]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/iso14443a.c
data psk demod minor fixes, pyramid demod add CS
[proxmark3-svn] / armsrc / iso14443a.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Merlok - June 2011, 2012
3// Gerhard de Koning Gans - May 2008
4// Hagen Fritsch - June 2010
5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
9//-----------------------------------------------------------------------------
10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
13#include "proxmark3.h"
14#include "apps.h"
15#include "util.h"
16#include "string.h"
17#include "cmd.h"
18
19#include "iso14443crc.h"
20#include "iso14443a.h"
21#include "crapto1.h"
22#include "mifareutil.h"
23#include "BigBuf.h"
24static uint32_t iso14a_timeout;
25int rsamples = 0;
26uint8_t trigger = 0;
27// the block number for the ISO14443-4 PCB
28static uint8_t iso14_pcb_blocknum = 0;
29
30//
31// ISO14443 timing:
32//
33// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34#define REQUEST_GUARD_TIME (7000/16 + 1)
35// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37// bool LastCommandWasRequest = FALSE;
38
39//
40// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41//
42// When the PM acts as reader and is receiving tag data, it takes
43// 3 ticks delay in the AD converter
44// 16 ticks until the modulation detector completes and sets curbit
45// 8 ticks until bit_to_arm is assigned from curbit
46// 8*16 ticks for the transfer from FPGA to ARM
47// 4*16 ticks until we measure the time
48// - 8*16 ticks because we measure the time of the previous transfer
49#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50
51// When the PM acts as a reader and is sending, it takes
52// 4*16 ticks until we can write data to the sending hold register
53// 8*16 ticks until the SHR is transferred to the Sending Shift Register
54// 8 ticks until the first transfer starts
55// 8 ticks later the FPGA samples the data
56// 1 tick to assign mod_sig_coil
57#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58
59// When the PM acts as tag and is receiving it takes
60// 2 ticks delay in the RF part (for the first falling edge),
61// 3 ticks for the A/D conversion,
62// 8 ticks on average until the start of the SSC transfer,
63// 8 ticks until the SSC samples the first data
64// 7*16 ticks to complete the transfer from FPGA to ARM
65// 8 ticks until the next ssp_clk rising edge
66// 4*16 ticks until we measure the time
67// - 8*16 ticks because we measure the time of the previous transfer
68#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69
70// The FPGA will report its internal sending delay in
71uint16_t FpgaSendQueueDelay;
72// the 5 first bits are the number of bits buffered in mod_sig_buf
73// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75
76// When the PM acts as tag and is sending, it takes
77// 4*16 ticks until we can write data to the sending hold register
78// 8*16 ticks until the SHR is transferred to the Sending Shift Register
79// 8 ticks until the first transfer starts
80// 8 ticks later the FPGA samples the data
81// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82// + 1 tick to assign mod_sig_coil
83#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84
85// When the PM acts as sniffer and is receiving tag data, it takes
86// 3 ticks A/D conversion
87// 14 ticks to complete the modulation detection
88// 8 ticks (on average) until the result is stored in to_arm
89// + the delays in transferring data - which is the same for
90// sniffing reader and tag data and therefore not relevant
91#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92
93// When the PM acts as sniffer and is receiving reader data, it takes
94// 2 ticks delay in analogue RF receiver (for the falling edge of the
95// start bit, which marks the start of the communication)
96// 3 ticks A/D conversion
97// 8 ticks on average until the data is stored in to_arm.
98// + the delays in transferring data - which is the same for
99// sniffing reader and tag data and therefore not relevant
100#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101
102//variables used for timing purposes:
103//these are in ssp_clk cycles:
104static uint32_t NextTransferTime;
105static uint32_t LastTimeProxToAirStart;
106static uint32_t LastProxToAirDuration;
107
108
109
110// CARD TO READER - manchester
111// Sequence D: 11110000 modulation with subcarrier during first half
112// Sequence E: 00001111 modulation with subcarrier during second half
113// Sequence F: 00000000 no modulation with subcarrier
114// READER TO CARD - miller
115// Sequence X: 00001100 drop after half a period
116// Sequence Y: 00000000 no drop
117// Sequence Z: 11000000 drop at start
118#define SEC_D 0xf0
119#define SEC_E 0x0f
120#define SEC_F 0x00
121#define SEC_X 0x0c
122#define SEC_Y 0x00
123#define SEC_Z 0xc0
124
125const uint8_t OddByteParity[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
142};
143
144
145void iso14a_set_trigger(bool enable) {
146 trigger = enable;
147}
148
149
150void iso14a_set_timeout(uint32_t timeout) {
151 iso14a_timeout = timeout;
152 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
153}
154
155
156void iso14a_set_ATS_timeout(uint8_t *ats) {
157
158 uint8_t tb1;
159 uint8_t fwi;
160 uint32_t fwt;
161
162 if (ats[0] > 1) { // there is a format byte T0
163 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
165 tb1 = ats[3];
166 } else {
167 tb1 = ats[2];
168 }
169 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
171
172 iso14a_set_timeout(fwt/(8*16));
173 }
174 }
175}
176
177
178//-----------------------------------------------------------------------------
179// Generate the parity value for a byte sequence
180//
181//-----------------------------------------------------------------------------
182byte_t oddparity (const byte_t bt)
183{
184 return OddByteParity[bt];
185}
186
187void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
188{
189 uint16_t paritybit_cnt = 0;
190 uint16_t paritybyte_cnt = 0;
191 uint8_t parityBits = 0;
192
193 for (uint16_t i = 0; i < iLen; i++) {
194 // Generate the parity bits
195 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
196 if (paritybit_cnt == 7) {
197 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
198 parityBits = 0; // and advance to next Parity Byte
199 paritybyte_cnt++;
200 paritybit_cnt = 0;
201 } else {
202 paritybit_cnt++;
203 }
204 }
205
206 // save remaining parity bits
207 par[paritybyte_cnt] = parityBits;
208
209}
210
211void AppendCrc14443a(uint8_t* data, int len)
212{
213 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
214}
215
216//=============================================================================
217// ISO 14443 Type A - Miller decoder
218//=============================================================================
219// Basics:
220// This decoder is used when the PM3 acts as a tag.
