]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/appmain.c
added 'hf 15 cmd sysinfo' using Adrian's second patch from issue 20
[proxmark3-svn] / armsrc / appmain.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
11//-----------------------------------------------------------------------------
12
13#include "proxmark3.h"
14#include "apps.h"
15#include "util.h"
16#include "printf.h"
17#include "string.h"
18
19#include <stdarg.h>
20
21#include "legicrf.h"
22
23#ifdef WITH_LCD
24# include "fonts.h"
25# include "LCD.h"
26#endif
27
28#define abs(x) ( ((x)<0) ? -(x) : (x) )
29
30//=============================================================================
31// A buffer where we can queue things up to be sent through the FPGA, for
32// any purpose (fake tag, as reader, whatever). We go MSB first, since that
33// is the order in which they go out on the wire.
34//=============================================================================
35
36uint8_t ToSend[512];
37int ToSendMax;
38static int ToSendBit;
39struct common_area common_area __attribute__((section(".commonarea")));
40
41void BufferClear(void)
42{
43 memset(BigBuf,0,sizeof(BigBuf));
44 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
45}
46
47void ToSendReset(void)
48{
49 ToSendMax = -1;
50 ToSendBit = 8;
51}
52
53void ToSendStuffBit(int b)
54{
55 if(ToSendBit >= 8) {
56 ToSendMax++;
57 ToSend[ToSendMax] = 0;
58 ToSendBit = 0;
59 }
60
61 if(b) {
62 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
63 }
64
65 ToSendBit++;
66
67 if(ToSendBit >= sizeof(ToSend)) {
68 ToSendBit = 0;
69 DbpString("ToSendStuffBit overflowed!");
70 }
71}
72
73//=============================================================================
74// Debug print functions, to go out over USB, to the usual PC-side client.
75//=============================================================================
76
77void DbpString(char *str)
78{
79 /* this holds up stuff unless we're connected to usb */
80 if (!UsbConnected())
81 return;
82
83 UsbCommand c;
84 c.cmd = CMD_DEBUG_PRINT_STRING;
85 c.arg[0] = strlen(str);
86 if(c.arg[0] > sizeof(c.d.asBytes)) {
87 c.arg[0] = sizeof(c.d.asBytes);
88 }
89 memcpy(c.d.asBytes, str, c.arg[0]);
90
91 UsbSendPacket((uint8_t *)&c, sizeof(c));
92 // TODO fix USB so stupid things like this aren't req'd
93 SpinDelay(50);
94}
95
96#if 0
97void DbpIntegers(int x1, int x2, int x3)
98{
99 /* this holds up stuff unless we're connected to usb */
100 if (!UsbConnected())
101 return;
102
103 UsbCommand c;
104 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
105 c.arg[0] = x1;
106 c.arg[1] = x2;
107 c.arg[2] = x3;
108
109 UsbSendPacket((uint8_t *)&c, sizeof(c));
110 // XXX
111 SpinDelay(50);
112}
113#endif
114
115void Dbprintf(const char *fmt, ...) {
116// should probably limit size here; oh well, let's just use a big buffer
117 char output_string[128];
118 va_list ap;
119
120 va_start(ap, fmt);
121 kvsprintf(fmt, output_string, 10, ap);
122 va_end(ap);
123
124 DbpString(output_string);
125}
126
127// prints HEX & ASCII
128void Dbhexdump(int len, uint8_t *d) {
129 int l=0,i;
130 char ascii[9];
131
132 while (len>0) {
133 if (len>8) l=8;
134 else l=len;
135
136 memcpy(ascii,d,l);
137 ascii[l]=0;
138
139 // filter safe ascii
140 for (i=0;i<l;i++)
141 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
142
143 Dbprintf("%-8s %*D",ascii,l,d," ");
144
145 len-=8;
146 d+=8;
147 }
148}
149
150//-----------------------------------------------------------------------------
151// Read an ADC channel and block till it completes, then return the result
152// in ADC units (0 to 1023). Also a routine to average 32 samples and
153// return that.
