |
176 | if((currentcard.tag_9F66[0] & 0x40) == 0x40) { | |
177 | cardMode = VISA_EMV; | |
178 | } | |
179 | else if((currentcard.tag_9F66[0] & 0x20) == 0x20) { | |
180 | cardMode = VISA_FDDA; | |
181 | } | |
182 | else if((currentcard.tag_9F66[0] & 0x80) == 0x80) { | |
183 | if((currentcard.tag_9F66[1] & 0x80) == 1) { //CVN17 | |
184 | cardMode = VISA_CVN17; | |
185 | } else { | |
186 | cardMode = VISA_DCVV; | |
187 | } | |
188 | } | |
189 | ||
190 | EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, ¤tcard); //perform second AID command | |
191 | ||
192 | //get PDOL | |
193 | uint8_t pdolcommand[20]; //20 byte buffer for pdol data | |
194 | uint8_t pdolcommandlen = 0; | |
195 | if(currentcard.tag_9F38_len > 0) { | |
196 | emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, ¤tcard, pdolcommand, &pdolcommandlen); | |
197 | } | |
198 | Dbhexdump(pdolcommandlen, pdolcommand,false); | |
199 | ||
200 | if(!EMVGetProcessingOptions(pdolcommand,pdolcommandlen, ¤tcard)) { | |
201 | if(EMV_DBGLEVEL >= 1) Dbprintf("PDOL failed"); | |
202 | return 1; | |
203 | } | |
204 | ||
205 | Dbprintf("AFL="); | |
206 | Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false); | |
207 | Dbprintf("AIP="); | |
208 | Dbhexdump(2, currentcard.tag_82, false); | |
209 | emv_decodeAIP(currentcard.tag_82); | |
210 | // | |
211 | // //decode the AFL list and read records | |
212 | uint8_t i = 0; | |
213 | uint8_t sfi = 0; | |
214 | uint8_t recordstart = 0; | |
215 | uint8_t recordend = 0; | |
216 | if(currentcard.tag_94_len > 0){ | |
217 | while( i < currentcard.tag_94_len){ | |
218 | sfi = (currentcard.tag_94[i++] & 0xF8) >> 3; | |
219 | recordstart = currentcard.tag_94[i++]; | |
220 | recordend = currentcard.tag_94[i++]; | |
221 | for(int j=recordstart; j<(recordend+1); j++){ | |
222 | //read records | |
223 | EMVReadRecord(j,sfi, ¤tcard); | |
224 | //while(responsebuffer[0] == 0xF2) { | |
225 | // EMVReadRecord(j,sfi, ¤tcard); | |
226 | //} | |
227 | } | |
228 | i++; | |
229 | } | |
230 | } | |
231 | else { | |
232 | EMVReadRecord(1,1,¤tcard); | |
233 | EMVReadRecord(1,2,¤tcard); | |
234 | EMVReadRecord(1,3,¤tcard); | |
235 | EMVReadRecord(2,1,¤tcard); | |
236 | EMVReadRecord(2,2,¤tcard); | |
237 | EMVReadRecord(2,3,¤tcard); | |
238 | EMVReadRecord(3,1,¤tcard); | |
239 | EMVReadRecord(3,3,¤tcard); | |
240 | EMVReadRecord(4,2,¤tcard); | |
241 | } | |
242 | //EMVGetChallenge(¤tcard); | |
243 | //memcpy(currentcard.tag_9F4C,&responsebuffer[1],8); // ICC UN | |
244 | EMVGenerateAC(0x81,¤tcard); | |
245 | ||
246 | Dbprintf("CARDMODE=%i",cardMode); | |
247 | return 0; | |
248 | } | |
249 | ||
250 | ||
251 | int EMV_PaypassTransaction() | |
252 | { | |
253 | //uint8_t *responsebuffer = emv_get_bigbufptr(); | |
254 | //tlvtag temptag; //buffer for decoded tags | |
255 | //get the current block counter | |
256 | //select the AID (Mastercard | |
257 | EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, ¤tcard); | |
258 | ||
259 | //get PDOL | |
260 | uint8_t pdolcommand[20]; //20 byte buffer for pdol data | |
261 | uint8_t pdolcommandlen = 0; | |
262 | if(currentcard.tag_9F38_len > 0) { | |
263 | emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, ¤tcard, pdolcommand, &pdolcommandlen); | |
264 | } | |
265 | if(EMVGetProcessingOptions(pdolcommand,pdolcommandlen, ¤tcard)) { | |
266 | if(EMV_DBGLEVEL >= 1) Dbprintf("PDOL failed"); | |
267 | return 1; | |
268 | } | |
269 | ||
270 | Dbprintf("AFL="); | |
271 | Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false); | |
272 | Dbprintf("AIP="); | |
273 | Dbhexdump(2, currentcard.tag_82, false); | |
274 | emv_decodeAIP(currentcard.tag_82); | |
275 | ||
276 | //decode the AFL list and read records | |
277 | uint8_t i = 0; | |
278 | uint8_t sfi = 0; | |
279 | uint8_t recordstart = 0; | |
280 | uint8_t recordend = 0; | |