221// The reader will generate "pauses" by temporarily switching of the field.
222// At the PM3 antenna we will therefore measure a modulated antenna voltage.
223// The FPGA does a comparison with a threshold and would deliver e.g.:
224// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225// The Miller decoder needs to identify the following sequences:
226// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229// Note 1: the bitstream may start at any time. We therefore need to sync.
230// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231//-----------------------------------------------------------------------------
232static tUart Uart;
233
234// Lookup-Table to decide if 4 raw bits are a modulation.
235// We accept two or three consecutive "0" in any position with the rest "1"
236const bool Mod_Miller_LUT[] = {
237 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
238 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
239};
240#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
242
243void UartReset()
244{
245 Uart.state = STATE_UNSYNCD;
246 Uart.bitCount = 0;
247 Uart.len = 0; // number of decoded data bytes
248 Uart.parityLen = 0; // number of decoded parity bytes
249 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
250 Uart.parityBits = 0; // holds 8 parity bits
251 Uart.twoBits = 0x0000; // buffer for 2 Bits
252 Uart.highCnt = 0;
253 Uart.startTime = 0;
254 Uart.endTime = 0;
255}
256
257void UartInit(uint8_t *data, uint8_t *parity)
258{
259 Uart.output = data;
260 Uart.parity = parity;
261 UartReset();
262}
263
264// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
266{
267
268 Uart.twoBits = (Uart.twoBits << 8) | bit;
269
270 if (Uart.state == STATE_UNSYNCD) { // not yet synced
271
272 if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
273 if (Uart.twoBits == 0xffff) {
274 Uart.highCnt++;
275 } else {
276 Uart.highCnt = 0;
277 }
278 } else {
279 Uart.syncBit = 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
285 else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
286 else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
287 else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
288 else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
289 else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
290 if (Uart.syncBit != 0xFFFF) { // found a sync bit
291 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
292 Uart.startTime -= Uart.syncBit;
293 Uart.endTime = Uart.startTime;
294 Uart.state = STATE_START_OF_COMMUNICATION;
295 }
296 }
297
298 } else {
299
300 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
301 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
302 UartReset();
303 } else { // Modulation in first half = Sequence Z = logic "0"
304 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
305 UartReset();
306 } else {
307 Uart.bitCount++;
308 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
309 Uart.state = STATE_MILLER_Z;
310 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
311 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
312 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
313 Uart.parityBits <<= 1; // make room for the parity bit
314 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
315 Uart.bitCount = 0;
316 Uart.shiftReg = 0;
317 if((Uart.len&0x0007) == 0) { // every 8 data bytes
318 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
319 Uart.parityBits = 0;
320 }
321 }
322 }
323 }
324 } else {
325 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
326 Uart.bitCount++;
327 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
328 Uart.state = STATE_MILLER_X;
329 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
330 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
331 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
332 Uart.parityBits <<= 1; // make room for the new parity bit
333 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
334 Uart.bitCount = 0;
335 Uart.shiftReg = 0;
336 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
337 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
338 Uart.parityBits = 0;
339 }
340 }
341 } else { // no modulation in both halves - Sequence Y
342 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
343 Uart.state = STATE_UNSYNCD;
344 Uart.bitCount--; // last "0" was part of EOC sequence
345 Uart.shiftReg <<= 1; // drop it
346 if(Uart.bitCount > 0) { // if we decoded some bits
347 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
348 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
349 Uart.parityBits <<= 1; // add a (void) parity bit
350 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
351 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
352 return TRUE;
353 } else if (Uart.len & 0x0007) { // there are some parity bits to store
354 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
355 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
356 }
357 if (Uart.len) {
358 return TRUE; // we are finished with decoding the raw data sequence
359 } else {
360 UartReset(); // Nothing received - start over
361 Uart.highCnt = 1;
362 }
363 }
364 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
365 UartReset();
366 Uart.highCnt = 1;
367 } else { // a logic "0"
368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
370 Uart.state = STATE_MILLER_Y;
371 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
372 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
373 Uart.parityBits <<= 1; // make room for the parity bit
374 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
375 Uart.bitCount = 0;
376 Uart.shiftReg = 0;
377 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
378 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
379 Uart.parityBits = 0;
380 }
381 }
382 }
383 }
384 }
385
386 }
387
388 return FALSE; // not finished yet, need more data
389}
390
391
392
393//=============================================================================
394// ISO 14443 Type A - Manchester decoder
395//=============================================================================
396// Basics:
397// This decoder is used when the PM3 acts as a reader.
398// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401// The Manchester decoder needs to identify the following sequences:
402// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404// 8 ticks unmodulated: Sequence F = end of communication
405// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
406// Note 1: the bitstream may start at any time. We therefore need to sync.
407// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
408static tDemod Demod;
409
410// Lookup-Table to decide if 4 raw bits are a modulation.
411// We accept three or four "1" in any position
412const bool Mod_Manchester_LUT[] = {
413 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
414 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
415};
416
417#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
419
420
421void DemodReset()
422{
423 Demod.state = DEMOD_UNSYNCD;
424 Demod.len = 0; // number of decoded data bytes
425 Demod.parityLen = 0;
426 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
427 Demod.parityBits = 0; //
428 Demod.collisionPos = 0; // Position of collision bit
429 Demod.twoBits = 0xffff; // buffer for 2 Bits
430 Demod.highCnt = 0;
431 Demod.startTime = 0;
432 Demod.endTime = 0;
433}
434
435void DemodInit(uint8_t *data, uint8_t *parity)
436{
437 Demod.output = data;
438 Demod.parity = parity;
439 DemodReset();
440}
441
442// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
444{
445
446 Demod.twoBits = (Demod.twoBits << 8) | bit;
447
448 if (Demod.state == DEMOD_UNSYNCD) {
449
450 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
451 if (Demod.twoBits == 0x0000) {
452 Demod.highCnt++;
453 } else {
454 Demod.highCnt = 0;
455 }
456 } else {
457 Demod.syncBit = 0xFFFF; // not set
458 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
459 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
460 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
461 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
462 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
463 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
464 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
465 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
466 if (Demod.syncBit != 0xFFFF) {
467 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
468 Demod.startTime -= Demod.syncBit;
469 Demod.bitCount = offset; // number of decoded data bits
470 Demod.state = DEMOD_MANCHESTER_DATA;
471 }
472 }
473
474 } else {
475
476 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
478 if (!Demod.collisionPos) {
479 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
480 }
481 } // modulation in first half only - Sequence D = 1
482 Demod.bitCount++;
483 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
485 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
486 Demod.parityBits <<= 1; // make room for the parity bit
487 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
488 Demod.bitCount = 0;
489 Demod.shiftReg = 0;
490 if((Demod.len&0x0007) == 0) { // every 8 data bytes
491 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
492 Demod.parityBits = 0;
493 }
494 }
495 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
498 Demod.bitCount++;
499 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
500 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
501 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
502 Demod.parityBits <<= 1; // make room for the new parity bit
503 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
504 Demod.bitCount = 0;
505 Demod.shiftReg = 0;
506 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
507 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
508 Demod.parityBits = 0;
509 }
510 }
511 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
512 } else { // no modulation in both halves - End of communication
513 if(Demod.bitCount > 0) { // there are some remaining data bits
514 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
515 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
516 Demod.parityBits <<= 1; // add a (void) parity bit
517 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
518 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
519 return TRUE;
520 } else if (Demod.len & 0x0007) { // there are some parity bits to store
521 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
522 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
523 }
524 if (Demod.len) {
525 return TRUE; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
527 DemodReset();
528 }
529 }
530 }
531
532 }
533
534 return FALSE; // not finished yet, need more data
535}
536
537//=============================================================================
538// Finally, a `sniffer' for ISO 14443 Type A
539// Both sides of communication!
540//=============================================================================
541
542//-----------------------------------------------------------------------------
543// Record the sequence of commands sent by the reader to the tag, with
544// triggering so that we start recording at the point that the tag is moved
545// near the reader.
546//-----------------------------------------------------------------------------
547void RAMFUNC SnoopIso14443a(uint8_t param) {
548 // param:
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
551
552 LEDsoff();
553
554 // We won't start recording the frames that we acquire until we trigger;
555 // a good trigger condition to get started is probably when we see a
556 // response from the tag.
557 // triggered == FALSE -- to wait first for card
558 bool triggered = !(param & 0x03);
559
560 // Allocate memory from BigBuf for some buffers
561 // free all previous allocations first
562 BigBuf_free();
563
564 // The command (reader -> tag) that we're receiving.
565 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
566 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
567
568 // The response (tag -> reader) that we're receiving.