154//-----------------------------------------------------------------------------
155static int ReadAdc(int ch)
156{
157 uint32_t d;
158
159 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
160 AT91C_BASE_ADC->ADC_MR =
161 ADC_MODE_PRESCALE(32) |
162 ADC_MODE_STARTUP_TIME(16) |
163 ADC_MODE_SAMPLE_HOLD_TIME(8);
164 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
165
166 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
167 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
168 ;
169 d = AT91C_BASE_ADC->ADC_CDR[ch];
170
171 return d;
172}
173
174int AvgAdc(int ch) // was static - merlok
175{
176 int i;
177 int a = 0;
178
179 for(i = 0; i < 32; i++) {
180 a += ReadAdc(ch);
181 }
182
183 return (a + 15) >> 5;
184}
185
186void MeasureAntennaTuning(void)
187{
188 uint8_t *dest = (uint8_t *)BigBuf;
189 int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
190 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
191
192 UsbCommand c;
193
194 DbpString("Measuring antenna characteristics, please wait.");
195 memset(BigBuf,0,sizeof(BigBuf));
196
197/*
198 * Sweeps the useful LF range of the proxmark from
199 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
200 * read the voltage in the antenna, the result left
201 * in the buffer is a graph which should clearly show
202 * the resonating frequency of your LF antenna
203 * ( hopefully around 95 if it is tuned to 125kHz!)
204 */
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
206 for (i=255; i>19; i--) {
207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
208 SpinDelay(20);
209 // Vref = 3.3V, and a 10000:240 voltage divider on the input
210 // can measure voltages up to 137500 mV
211 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
212 if (i==95) vLf125 = adcval; // voltage at 125Khz
213 if (i==89) vLf134 = adcval; // voltage at 134Khz
214
215 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
216 if(dest[i] > peak) {
217 peakv = adcval;
218 peak = dest[i];
219 peakf = i;
220 ptr = i;
221 }
222 }
223
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 // Vref = 3300mV, and an 10:1 voltage divider on the input
228 // can measure voltages up to 33000 mV
229 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
230
231 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
232 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
233 c.arg[1] = vHf;
234 c.arg[2] = peakf | (peakv << 16);
235 UsbSendPacket((uint8_t *)&c, sizeof(c));
236}
237
238void MeasureAntennaTuningHf(void)
239{
240 int vHf = 0; // in mV
241
242 DbpString("Measuring HF antenna, press button to exit");
243
244 for (;;) {
245 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
247 SpinDelay(20);
248 // Vref = 3300mV, and an 10:1 voltage divider on the input
249 // can measure voltages up to 33000 mV
250 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
251
252 Dbprintf("%d mV",vHf);
253 if (BUTTON_PRESS()) break;
254 }
255 DbpString("cancelled");
256}
257
258
259void SimulateTagHfListen(void)
260{
261 uint8_t *dest = (uint8_t *)BigBuf;
262 int n = sizeof(BigBuf);
263 uint8_t v = 0;
264 int i;
265 int p = 0;
266
267 // We're using this mode just so that I can test it out; the simulated
268 // tag mode would work just as well and be simpler.
269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
270
271 // We need to listen to the high-frequency, peak-detected path.
272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
273
274 FpgaSetupSsc();
275
276 i = 0;
277 for(;;) {
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
279 AT91C_BASE_SSC->SSC_THR = 0xff;
280 }
281 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
282 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
283
284 v <<= 1;
285 if(r & 1) {
286 v |= 1;
287 }
288 p++;
289
290 if(p >= 8) {
291 dest[i] = v;
292 v = 0;
293 p = 0;
294 i++;
295
296 if(i >= n) {
297 break;
298 }
299 }
300 }
301 }
302 DbpString("simulate tag (now type bitsamples)");
303}
304
305void ReadMem(int addr)
306{
307 const uint8_t *data = ((uint8_t *)addr);
308
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
311}
312
313/* osimage version information is linked in */
314extern struct version_information version_information;
315/* bootrom version information is pointed to from _bootphase1_version_pointer */
316extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
317void SendVersion(void)
318{
319 char temp[48]; /* Limited data payload in USB packets */
320 DbpString("Prox/RFID mark3 RFID instrument");
321
322 /* Try to find the bootrom version information. Expect to find a pointer at
323 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
324 * pointer, then use it.