281 | ||
282 | while( i< currentcard.tag_94_len){ | |
283 | sfi = (currentcard.tag_94[i++] & 0xF8) >> 3; | |
284 | recordstart = currentcard.tag_94[i++]; | |
285 | recordend = currentcard.tag_94[i++]; | |
286 | for(int j=recordstart; j<(recordend+1); j++){ | |
287 | //read records | |
288 | EMVReadRecord(j,sfi, ¤tcard); | |
289 | //while(responsebuffer[0] == 0xF2) { | |
290 | // EMVReadRecord(j,sfi, ¤tcard); | |
291 | //} | |
292 | } | |
293 | i++; | |
294 | } | |
295 | /* get ICC dynamic data */ | |
296 | if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED) | |
297 | { | |
298 | //DDA supported, so perform GENERATE AC | |
299 | //generate the iCC UN | |
300 | EMVGetChallenge(¤tcard); | |
301 | //memcpy(currentcard.tag_9F4C,&responsebuffer[1],8); // ICC UN | |
302 | EMVGenerateAC(0x80,¤tcard); | |
303 | ||
304 | ||
305 | //generate AC2 | |
306 | //if(currentcard.tag_8D_len > 0) { | |
307 | // emv_generateDOL(currentcard.tag_8D, currentcard.tag_8D_len, ¤tcard, cdolcommand, &cdolcommandlen); } | |
308 | //else{ | |
309 | // //cdolcommand = NULL; //cdol val is null | |
310 | // cdolcommandlen = 0; | |
311 | //} | |
312 | //emv_generateAC(0x80, cdolcommand,cdolcommandlen, ¤tcard); | |
313 | ||
314 | //if(responsebuffer[1] == 0x77) //format 2 data field returned | |
315 | //{ | |
316 | // decode_ber_tlv_item(&responsebuffer[1], &temptag); | |
317 | // emv_decode_field(temptag.value, temptag.valuelength, ¤tcard); | |
318 | //} | |
319 | } | |
320 | //generate cryptographic checksum | |
321 | //uint8_t udol[4] = {0x00,0x00,0x00,0x00}; | |
322 | //emv_computecryptogram(udol, sizeof(udol)); | |
323 | //if(responsebuffer[1] == 0x77) //format 2 data field returned | |
324 | //{ | |
325 | // decode_ber_tlv_item(&responsebuffer[1], &temptag); | |
326 | // emv_decode_field(temptag.value, temptag.valuelength, ¤tcard); | |
327 | //} | |
328 | return 0; | |
329 | } | |
330 | ||
331 | void EMVTransaction() | |
332 | { | |
333 | //params | |
334 | uint8_t uid[10] = {0x00}; | |
335 | uint32_t cuid = 0; | |
336 | ||
337 | //setup stuff | |
338 | BigBuf_free(); BigBuf_Clear_ext(false); | |
339 | clear_trace(); | |
340 | set_tracing(TRUE); | |
341 | ||
342 | LED_A_ON(); | |
343 | LED_B_OFF(); | |
344 | LED_C_OFF(); | |
345 | ||
346 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); | |
347 | while(true) { | |
348 | if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) { | |
349 | if(EMV_DBGLEVEL >= 1) Dbprintf("Can't select card"); | |
350 | break; | |
351 | } | |
352 | //selectPPSE | |
353 | EMVSelectAID((uint8_t *)DF_PSE, 14, ¤tcard); //hard coded len | |
354 | //get response | |
355 | if (!memcmp(currentcard.tag_4F, AID_MASTERCARD, sizeof(AID_MASTERCARD))){ | |
356 | Dbprintf("Mastercard Paypass Card Detected"); | |
357 | EMV_PaypassTransaction(); | |
358 | } | |
359 | else if (!memcmp(currentcard.tag_4F, AID_VISA, sizeof(AID_VISA))){ | |
360 | Dbprintf("VISA Paywave Card Detected"); | |
361 | EMV_PaywaveTransaction(); | |
362 | } | |
363 | //TODO: add other card schemes like AMEX, JCB, China Unionpay etc | |
364 | break; | |
365 | } | |
366 | if (EMV_DBGLEVEL >= 2) DbpString("EMV TRANSACTION FINISHED"); | |
367 | //finish up | |
368 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
369 | LEDsoff(); | |
370 | } | |
371 | ||
372 | void EMVdumpcard(void){ | |
373 | dumpCard(¤tcard); | |
374 | } | |
375 | ||
376 | //SIMULATOR CODE | |
377 | //----------------------------------------------------------------------------- | |
378 | // Main loop of simulated tag: receive commands from reader, decide what | |
379 | // response to send, and send it. | |
380 | //----------------------------------------------------------------------------- | |
381 | void SimulateEMVcard() | |
382 | { | |
383 | /* | |
384 | ||
385 | //uint8_t sak; //select ACKnowledge | |
