]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // | |
3 | // Jonathan Westhues, April 2006 | |
4 | //----------------------------------------------------------------------------- | |
5 | ||
6 | module hi_reader( | |
7 | ck_1356meg, | |
8 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, | |
9 | adc_d, adc_clk, | |
10 | ssp_frame, ssp_din, ssp_dout, ssp_clk, | |
11 | dbg, | |
12 | subcarrier_frequency, minor_mode | |
13 | ); | |
14 | input ck_1356meg; | |
15 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; | |
16 | input [7:0] adc_d; | |
17 | output adc_clk; | |
18 | input ssp_dout; | |
19 | output ssp_frame, ssp_din, ssp_clk; | |
20 | output dbg; | |
21 | input [1:0] subcarrier_frequency; | |
22 | input [3:0] minor_mode; | |
23 | ||
24 | assign adc_clk = ck_1356meg; // sample frequency is 13,56 MHz | |
25 | ||
26 | // When we're a reader, we just need to do the BPSK demod; but when we're an | |
27 | // eavesdropper, we also need to pick out the commands sent by the reader, | |
28 | // using AM. Do this the same way that we do it for the simulated tag. | |
29 | reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev; | |
30 | reg [11:0] has_been_low_for; | |
31 | always @(negedge adc_clk) | |
32 | begin | |
33 | if(& adc_d[7:0]) after_hysteresis <= 1'b1; | |
34 | else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; | |
35 | ||
36 | if(after_hysteresis) | |
37 | begin | |
38 | has_been_low_for <= 7'b0; | |
39 | end | |
40 | else | |
41 | begin | |
42 | if(has_been_low_for == 12'd4095) | |
43 | begin | |
44 | has_been_low_for <= 12'd0; | |
45 | after_hysteresis <= 1'b1; | |
46 | end | |
47 | else | |
48 | has_been_low_for <= has_been_low_for + 1; | |
49 | end | |
50 | end | |
51 | ||
52 | ||
53 | // Let us report a correlation every 64 samples. I.e. | |
54 | // one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier, | |
55 | // one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers, | |
56 | // one Q/I pair for each subcarrier cyle for the 212kHz subcarrier. | |
57 | // We need a 6-bit counter for the timing. | |
58 | reg [5:0] corr_i_cnt; | |
59 | always @(negedge adc_clk) | |
60 | begin | |
61 | corr_i_cnt <= corr_i_cnt + 1; | |
62 | end | |
63 | ||
64 | ||
65 | // A couple of registers in which to accumulate the correlations. From the 64 samples | |
66 | // we would add at most 32 times the difference between unmodulated and modulated signal. It should | |
67 | // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%. | |
68 | // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign. | |
69 | // Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the | |
70 | // maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. | |
71 | // Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits. | |
72 | reg signed [13:0] corr_i_accum; | |
73 | reg signed [13:0] corr_q_accum; | |
74 | // we will report maximum 8 significant bits | |
75 | reg signed [7:0] corr_i_out; | |
76 | reg signed [7:0] corr_q_out; | |
77 | ||
78 | ||
79 | // the amplitude of the subcarrier is sqrt(ci^2 + cq^2). | |
80 | // approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|) | |
81 | reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq; | |
82 | reg [12:0] min_ci_cq_2; // min_ci_cq / 2 | |
83 | ||
84 | always @(*) | |
85 | begin | |
86 | if (corr_i_accum[13] == 1'b0) | |
87 | abs_ci <= corr_i_accum; | |
88 | else | |
89 | abs_ci <= -corr_i_accum; | |
90 | ||
91 | if (corr_q_accum[13] == 1'b0) | |
92 | abs_cq <= corr_q_accum; | |
93 | else | |
94 | abs_cq <= -corr_q_accum; | |
95 | ||
96 | if (abs_ci > abs_cq) | |
97 | begin | |
98 | max_ci_cq <= abs_ci; | |
99 | min_ci_cq_2 <= abs_cq / 2; | |
100 | end | |
101 | else | |
102 | begin | |
103 | max_ci_cq <= abs_cq; | |