325 */
326 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
327 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
328 DbpString("bootrom version information appears invalid");
329 } else {
330 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
331 DbpString(temp);
332 }
333
334 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
335 DbpString(temp);
336
337 FpgaGatherVersion(temp, sizeof(temp));
338 DbpString(temp);
339}
340
341#ifdef WITH_LF
342// samy's sniff and repeat routine
343void SamyRun()
344{
345 DbpString("Stand-alone mode! No PC necessary.");
346
347 // 3 possible options? no just 2 for now
348#define OPTS 2
349
350 int high[OPTS], low[OPTS];
351
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 int selected = 0;
364 int playing = 0;
365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
371 UsbPoll(FALSE);
372 WDT_HIT();
373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
379 if (button_pressed > 0)
380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
405 }
406
407 // Change where to record (or begin playing)
408 else if (button_pressed)
409 {
410 // Next option if we were previously playing
411 if (playing)
412 selected = (selected + 1) % OPTS;
413 playing = !playing;
414
415 LEDsoff();
416 LED(selected + 1, 0);
417
418 // Begin transmitting
419 if (playing)
420 {
421 LED(LED_GREEN, 0);
422 DbpString("Playing");
423 // wait for button to be released
424 while(BUTTON_PRESS())
425 WDT_HIT();
426 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
427 CmdHIDsimTAG(high[selected], low[selected], 0);
428 DbpString("Done playing");
429 if (BUTTON_HELD(1000) > 0)
430 {
431 DbpString("Exiting");
432 LEDsoff();
433 return;
434 }
435
436 /* We pressed a button so ignore it here with a delay */
437 SpinDelay(300);
438
439 // when done, we're done playing, move to next option
440 selected = (selected + 1) % OPTS;
441 playing = !playing;
442 LEDsoff();
443 LED(selected + 1, 0);
444 }
445 else
446 while(BUTTON_PRESS())
447 WDT_HIT();
448 }
449 }
450}
451#endif
452
453/*
454OBJECTIVE
455Listen and detect an external reader. Determine the best location
456for the antenna.
457
458INSTRUCTIONS:
459Inside the ListenReaderField() function, there is two mode.
460By default, when you call the function, you will enter mode 1.
461If you press the PM3 button one time, you will enter mode 2.
462If you press the PM3 button a second time, you will exit the function.
463
464DESCRIPTION OF MODE 1:
465This mode just listens for an external reader field and lights up green
466for HF and/or red for LF. This is the original mode of the detectreader
467function.