386 | uint16_t readerPacketLen = 64; //reader packet length - provided by RATS, default to 64 bytes if RATS not supported | |
387 | ||
388 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
389 | //uint8_t atqapacket[2]; | |
390 | ||
391 | // The second response contains the (mandatory) first 24 bits of the UID | |
392 | uint8_t uid0packet[5] = {0x00}; | |
393 | memcpy(uid0packet, currentcard.UID, sizeof(uid0packet)); | |
394 | // Check if the uid uses the (optional) part | |
395 | uint8_t uid1packet[5] = {0x00}; | |
396 | memcpy(uid1packet, currentcard.UID, sizeof(uid1packet)); | |
397 | ||
398 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
399 | uid0packet[4] = uid0packet[0] ^ uid0packet[1] ^ uid0packet[2] ^ uid0packet[3]; | |
400 | ||
401 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
402 | uint8_t sak0packet[3] = {0x00}; | |
403 | memcpy(sak0packet,¤tcard.SAK1,1); | |
404 | ComputeCrc14443(CRC_14443_A, sak0packet, 1, &sak0packet[1], &sak0packet[2]); | |
405 | uint8_t sak1packet[3] = {0x00}; | |
406 | memcpy(sak1packet,¤tcard.SAK2,1); | |
407 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
408 | ComputeCrc14443(CRC_14443_A, sak1packet, 1, &sak1packet[1], &sak1packet[2]); | |
409 | ||
410 | uint8_t authanspacket[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
411 | //setup response to ATS | |
412 | uint8_t ratspacket[currentcard.ATS_len]; | |
413 | memcpy(ratspacket,currentcard.ATS, currentcard.ATS_len); | |
414 | AppendCrc14443a(ratspacket,sizeof(ratspacket)-2); | |
415 | ||
416 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, | |
417 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 | |
418 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) | |
419 | // TC(1) = 0x02: CID supported, NAD not supported | |
420 | //ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); | |
421 | ||
422 | //Receive Acknowledge responses differ by PCB byte | |
423 | uint8_t rack0packet[] = {0xa2,0x00,0x00}; | |
424 | AppendCrc14443a(rack0packet,1); | |
425 | uint8_t rack1packet[] = {0xa3,0x00,0x00}; | |
426 | AppendCrc14443a(rack1packet,1); | |
427 | //Negative Acknowledge | |
428 | uint8_t rnak0packet[] = {0xb2,0x00,0x00}; | |
429 | uint8_t rnak1packet[] = {0xb3,0x00,0x00}; | |
430 | AppendCrc14443a(rnak0packet,1); | |
431 | AppendCrc14443a(rnak1packet,1); | |
432 | ||
433 | //Protocol and parameter selection response, just say yes | |
434 | uint8_t ppspacket[] = {0xd0,0x00,0x00}; | |
435 | AppendCrc14443a(ppspacket,1); | |
436 | ||
437 | //hardcoded WTX packet - set to max time (49) | |
438 | uint8_t wtxpacket[] ={0xf2,0x31,0x00,0x00}; | |
439 | AppendCrc14443a(wtxpacket,2); | |
440 | ||
441 | //added additional responses for different readers, namely protocol parameter select and Receive acknowledments. - peter fillmore. | |
442 | //added defininitions for predone responses to aid readability | |
443 | #define ATR 0 | |
444 | #define UID1 1 | |
445 | #define UID2 2 | |
446 | #define SELACK1 3 | |
447 | #define SELACK2 4 | |
448 | #define AUTH_ANS 5 | |
449 | #define ATS 6 | |
450 | #define RACK0 7 | |
451 | #define RACK1 8 | |
452 | #define RNAK0 9 | |
453 | #define RNAK1 10 | |
454 | #define PPSresponse 11 | |
455 | #define WTX 12 | |
456 | ||
457 | #define TAG_RESPONSE_COUNT 13 | |
458 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
459 | { .response = currentcard.ATQA, .response_n = sizeof(currentcard.ATQA) }, // Answer to request - respond with card type | |
460 | { .response = uid0packet, .response_n = sizeof(uid0packet) }, // Anticollision cascade1 - respond with uid | |
461 | { .response = uid1packet, .response_n = sizeof(uid1packet) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
462 | { .response = sak0packet, .response_n = sizeof(sak0packet) }, // Acknowledge select - cascade 1 | |