569 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
570 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
571
572 // The DMA buffer, used to stream samples from the FPGA
573 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
574
575 // init trace buffer
576 clear_trace();
577 set_tracing(TRUE);
578
579 uint8_t *data = dmaBuf;
580 uint8_t previous_data = 0;
581 int maxDataLen = 0;
582 int dataLen = 0;
583 bool TagIsActive = FALSE;
584 bool ReaderIsActive = FALSE;
585
586 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
587
588 // Set up the demodulator for tag -> reader responses.
589 DemodInit(receivedResponse, receivedResponsePar);
590
591 // Set up the demodulator for the reader -> tag commands
592 UartInit(receivedCmd, receivedCmdPar);
593
594 // Setup and start DMA.
595 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
596
597 // And now we loop, receiving samples.
598 for(uint32_t rsamples = 0; TRUE; ) {
599
600 if(BUTTON_PRESS()) {
601 DbpString("cancelled by button");
602 break;
603 }
604
605 LED_A_ON();
606 WDT_HIT();
607
608 int register readBufDataP = data - dmaBuf;
609 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
610 if (readBufDataP <= dmaBufDataP){
611 dataLen = dmaBufDataP - readBufDataP;
612 } else {
613 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
614 }
615 // test for length of buffer
616 if(dataLen > maxDataLen) {
617 maxDataLen = dataLen;
618 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
619 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
620 break;
621 }
622 }
623 if(dataLen < 1) continue;
624
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
627 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
628 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
630 }
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
633 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
634 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
635 }
636
637 LED_A_OFF();
638
639 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
640
641 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
643 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
644 LED_C_ON();
645
646 // check - if there is a short 7bit request from reader
647 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
648
649 if(triggered) {
650 if (!LogTrace(receivedCmd,
651 Uart.len,
652 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
653 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
654 Uart.parity,
655 TRUE)) break;
656 }
657 /* And ready to receive another command. */
658 UartReset();
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
661 DemodReset();
662 LED_B_OFF();
663 }
664 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
665 }
666
667 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
669 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
670 LED_B_ON();
671
672 if (!LogTrace(receivedResponse,
673 Demod.len,
674 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
675 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
676 Demod.parity,
677 FALSE)) break;
678
679 if ((!triggered) && (param & 0x01)) triggered = TRUE;
680
681 // And ready to receive another response.
682 DemodReset();
683 LED_C_OFF();
684 }
685 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
686 }
687 }
688
689 previous_data = *data;
690 rsamples++;
691 data++;
692 if(data == dmaBuf + DMA_BUFFER_SIZE) {
693 data = dmaBuf;
694 }
695 } // main cycle
696
697 DbpString("COMMAND FINISHED");
698
699 FpgaDisableSscDma();
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
702 LEDsoff();
703}
704
705//-----------------------------------------------------------------------------
706// Prepare tag messages
707//-----------------------------------------------------------------------------
708static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
709{
710 ToSendReset();
711
712 // Correction bit, might be removed when not needed
713 ToSendStuffBit(0);
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(1); // 1
718 ToSendStuffBit(0);
719 ToSendStuffBit(0);
720 ToSendStuffBit(0);
721
722 // Send startbit
723 ToSend[++ToSendMax] = SEC_D;
724 LastProxToAirDuration = 8 * ToSendMax - 4;
725
726 for(uint16_t i = 0; i < len; i++) {
727 uint8_t b = cmd[i];
728
729 // Data bits
730 for(uint16_t j = 0; j < 8; j++) {
731 if(b & 1) {
732 ToSend[++ToSendMax] = SEC_D;
733 } else {
734 ToSend[++ToSendMax] = SEC_E;
735 }
736 b >>= 1;
737 }
738
739 // Get the parity bit
740 if (parity[i>>3] & (0x80>>(i&0x0007))) {
741 ToSend[++ToSendMax] = SEC_D;
742 LastProxToAirDuration = 8 * ToSendMax - 4;
743 } else {
744 ToSend[++ToSendMax] = SEC_E;
745 LastProxToAirDuration = 8 * ToSendMax;
746 }
747 }
748
749 // Send stopbit
750 ToSend[++ToSendMax] = SEC_F;
751
752 // Convert from last byte pos to length
753 ToSendMax++;
754}
755
756static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
757{
758 uint8_t par[MAX_PARITY_SIZE];
759
760 GetParity(cmd, len, par);
761 CodeIso14443aAsTagPar(cmd, len, par);
762}
763
764
765static void Code4bitAnswerAsTag(uint8_t cmd)
766{
767 int i;
768
769 ToSendReset();
770
771 // Correction bit, might be removed when not needed
772 ToSendStuffBit(0);
773 ToSendStuffBit(0);
774 ToSendStuffBit(0);
775 ToSendStuffBit(0);
776 ToSendStuffBit(1); // 1
777 ToSendStuffBit(0);
778 ToSendStuffBit(0);
779 ToSendStuffBit(0);
780
781 // Send startbit
782 ToSend[++ToSendMax] = SEC_D;
783
784 uint8_t b = cmd;
785 for(i = 0; i < 4; i++) {
786 if(b & 1) {
787 ToSend[++ToSendMax] = SEC_D;
788 LastProxToAirDuration = 8 * ToSendMax - 4;
789 } else {
790 ToSend[++ToSendMax] = SEC_E;
791 LastProxToAirDuration = 8 * ToSendMax;
792 }
793 b >>= 1;
794 }
795
796 // Send stopbit
797 ToSend[++ToSendMax] = SEC_F;
798
799 // Convert from last byte pos to length
800 ToSendMax++;
801}
802
803//-----------------------------------------------------------------------------
804// Wait for commands from reader
805// Stop when button is pressed
806// Or return TRUE when command is captured
807//-----------------------------------------------------------------------------
808static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
809{
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
813 LED_D_OFF();
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
815
816 // Now run a `software UART' on the stream of incoming samples.