468
469DESCRIPTION OF MODE 2:
470This mode will visually represent, using the LEDs, the actual strength of the
471current compared to the maximum current detected. Basically, once you know
472what kind of external reader is present, it will help you spot the best location to place
473your antenna. You will probably not get some good results if there is a LF and a HF reader
474at the same place! :-)
475
476LIGHT SCHEME USED:
477*/
478static const char LIGHT_SCHEME[] = {
479 0x0, /* ---- | No field detected */
480 0x1, /* X--- | 14% of maximum current detected */
481 0x2, /* -X-- | 29% of maximum current detected */
482 0x4, /* --X- | 43% of maximum current detected */
483 0x8, /* ---X | 57% of maximum current detected */
484 0xC, /* --XX | 71% of maximum current detected */
485 0xE, /* -XXX | 86% of maximum current detected */
486 0xF, /* XXXX | 100% of maximum current detected */
487};
488static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
489
490void ListenReaderField(int limit)
491{
492 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
493 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
494 int mode=1, display_val, display_max, i;
495
496#define LF_ONLY 1
497#define HF_ONLY 2
498
499 LEDsoff();
500
501 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
502
503 if(limit != HF_ONLY) {
504 Dbprintf("LF 125/134 Baseline: %d", lf_av);
505 lf_baseline = lf_av;
506 }
507
508 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
509
510 if (limit != LF_ONLY) {
511 Dbprintf("HF 13.56 Baseline: %d", hf_av);
512 hf_baseline = hf_av;
513 }
514
515 for(;;) {
516 if (BUTTON_PRESS()) {
517 SpinDelay(500);
518 switch (mode) {
519 case 1:
520 mode=2;
521 DbpString("Signal Strength Mode");
522 break;
523 case 2:
524 default:
525 DbpString("Stopped");
526 LEDsoff();
527 return;
528 break;
529 }
530 }
531 WDT_HIT();
532
533 if (limit != HF_ONLY) {
534 if(mode==1) {
535 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
536 else LED_D_OFF();
537 }
538
539 ++lf_count;
540 lf_av_new= ReadAdc(ADC_CHAN_LF);
541 // see if there's a significant change
542 if(abs(lf_av - lf_av_new) > 10) {
543 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
544 lf_av = lf_av_new;
545 if (lf_av > lf_max)
546 lf_max = lf_av;
547 lf_count= 0;
548 }
549 }
550
551 if (limit != LF_ONLY) {
552 if (mode == 1){
553 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
554 else LED_B_OFF();
555 }
556
557 ++hf_count;
558 hf_av_new= ReadAdc(ADC_CHAN_HF);
559 // see if there's a significant change
560 if(abs(hf_av - hf_av_new) > 10) {
561 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
562 hf_av = hf_av_new;
563 if (hf_av > hf_max)
564 hf_max = hf_av;
565 hf_count= 0;
566 }
567 }
568
569 if(mode == 2) {
570 if (limit == LF_ONLY) {
571 display_val = lf_av;
572 display_max = lf_max;
573 } else if (limit == HF_ONLY) {
574 display_val = hf_av;
575 display_max = hf_max;
576 } else { /* Pick one at random */
577 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
578 display_val = hf_av;
579 display_max = hf_max;
580 } else {
581 display_val = lf_av;
582 display_max = lf_max;
583 }
584 }
585 for (i=0; i<LIGHT_LEN; i++) {
586 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
587 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
588 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
589 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
590 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
591 break;
592 }
593 }
594 }
595 }
596}
597
598void UsbPacketReceived(uint8_t *packet, int len)
599{
600 UsbCommand *c = (UsbCommand *)packet;
601 UsbCommand ack;
602 ack.cmd = CMD_ACK;
603
604 switch(c->cmd) {
605#ifdef WITH_LF
606 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
607 AcquireRawAdcSamples125k(c->arg[0]);
608 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
609 break;
610 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
611 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
612 break;
613 case CMD_HID_DEMOD_FSK:
614 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
615 break;
616 case CMD_HID_SIM_TAG:
617 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
618 break;
619 case CMD_HID_CLONE_TAG:
620 CopyHIDtoT5567(c->arg[0], c->arg[1]); // Clone HID tag by ID to T55x7
621 break;
622 case CMD_EM410X_WRITE_TAG:
623 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
624 break;
625 case CMD_READ_TI_TYPE:
626 ReadTItag();
627 break;
628 case CMD_WRITE_TI_TYPE:
629 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
630 break;
631 case CMD_SIMULATE_TAG_125K:
632 LED_A_ON();
633 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
634 LED_A_OFF();
635 break;
636 case CMD_LF_SIMULATE_BIDIR:
637 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
638 break;
639#endif
640
641#ifdef WITH_ISO15693
642 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
643 AcquireRawAdcSamplesIso15693();
644 break;
645 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
646 RecordRawAdcSamplesIso15693();
647 break;
648
649 case CMD_ISO_15693_COMMAND:
650 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
651 break;
652
653 case CMD_ISO_15693_FIND_AFI:
654 BruteforceIso15693Afi(c->arg[0]);
655 break;
656
657 case CMD_ISO_15693_DEBUG:
658 SetDebugIso15693(c->arg[0]);
659 break;
660
661 case CMD_READER_ISO_15693:
662 ReaderIso15693(c->arg[0]);
663 break;
664 case CMD_SIMTAG_ISO_15693:
665 SimTagIso15693(c->arg[0]);
666 break;
667#endif
668
669#ifdef WITH_LEGICRF
670 case CMD_SIMULATE_TAG_LEGIC_RF:
671 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
672 break;
673
674 case CMD_WRITER_LEGIC_RF:
675 LegicRfWriter(c->arg[1], c->arg[0]);
676 break;
677
678 case CMD_READER_LEGIC_RF:
679 LegicRfReader(c->arg[0], c->arg[1]);
680 break;
681#endif
682
683#ifdef WITH_ISO14443b
684 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
685 AcquireRawAdcSamplesIso14443(c->arg[0]);
686 break;
687 case CMD_READ_SRI512_TAG:
688 ReadSRI512Iso14443(c->arg[0]);
689 break;
690 case CMD_READ_SRIX4K_TAG:
691 ReadSRIX4KIso14443(c->arg[0]);
692 break;
693 case CMD_SNOOP_ISO_14443:
694 SnoopIso14443();
695 break;
696 case CMD_SIMULATE_TAG_ISO_14443:
697 SimulateIso14443Tag();
698 break;
699#endif
700
701#ifdef WITH_ISO14443a
702 case CMD_SNOOP_ISO_14443a:
703 SnoopIso14443a();
704 break;
705 case CMD_READER_ISO_14443a:
706 ReaderIso14443a(c, &ack);
707 break;
708 case CMD_SIMULATE_TAG_ISO_14443a:
709 SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID
710 break;
711
712 case CMD_READER_MIFARE:
713 ReaderMifare(c->arg[0]);
714 break;
715 case CMD_MIFARE_READBL:
716 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
717 break;
718 case CMD_MIFARE_READSC:
719 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
720 break;
721 case CMD_MIFARE_WRITEBL:
722 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
723 break;
724 case CMD_MIFARE_NESTED:
725 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
726 break;
727 case CMD_MIFARE_CHKKEYS:
728 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
729 break;
730 case CMD_SIMULATE_MIFARE_CARD:
731 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
732 break;
733
734 // emulator
735 case CMD_MIFARE_SET_DBGMODE:
736 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
737 break;
738 case CMD_MIFARE_EML_MEMCLR:
739 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
740 break;
741 case CMD_MIFARE_EML_MEMSET:
742 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
743 break;
744 case CMD_MIFARE_EML_MEMGET:
745 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
746 break;
747 case CMD_MIFARE_EML_CARDLOAD:
748 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
749 break;
750#endif
751
752#ifdef WITH_ICLASS
753 // Makes use of ISO14443a FPGA Firmware
754 case CMD_SNOOP_ICLASS:
755 SnoopIClass();
756 break;
757#endif
758
759 case CMD_SIMULATE_TAG_HF_LISTEN:
760 SimulateTagHfListen();
761 break;
762
763 case CMD_BUFF_CLEAR:
764 BufferClear();
765 break;
766
767 case CMD_MEASURE_ANTENNA_TUNING:
768 MeasureAntennaTuning();
769 break;
770
771 case CMD_MEASURE_ANTENNA_TUNING_HF:
772 MeasureAntennaTuningHf();
773 break;
774
775 case CMD_LISTEN_READER_FIELD:
776 ListenReaderField(c->arg[0]);
777 break;
778
779 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
780 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
781 SpinDelay(200);
782 LED_D_OFF(); // LED D indicates field ON or OFF
783 break;
784
785 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
786 UsbCommand n;
787 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
788 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
789 } else {
790 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