463 | { .response = sak1packet, .response_n = sizeof(sak1packet) }, // Acknowledge select - cascade 2 | |
464 | { .response = authanspacket, .response_n = sizeof(authanspacket) }, // Authentication answer (random nonce) | |
465 | { .response = ratspacket, .response_n = sizeof(ratspacket) }, // dummy ATS (pseudo-ATR), answer to RATS | |
466 | { .response = rack0packet, .response_n = sizeof(rack0packet) }, //R(ACK)0 | |
467 | { .response = rack1packet, .response_n = sizeof(rack1packet) }, //R(ACK)0 | |
468 | { .response = rnak0packet, .response_n = sizeof(rnak0packet) }, //R(NAK)0 | |
469 | { .response = rnak1packet, .response_n = sizeof(rnak1packet) }, //R(NAK)1 | |
470 | { .response = ppspacket, .response_n = sizeof(ppspacket)}, //PPS packet | |
471 | { .response = wtxpacket, .response_n = sizeof(wtxpacket)}, //WTX packet | |
472 | }; | |
473 | ||
474 | //calculated length of predone responses | |
475 | uint16_t allocatedtaglen = 0; | |
476 | for(int i=0;i<TAG_RESPONSE_COUNT;i++){ | |
477 | allocatedtaglen += responses[i].response_n; | |
478 | } | |
479 | //uint8_t selectOrder = 0; | |
480 | ||
481 | BigBuf_free_keep_EM(); | |
482 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
483 | // Such a response is less time critical, so we can prepare them on the fly | |
484 | ||
485 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 256 //max frame size | |
486 | #define DYNAMIC_MODULATION_BUFFER_SIZE 2 + 9*DYNAMIC_RESPONSE_BUFFER_SIZE //(start and stop bit, 8 bit packet with 1 bit parity | |
487 | ||
488 | //uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
489 | //uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
490 | uint8_t *dynamic_response_buffer = BigBuf_malloc(DYNAMIC_RESPONSE_BUFFER_SIZE); | |
491 | uint8_t *dynamic_modulation_buffer = BigBuf_malloc(DYNAMIC_MODULATION_BUFFER_SIZE); | |
492 | ||
493 | tag_response_info_t dynamic_response_info = { | |
494 | .response = dynamic_response_buffer, | |
495 | .response_n = 0, | |
496 | .modulation = dynamic_modulation_buffer, | |
497 | .modulation_n = 0 | |
498 | }; | |
499 | // allocate buffers from BigBuf (so we're not in the stack) | |
500 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
501 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
502 | //uint8_t* free_buffer_pointer; | |
503 | //free_buffer_pointer = BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3)); | |
504 | BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3)); | |
505 | // clear trace | |
506 | clear_trace(); | |
507 | set_tracing(TRUE); | |
508 | ||
509 | // Prepare the responses of the anticollision phase | |
510 | // there will be not enough time to do this at the moment the reader sends it REQA | |
511 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) | |
512 | prepare_allocated_tag_modulation(&responses[i]); | |
513 | ||
514 | int len = 0; | |
515 | ||
516 | // To control where we are in the protocol | |
517 | int order = 0; | |
518 | int lastorder; | |
519 | int currentblock = 1; //init to 1 | |
520 | int previousblock = 0; //used to store previous block counter | |
521 | ||
522 | // Just to allow some checks | |
523 | int happened = 0; | |
524 | int happened2 = 0; | |
525 | int cmdsRecvd = 0; | |
526 | ||
527 | // We need to listen to the high-frequency, peak-detected path. | |
528 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
529 | ||
530 | cmdsRecvd = 0; | |
531 | tag_response_info_t* p_response; | |
532 | ||
533 | LED_A_ON(); | |
534 | for(;;) { | |
535 | // Clean receive command buffer | |
536 | ||
537 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { | |
538 | DbpString("Button press"); | |
539 | break; | |
540 | } | |
541 | ||
542 | p_response = NULL; | |
543 | ||
544 | // Okay, look at the command now. | |
545 | previousblock = currentblock; //get previous block | |