104 | min_ci_cq_2 <= abs_ci / 2; | |
105 | end | |
106 | ||
107 | corr_amplitude <= max_ci_cq + min_ci_cq_2; | |
108 | ||
109 | end | |
110 | ||
111 | ||
112 | // The subcarrier reference signals | |
113 | reg subcarrier_I; | |
114 | reg subcarrier_Q; | |
115 | ||
116 | always @(*) | |
117 | begin | |
118 | if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_848_KHZ) | |
119 | begin | |
120 | subcarrier_I = ~corr_i_cnt[3]; | |
121 | subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]); | |
122 | end | |
123 | else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ) | |
124 | begin | |
125 | subcarrier_I = ~corr_i_cnt[5]; | |
126 | subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]); | |
127 | end | |
128 | else | |
129 | begin // 424 kHz | |
130 | subcarrier_I = ~corr_i_cnt[4]; | |
131 | subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]); | |
132 | end | |
133 | end | |
134 | ||
135 | ||
136 | // ADC data appears on the rising edge, so sample it on the falling edge | |
137 | always @(negedge adc_clk) | |
138 | begin | |
139 | // These are the correlators: we correlate against in-phase and quadrature | |
140 | // versions of our reference signal, and keep the (signed) results or the | |
141 | // resulting amplitude to send out later over the SSP. | |
142 | if (corr_i_cnt == 6'd0) | |
143 | begin | |
144 | if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE) | |
145 | begin | |
146 | // send amplitude plus 2 bits reader signal | |
147 | corr_i_out <= corr_amplitude[13:6]; | |
148 | corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev}; | |
149 | end | |
150 | else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ) | |
151 | begin | |
152 | // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal | |
153 | if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) | |
154 | corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; | |
155 | else // truncate to maximum value | |
156 | if (corr_i_accum[13] == 1'b0) | |
157 | corr_i_out <= {7'b0111111, after_hysteresis_prev_prev}; | |
158 | else | |
159 | corr_i_out <= {7'b1000000, after_hysteresis_prev_prev}; | |
160 | // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal | |
161 | if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) | |
162 | corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; | |
163 | else // truncate to maximum value | |
164 | if (corr_q_accum[13] == 1'b0) | |
165 | corr_q_out <= {7'b0111111, after_hysteresis_prev}; | |
166 | else | |
167 | corr_q_out <= {7'b1000000, after_hysteresis_prev}; | |
168 | end | |
169 | else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE) | |
170 | begin | |
171 | // send amplitude | |
172 | corr_i_out <= {2'b00, corr_amplitude[13:8]}; | |
173 | corr_q_out <= corr_amplitude[7:0]; | |
174 | end | |
175 | else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ) | |
176 | begin | |
177 | // Send 8 bits of in phase tag signal | |
178 | if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) | |
179 | corr_i_out <= corr_i_accum[11:4]; | |
180 | else // truncate to maximum value | |
181 | if (corr_i_accum[13] == 1'b0) | |
182 | corr_i_out <= 8'b01111111; | |
183 | else | |
184 | corr_i_out <= 8'b10000000; | |
185 | // Send 8 bits of quadrature phase tag signal | |
186 | if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) | |
187 | corr_q_out <= corr_q_accum[11:4]; | |
188 | else // truncate to maximum value | |
189 | if (corr_q_accum[13] == 1'b0) | |
190 | corr_q_out <= 8'b01111111; | |
191 | else | |
192 | corr_q_out <= 8'b10000000; | |
193 | end | |
194 | ||
195 | // for each Q/I pair report two reader signal samples when sniffing. Store the 1st. | |
196 | after_hysteresis_prev_prev <= after_hysteresis; | |
197 | // Initialize next correlation. | |