817 UartInit(received, parity);
818
819 // clear RXRDY:
820 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
821
822 for(;;) {
823 WDT_HIT();
824
825 if(BUTTON_PRESS()) return FALSE;
826
827 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
828 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
829 if(MillerDecoding(b, 0)) {
830 *len = Uart.len;
831 return TRUE;
832 }
833 }
834 }
835}
836
837static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
838int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
839int EmSend4bit(uint8_t resp);
840int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
841int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
842int EmSendCmd(uint8_t *resp, uint16_t respLen);
843int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
844bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
845 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
846
847static uint8_t* free_buffer_pointer;
848
849typedef struct {
850 uint8_t* response;
851 size_t response_n;
852 uint8_t* modulation;
853 size_t modulation_n;
854 uint32_t ProxToAirDuration;
855} tag_response_info_t;
856
857bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
861 // 18 parity bits
862 // 2 Start and stop
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
865 // ----------- +
866 // 166 bytes, since every bit that needs to be send costs us a byte
867 //
868
869
870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info->response,response_info->response_n);
872
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax > max_buffer_size) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info->response_n,response_info->response,false);
877 return false;
878 }
879
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info->modulation,ToSend,ToSendMax);
882
883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
884 response_info->modulation_n = ToSendMax;
885 response_info->ProxToAirDuration = LastProxToAirDuration;
886
887 return true;
888}
889
890
891// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894// -> need 273 bytes buffer
895#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
896
897bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
898 // Retrieve and store the current buffer index
899 response_info->modulation = free_buffer_pointer;
900
901 // Determine the maximum size we can use from our buffer
902 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
903
904 // Forward the prepare tag modulation function to the inner function
905 if (prepare_tag_modulation(response_info, max_buffer_size)) {
906 // Update the free buffer offset
907 free_buffer_pointer += ToSendMax;
908 return true;
909 } else {
910 return false;
911 }
912}
913
914//-----------------------------------------------------------------------------
915// Main loop of simulated tag: receive commands from reader, decide what
916// response to send, and send it.
917//-----------------------------------------------------------------------------
918void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
919{
920 uint8_t sak;
921
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1[2];
924
925 switch (tagType) {
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
928 response1[0] = 0x04;
929 response1[1] = 0x00;
930 sak = 0x08;
931 } break;
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
934 response1[0] = 0x04;
935 response1[1] = 0x00;
936 sak = 0x00;
937 } break;
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
940 response1[0] = 0x04;
941 response1[1] = 0x03;
942 sak = 0x20;
943 } break;
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
946 response1[0] = 0x04;
947 response1[1] = 0x00;
948 sak = 0x28;
949 } break;
950 case 5: { // MIFARE TNP3XXX
951 // Says: I am a toy
952 response1[0] = 0x01;
953 response1[1] = 0x0f;
954 sak = 0x01;
955 } break;
956 default: {
957 Dbprintf("Error: unkown tagtype (%d)",tagType);
958 return;
959 } break;
960 }
961
962 // The second response contains the (mandatory) first 24 bits of the UID
963 uint8_t response2[5] = {0x00};
964
965 // Check if the uid uses the (optional) part
966 uint8_t response2a[5] = {0x00};
967
968 if (uid_2nd) {
969 response2[0] = 0x88;
970 num_to_bytes(uid_1st,3,response2+1);
971 num_to_bytes(uid_2nd,4,response2a);
972 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
973
974 // Configure the ATQA and SAK accordingly
975 response1[0] |= 0x40;
976 sak |= 0x04;
977 } else {
978 num_to_bytes(uid_1st,4,response2);
979 // Configure the ATQA and SAK accordingly
980 response1[0] &= 0xBF;
981 sak &= 0xFB;
982 }
983
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
986
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
988 uint8_t response3[3] = {0x00};
989 response3[0] = sak;
990 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
991
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
993 uint8_t response3a[3] = {0x00};
994 response3a[0] = sak & 0xFB;
995 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
996
997 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
998 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
1003 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1004
1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1007 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1008 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1009 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1011 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1012 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1013 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1014 };
1015
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1021 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1022 tag_response_info_t dynamic_response_info = {
1023 .response = dynamic_response_buffer,
1024 .response_n = 0,
1025 .modulation = dynamic_modulation_buffer,
1026 .modulation_n = 0
1027 };
1028
1029 BigBuf_free_keep_EM();
1030
1031 // allocate buffers:
1032 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1033 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1034 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1035
1036 // clear trace
1037 clear_trace();
1038 set_tracing(TRUE);
1039
1040 // Prepare the responses of the anticollision phase
1041 // there will be not enough time to do this at the moment the reader sends it REQA
1042 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1043 prepare_allocated_tag_modulation(&responses[i]);
1044 }
1045
1046 int len = 0;
1047
1048 // To control where we are in the protocol
1049 int order = 0;
1050 int lastorder;
1051
1052 // Just to allow some checks
1053 int happened = 0;
1054 int happened2 = 0;
1055 int cmdsRecvd = 0;
1056
1057 // We need to listen to the high-frequency, peak-detected path.