546 | lastorder = order; | |
547 | currentblock = receivedCmd[0] & 0x01; | |
548 | ||
549 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
550 | p_response = &responses[ATR]; order = ISO14443A_CMD_REQA; | |
551 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP | |
552 | p_response = &responses[ATR]; order = ISO14443A_CMD_WUPA; | |
553 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) | |
554 | p_response = &responses[UID1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT; | |
555 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) | |
556 | p_response = &responses[UID2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2; | |
557 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) | |
558 | p_response = &responses[SELACK1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT; | |
559 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) | |
560 | p_response = &responses[SELACK2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2; | |
561 | } else if((receivedCmd[0] & 0xA2) == 0xA2){ //R-Block received | |
562 | if(previousblock == currentblock){ //rule 11, retransmit last block | |
563 | p_response = &dynamic_response_info; | |
564 | } else { | |
565 | if((receivedCmd[0] & 0xB2) == 0xB2){ //RNAK, rule 12 | |
566 | if(currentblock == 0) | |
567 | p_response = &responses[RACK0]; | |
568 | else | |
569 | p_response = &responses[RACK1]; | |
570 | } else { | |
571 | //rule 13 | |
572 | //TODO: implement chaining | |
573 | } | |
574 | } | |
575 | } | |
576 | else if(receivedCmd[0] == 0xD0){ //Protocol and parameter selection response | |
577 | p_response = &responses[PPSresponse]; | |
578 | order = PPS; | |
579 | } | |
580 | else if(receivedCmd[0] == 0x30) { // Received a (plain) READ | |
581 | //we're an EMV card - so no read commands | |
582 | p_response = NULL; | |
583 | } else if(receivedCmd[0] == 0x50) { // Received a HALT | |
584 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
585 | p_response = NULL; | |
586 | order = HLTA; | |
587 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request | |
588 | p_response = &responses[AUTH_ANS]; | |
589 | order = AUTH; | |
590 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request | |
591 | readerPacketLen = GetReaderLength(receivedCmd); //get length of supported packet | |
592 | p_response = &responses[ATS]; | |
593 | order = RATS; | |
594 | } else if (order == AUTH && len == 8) { // Received {nr] and {ar} (part of authentication) | |
595 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
596 | uint32_t nr = bytes_to_num(receivedCmd,4); | |
597 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
598 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
599 | } else { | |
600 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
601 | switch (receivedCmd[0]) { | |
602 | case 0x0B: | |
603 | case 0x0A: // IBlock (command) | |
604 | case 0x02: | |
605 | case 0x03: { | |
606 | dynamic_response_info.response_n = 0; | |
607 | dynamic_response_info.response[0] = receivedCmd[0]; // copy PCB | |
608 | //dynamic_response_info.response[1] = receivedCmd[1]; // copy PCB | |
609 | dynamic_response_info.response_n++ ; | |
610 | switch(receivedCmd[1]) { | |
611 | case 0x00: | |
612 | switch(receivedCmd[2]){ | |
613 | case 0xA4: //select | |
614 | if(receivedCmd[5] == 0x0E){ | |
615 | } | |
616 | else if(receivedCmd[5] == 0x07){ | |
617 | //selectOrder = 0; | |
618 | } | |
619 | else{ //send not supported msg | |
620 | memcpy(dynamic_response_info.response+1, "\x6a\x82", 2); | |
621 | dynamic_response_info.response_n += 2; | |
622 | } | |
623 | break; | |
624 | case 0xB2: //read record | |
625 | if(receivedCmd[3] == 0x01 && receivedCmd[4] == 0x0C){ | |
626 | dynamic_response_info.response_n += 2; | |
627 | Dbprintf("READ RECORD 1 1"); | |