791 }
792 n.arg[0] = c->arg[0];
793 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
794 LED_B_ON();
795 UsbSendPacket((uint8_t *)&n, sizeof(n));
796 LED_B_OFF();
797 break;
798 }
799
800 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
801 uint8_t *b = (uint8_t *)BigBuf;
802 memcpy(b+c->arg[0], c->d.asBytes, 48);
803 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
804 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
805 break;
806 }
807
808 case CMD_READ_MEM:
809 ReadMem(c->arg[0]);
810 break;
811
812 case CMD_SET_LF_DIVISOR:
813 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
814 break;
815
816 case CMD_SET_ADC_MUX:
817 switch(c->arg[0]) {
818 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
819 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
820 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
821 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
822 }
823 break;
824
825 case CMD_VERSION:
826 SendVersion();
827 break;
828
829#ifdef WITH_LF
830
831#endif
832
833#ifdef WITH_LCD
834 case CMD_LCD_RESET:
835 LCDReset();
836 break;
837 case CMD_LCD:
838 LCDSend(c->arg[0]);
839 break;
840#endif
841 case CMD_SETUP_WRITE:
842 case CMD_FINISH_WRITE:
843 case CMD_HARDWARE_RESET:
844 USB_D_PLUS_PULLUP_OFF();
845 SpinDelay(1000);
846 SpinDelay(1000);
847 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
848 for(;;) {
849 // We're going to reset, and the bootrom will take control.
850 }
851 break;
852
853 case CMD_START_FLASH:
854 if(common_area.flags.bootrom_present) {
855 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
856 }
857 USB_D_PLUS_PULLUP_OFF();
858 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
859 for(;;);
860 break;
861
862 case CMD_DEVICE_INFO: {
863 UsbCommand c;
864 c.cmd = CMD_DEVICE_INFO;
865 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
866 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
867 UsbSendPacket((uint8_t*)&c, sizeof(c));
868 }
869 break;
870 default:
871 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
872 break;
873 }
874}
875
876void __attribute__((noreturn)) AppMain(void)
877{
878 SpinDelay(100);
879
880 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
881 /* Initialize common area */
882 memset(&common_area, 0, sizeof(common_area));
883 common_area.magic = COMMON_AREA_MAGIC;
884 common_area.version = 1;
885 }
886 common_area.flags.osimage_present = 1;
887
888 LED_D_OFF();
889 LED_C_OFF();
890 LED_B_OFF();
891 LED_A_OFF();
892
893 UsbStart();
894
895 // The FPGA gets its clock from us from PCK0 output, so set that up.
896 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
897 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
898 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
899 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
900 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
901 AT91C_PMC_PRES_CLK_4;
902 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
903
904 // Reset SPI
905 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
906 // Reset SSC
907 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
908
909 // Load the FPGA image, which we have stored in our flash.
910 FpgaDownloadAndGo();
911
912 StartTickCount();
913
914#ifdef WITH_LCD
915
916 LCDInit();
917
918 // test text on different colored backgrounds
919 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
920 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
921 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
922 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
923 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
924 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
925 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
926 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
927
928 // color bands
929 LCDFill(0, 1+8* 8, 132, 8, BLACK);
930 LCDFill(0, 1+8* 9, 132, 8, WHITE);
931 LCDFill(0, 1+8*10, 132, 8, RED);
932 LCDFill(0, 1+8*11, 132, 8, GREEN);
933 LCDFill(0, 1+8*12, 132, 8, BLUE);
934 LCDFill(0, 1+8*13, 132, 8, YELLOW);
935 LCDFill(0, 1+8*14, 132, 8, CYAN);
936 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
937
938#endif
939
940 for(;;) {
941 UsbPoll(FALSE);
942 WDT_HIT();
943
944#ifdef WITH_LF
945 if (BUTTON_HELD(1000) > 0)
946 SamyRun();
947#endif
948 }
949}
Impressum, Datenschutz