1058 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1059
1060 cmdsRecvd = 0;
1061 tag_response_info_t* p_response;
1062
1063 LED_A_ON();
1064 for(;;) {
1065 // Clean receive command buffer
1066
1067 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1068 DbpString("Button press");
1069 break;
1070 }
1071
1072 p_response = NULL;
1073
1074 // Okay, look at the command now.
1075 lastorder = order;
1076 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1077 p_response = &responses[0]; order = 1;
1078 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1079 p_response = &responses[0]; order = 6;
1080 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1081 p_response = &responses[1]; order = 2;
1082 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1083 p_response = &responses[2]; order = 20;
1084 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1085 p_response = &responses[3]; order = 3;
1086 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1087 p_response = &responses[4]; order = 30;
1088 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1089 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1090 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1091 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1092 p_response = NULL;
1093 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1094
1095 if (tracing) {
1096 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1097 }
1098 p_response = NULL;
1099 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1100 p_response = &responses[5]; order = 7;
1101 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1102 if (tagType == 1 || tagType == 2) { // RATS not supported
1103 EmSend4bit(CARD_NACK_NA);
1104 p_response = NULL;
1105 } else {
1106 p_response = &responses[6]; order = 70;
1107 }
1108 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1109 if (tracing) {
1110 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1111 }
1112 uint32_t nr = bytes_to_num(receivedCmd,4);
1113 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1114 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1115 } else {
1116 // Check for ISO 14443A-4 compliant commands, look at left nibble
1117 switch (receivedCmd[0]) {
1118
1119 case 0x0B:
1120 case 0x0A: { // IBlock (command)
1121 dynamic_response_info.response[0] = receivedCmd[0];
1122 dynamic_response_info.response[1] = 0x00;
1123 dynamic_response_info.response[2] = 0x90;
1124 dynamic_response_info.response[3] = 0x00;
1125 dynamic_response_info.response_n = 4;
1126 } break;
1127
1128 case 0x1A:
1129 case 0x1B: { // Chaining command
1130 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1131 dynamic_response_info.response_n = 2;
1132 } break;
1133
1134 case 0xaa:
1135 case 0xbb: {
1136 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1137 dynamic_response_info.response_n = 2;
1138 } break;
1139
1140 case 0xBA: { //
1141 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1142 dynamic_response_info.response_n = 2;
1143 } break;
1144
1145 case 0xCA:
1146 case 0xC2: { // Readers sends deselect command
1147 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1148 dynamic_response_info.response_n = 2;
1149 } break;
1150
1151 default: {
1152 // Never seen this command before
1153 if (tracing) {
1154 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1155 }
1156 Dbprintf("Received unknown command (len=%d):",len);
1157 Dbhexdump(len,receivedCmd,false);
1158 // Do not respond
1159 dynamic_response_info.response_n = 0;
1160 } break;
1161 }
1162
1163 if (dynamic_response_info.response_n > 0) {
1164 // Copy the CID from the reader query
1165 dynamic_response_info.response[1] = receivedCmd[1];
1166
1167 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1168 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1169 dynamic_response_info.response_n += 2;
1170
1171 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1172 Dbprintf("Error preparing tag response");
1173 if (tracing) {
1174 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1175 }
1176 break;
1177 }
1178 p_response = &dynamic_response_info;
1179 }
1180 }
1181
1182 // Count number of wakeups received after a halt
1183 if(order == 6 && lastorder == 5) { happened++; }
1184
1185 // Count number of other messages after a halt
1186 if(order != 6 && lastorder == 5) { happened2++; }
1187
1188 if(cmdsRecvd > 999) {
1189 DbpString("1000 commands later...");
1190 break;
1191 }
1192 cmdsRecvd++;
1193
1194 if (p_response != NULL) {
1195 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1196 // do the tracing for the previous reader request and this tag answer:
1197 uint8_t par[MAX_PARITY_SIZE];
1198 GetParity(p_response->response, p_response->response_n, par);
1199
1200 EmLogTrace(Uart.output,
1201 Uart.len,
1202 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1203 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1204 Uart.parity,
1205 p_response->response,
1206 p_response->response_n,
1207 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1208 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1209 par);
1210 }
1211
1212 if (!tracing) {
1213 Dbprintf("Trace Full. Simulation stopped.");
1214 break;
1215 }
1216 }
1217
1218 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1219 LED_A_OFF();
1220 BigBuf_free_keep_EM();
1221}
1222
1223
1224// prepare a delayed transfer. This simply shifts ToSend[] by a number
1225// of bits specified in the delay parameter.