628 | } | |
629 | break; | |
630 | } | |
631 | break; | |
632 | case 0x80: | |
633 | switch(receivedCmd[2]){ | |
634 | case 0xA8: //get processing options | |
635 | break; | |
636 | } | |
637 | } | |
638 | }break; | |
639 | case 0x1A: | |
640 | case 0x1B: { // Chaining command | |
641 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
642 | dynamic_response_info.response_n = 2; | |
643 | } break; | |
644 | ||
645 | case 0xaa: | |
646 | case 0xbb: { | |
647 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
648 | dynamic_response_info.response_n = 2; | |
649 | } break; | |
650 | ||
651 | case 0xBA: { // | |
652 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
653 | dynamic_response_info.response_n = 2; | |
654 | } break; | |
655 | ||
656 | case 0xCA: | |
657 | case 0xC2: { // Readers sends deselect command | |
658 | //we send the command back - this is what tags do in android implemenation i believe - peterfillmore | |
659 | memcpy(dynamic_response_info.response,receivedCmd,1); | |
660 | dynamic_response_info.response_n = 1; | |
661 | } break; | |
662 | ||
663 | default: { | |
664 | // Never seen this command before | |
665 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
666 | Dbprintf("Received unknown command (len=%d):",len); | |
667 | Dbhexdump(len,receivedCmd,false); | |
668 | // Do not respond | |
669 | dynamic_response_info.response_n = 0; | |
670 | } break; | |
671 | } | |
672 | ||
673 | if (dynamic_response_info.response_n > 0) { | |
674 | // Copy the CID from the reader query | |
675 | //dynamic_response_info.response[1] = receivedCmd[1]; | |
676 | ||
677 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards | |
678 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
679 | dynamic_response_info.response_n += 2; | |
680 | if(dynamic_response_info.response_n > readerPacketLen){ //throw error if our reader doesn't support the send packet length | |
681 | Dbprintf("Error: tag response is longer then what the reader supports, TODO:implement command chaining"); | |
682 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
683 | break; | |
684 | } | |
685 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { | |
686 | Dbprintf("Error preparing tag response"); | |
687 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
688 | break; | |
689 | } | |
690 | p_response = &dynamic_response_info; | |
691 | } | |
692 | } | |
693 | ||
694 | // Count number of wakeups received after a halt | |
695 | if(order == HLTA && lastorder == PPS) { happened++; } | |
696 | ||
697 | // Count number of other messages after a halt | |
698 | if(order != HLTA && lastorder == PPS) { happened2++; } | |
699 | ||
700 | if(cmdsRecvd > 999) { | |
701 | DbpString("1000 commands later..."); | |
702 | break; | |
703 | } | |
704 | cmdsRecvd++; | |
705 | ||
706 | if (p_response != NULL) { | |
707 | EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); | |
708 | // do the tracing for the previous reader request and this tag answer: | |
709 | uint8_t par[MAX_PARITY_SIZE] = {0x00}; | |
710 | GetParity(p_response->response, p_response->response_n, par); | |
711 | ||
712 | EmLogTrace(Uart.output, | |
713 | Uart.len, | |
714 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
715 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
716 | Uart.parity, | |
717 | p_response->response, | |
718 | p_response->response_n, | |
719 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
720 | (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
721 | par); | |
722 | } | |
723 | ||
724 | if (!tracing) { | |
725 | Dbprintf("Trace Full. Simulation stopped."); | |
726 | break; | |
727 | } | |
728 | } | |
729 | ||
730 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
731 | LED_A_OFF(); | |
732 | BigBuf_free_keep_EM(); | |
733 | ||
734 | */ | |
735 | } |