198 | // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate. | |
199 | corr_i_accum <= $signed({1'b0,adc_d}); | |
200 | corr_q_accum <= $signed({1'b0,adc_d}); | |
201 | end | |
202 | else | |
203 | begin | |
204 | if (subcarrier_I) | |
205 | corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d}); | |
206 | else | |
207 | corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d}); | |
208 | ||
209 | if (subcarrier_Q) | |
210 | corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d}); | |
211 | else | |
212 | corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d}); | |
213 | end | |
214 | ||
215 | // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd. | |
216 | if (corr_i_cnt == 6'd32) | |
217 | after_hysteresis_prev <= after_hysteresis; | |
218 | ||
219 | // Then the result from last time is serialized and send out to the ARM. | |
220 | // We get one report each cycle, and each report is 16 bits, so the | |
221 | // ssp_clk should be the adc_clk divided by 64/16 = 4. | |
222 | // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz | |
223 | ||
224 | if (corr_i_cnt[1:0] == 2'b00) | |
225 | begin | |
226 | // Don't shift if we just loaded new data, obviously. | |
227 | if (corr_i_cnt != 6'd0) | |
228 | begin | |
229 | corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; | |
230 | corr_q_out[7:1] <= corr_q_out[6:0]; | |
231 | end | |
232 | end | |
233 | ||
234 | end | |
235 | ||
236 | ||
237 | // ssp clock and frame signal for communication to and from ARM | |
238 | reg ssp_clk; | |
239 | reg ssp_frame; | |
240 | ||
241 | always @(negedge adc_clk) | |
242 | begin | |
243 | if (corr_i_cnt[1:0] == 2'b00) | |
244 | ssp_clk <= 1'b1; | |
245 | if (corr_i_cnt[1:0] == 2'b10) | |
246 | ssp_clk <= 1'b0; | |
247 | ||
248 | // set ssp_frame signal for corr_i_cnt = 1..3 | |
249 | // (send one frame with 16 Bits) | |
250 | if (corr_i_cnt == 6'd1) | |
251 | ssp_frame <= 1'b1; | |
252 | if (corr_i_cnt == 6'd5) | |
253 | ssp_frame <= 1'b0; | |
254 | end | |
255 | ||
256 | ||
257 | assign ssp_din = corr_i_out[7]; | |
258 | ||
259 | ||
260 | // a jamming signal | |
261 | reg jam_signal; | |
262 | reg [3:0] jam_counter; | |
263 | ||
264 | always @(negedge adc_clk) | |
265 | begin | |
266 | if (corr_i_cnt == 6'd0) | |
267 | begin | |
268 | jam_counter <= jam_counter + 1; | |
269 | jam_signal <= jam_counter[1] ^ jam_counter[3]; | |
270 | end | |
271 | end | |
272 | ||
273 | // Antenna drivers | |
274 | reg pwr_hi, pwr_oe4; | |
275 | ||
276 | always @(*) | |
277 | begin | |
278 | if (minor_mode == `FPGA_HF_READER_MODE_SEND_SHALLOW_MOD) | |
279 | begin | |
280 | pwr_hi = ck_1356meg; | |
281 | pwr_oe4 = ssp_dout; | |
282 | end | |
283 | else if (minor_mode == `FPGA_HF_READER_MODE_SEND_FULL_MOD) | |
284 | begin | |
285 | pwr_hi = ck_1356meg & ~ssp_dout; | |
286 | pwr_oe4 = 1'b0; | |
287 | end | |
288 | else if (minor_mode == `FPGA_HF_READER_MODE_SEND_JAM) | |
289 | begin | |
290 | pwr_hi = ck_1356meg & jam_signal; | |
291 | pwr_oe4 = 1'b0; | |
292 | end | |
293 | else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ | |
294 | || minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE | |
295 | || minor_mode == `FPGA_HF_READER_MODE_SNIFF_PHASE) | |
296 | begin // all off | |
297 | pwr_hi = 1'b0; | |
298 | pwr_oe4 = 1'b0; | |
299 | end | |
300 | else // receiving from tag | |
301 | begin | |
302 | pwr_hi = ck_1356meg; | |
303 | pwr_oe4 = 1'b0; | |
304 | end | |
305 | end | |
306 | ||
307 | // always on | |
308 | assign pwr_oe1 = 1'b0; | |
309 | assign pwr_oe3 = 1'b0; | |
310 | ||
311 | // Unused. | |
312 | assign pwr_lo = 1'b0; | |
313 | assign pwr_oe2 = 1'b0; | |
314 | ||
315 | // Debug Output | |
316 | assign dbg = corr_i_cnt[3]; | |
317 | ||
318 | endmodule |