1226void PrepareDelayedTransfer(uint16_t delay)
1227{
1228 uint8_t bitmask = 0;
1229 uint8_t bits_to_shift = 0;
1230 uint8_t bits_shifted = 0;
1231
1232 delay &= 0x07;
1233 if (delay) {
1234 for (uint16_t i = 0; i < delay; i++) {
1235 bitmask |= (0x01 << i);
1236 }
1237 ToSend[ToSendMax++] = 0x00;
1238 for (uint16_t i = 0; i < ToSendMax; i++) {
1239 bits_to_shift = ToSend[i] & bitmask;
1240 ToSend[i] = ToSend[i] >> delay;
1241 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1242 bits_shifted = bits_to_shift;
1243 }
1244 }
1245}
1246
1247
1248//-------------------------------------------------------------------------------------
1249// Transmit the command (to the tag) that was placed in ToSend[].
1250// Parameter timing:
1251// if NULL: transfer at next possible time, taking into account
1252// request guard time and frame delay time
1253// if == 0: transfer immediately and return time of transfer
1254// if != 0: delay transfer until time specified
1255//-------------------------------------------------------------------------------------
1256static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1257{
1258
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1260
1261 uint32_t ThisTransferTime = 0;
1262
1263 if (timing) {
1264 if(*timing == 0) { // Measure time
1265 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1266 } else {
1267 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 }
1269 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1270 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1271 LastTimeProxToAirStart = *timing;
1272 } else {
1273 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1274 while(GetCountSspClk() < ThisTransferTime);
1275 LastTimeProxToAirStart = ThisTransferTime;
1276 }
1277
1278 // clear TXRDY
1279 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1280
1281 uint16_t c = 0;
1282 for(;;) {
1283 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1284 AT91C_BASE_SSC->SSC_THR = cmd[c];
1285 c++;
1286 if(c >= len) {
1287 break;
1288 }
1289 }
1290 }
1291
1292 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1293}
1294
1295
1296//-----------------------------------------------------------------------------
1297// Prepare reader command (in bits, support short frames) to send to FPGA
1298//-----------------------------------------------------------------------------
1299void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1300{
1301 int i, j;
1302 int last;
1303 uint8_t b;
1304
1305 ToSendReset();
1306
1307 // Start of Communication (Seq. Z)
1308 ToSend[++ToSendMax] = SEC_Z;
1309 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1310 last = 0;
1311
1312 size_t bytecount = nbytes(bits);
1313 // Generate send structure for the data bits
1314 for (i = 0; i < bytecount; i++) {
1315 // Get the current byte to send
1316 b = cmd[i];
1317 size_t bitsleft = MIN((bits-(i*8)),8);
1318
1319 for (j = 0; j < bitsleft; j++) {
1320 if (b & 1) {
1321 // Sequence X
1322 ToSend[++ToSendMax] = SEC_X;
1323 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1324 last = 1;
1325 } else {
1326 if (last == 0) {
1327 // Sequence Z
1328 ToSend[++ToSendMax] = SEC_Z;
1329 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1330 } else {
1331 // Sequence Y
1332 ToSend[++ToSendMax] = SEC_Y;
1333 last = 0;
1334 }
1335 }
1336 b >>= 1;
1337 }
1338
1339 // Only transmit parity bit if we transmitted a complete byte
1340 if (j == 8) {
1341 // Get the parity bit
1342 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1343 // Sequence X
1344 ToSend[++ToSendMax] = SEC_X;
1345 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1346 last = 1;
1347 } else {
1348 if (last == 0) {
1349 // Sequence Z
1350 ToSend[++ToSendMax] = SEC_Z;
1351 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1352 } else {
1353 // Sequence Y
1354 ToSend[++ToSendMax] = SEC_Y;
1355 last = 0;
1356 }
1357 }
1358 }
1359 }
1360
1361 // End of Communication: Logic 0 followed by Sequence Y
1362 if (last == 0) {
1363 // Sequence Z
1364 ToSend[++ToSendMax] = SEC_Z;
1365 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1366 } else {
1367 // Sequence Y
1368 ToSend[++ToSendMax] = SEC_Y;
1369 last = 0;
1370 }
1371 ToSend[++ToSendMax] = SEC_Y;
1372
1373 // Convert to length of command:
1374 ToSendMax++;
1375}
1376
1377//-----------------------------------------------------------------------------
1378// Prepare reader command to send to FPGA
1379//-----------------------------------------------------------------------------
1380void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1381{
1382 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1383}
1384
1385
1386//-----------------------------------------------------------------------------
1387// Wait for commands from reader
1388// Stop when button is pressed (return 1) or field was gone (return 2)
1389// Or return 0 when command is captured
1390//-----------------------------------------------------------------------------
1391static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1392{
1393 *len = 0;
1394
1395 uint32_t timer = 0, vtime = 0;
1396 int analogCnt = 0;
1397 int analogAVG = 0;
1398
1399 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1400 // only, since we are receiving, not transmitting).
1401 // Signal field is off with the appropriate LED
1402 LED_D_OFF();
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1404
1405 // Set ADC to read field strength
1406 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1407 AT91C_BASE_ADC->ADC_MR =
1408 ADC_MODE_PRESCALE(63) |
1409 ADC_MODE_STARTUP_TIME(1) |
1410 ADC_MODE_SAMPLE_HOLD_TIME(15);
1411 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1412 // start ADC
1413 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1414
1415 // Now run a 'software UART' on the stream of incoming samples.
1416 UartInit(received, parity);
1417
1418 // Clear RXRDY:
1419 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1420
1421 for(;;) {
1422 WDT_HIT();
1423
1424 if (BUTTON_PRESS()) return 1;
1425
1426 // test if the field exists
1427 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1428 analogCnt++;
1429 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1430 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1431 if (analogCnt >= 32) {
1432 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1433 vtime = GetTickCount();
1434 if (!timer) timer = vtime;
1435 // 50ms no field --> card to idle state
1436 if (vtime - timer > 50) return 2;
1437 } else
1438 if (timer) timer = 0;
1439 analogCnt = 0;
1440 analogAVG = 0;
1441 }
1442 }
1443
1444 // receive and test the miller decoding
1445 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1446 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1447 if(MillerDecoding(b, 0)) {
1448 *len = Uart.len;
1449 return 0;
1450 }
1451 }
1452
1453 }
1454}
1455
1456
1457static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1458{
1459 uint8_t b;
1460 uint16_t i = 0;
1461 uint32_t ThisTransferTime;
1462
1463 // Modulate Manchester
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1465
1466 // include correction bit if necessary
1467 if (Uart.parityBits & 0x01) {
1468 correctionNeeded = TRUE;
1469 }
1470 if(correctionNeeded) {
1471 // 1236, so correction bit needed
1472 i = 0;
1473 } else {
1474 i = 1;
1475 }
1476
1477 // clear receiving shift register and holding register
1478 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1479 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1480 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1481 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1482
1483 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1484 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1485 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1486 if (AT91C_BASE_SSC->SSC_RHR) break;
1487 }
1488
1489 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1490
1491 // Clear TXRDY:
1492 AT91C_BASE_SSC->SSC_THR = SEC_F;
1493
1494 // send cycle
1495 for(; i < respLen; ) {
1496 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1497 AT91C_BASE_SSC->SSC_THR = resp[i++];
1498 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1499 }
1500
1501 if(BUTTON_PRESS()) {
1502 break;
1503 }
1504 }
1505
1506 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1507 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1508 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1509 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1510 AT91C_BASE_SSC->SSC_THR = SEC_F;
1511 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1512 i++;
1513 }
1514 }
1515
1516 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1517
1518 return 0;
1519}
1520
1521int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1522 Code4bitAnswerAsTag(resp);
1523 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1524 // do the tracing for the previous reader request and this tag answer:
1525 uint8_t par[1];
1526 GetParity(&resp, 1, par);
1527 EmLogTrace(Uart.output,
1528 Uart.len,
1529 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1530 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1531 Uart.parity,
1532 &resp,
1533 1,
1534 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1535 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1536 par);
1537 return res;
1538}
1539
1540int EmSend4bit(uint8_t resp){
1541 return EmSend4bitEx(resp, false);
1542}
1543
1544int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1545 CodeIso14443aAsTagPar(resp, respLen, par);
1546 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1547 // do the tracing for the previous reader request and this tag answer:
1548 EmLogTrace(Uart.output,
1549 Uart.len,
1550 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1551 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1552 Uart.parity,
1553 resp,
1554 respLen,
1555 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1556 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1557 par);
1558 return res;
1559}
1560
1561int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1562 uint8_t par[MAX_PARITY_SIZE];
1563 GetParity(resp, respLen, par);
1564 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1565}
1566
1567int EmSendCmd(uint8_t *resp, uint16_t respLen){
1568 uint8_t par[MAX_PARITY_SIZE];
1569 GetParity(resp, respLen, par);
1570 return EmSendCmdExPar(resp, respLen, false, par);
1571}
1572
1573int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1574 return EmSendCmdExPar(resp, respLen, false, par);
1575}
1576
1577bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1578 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1579{
1580 if (tracing) {
1581 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1582 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1583 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1584 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1585 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1586 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1587 reader_EndTime = tag_StartTime - exact_fdt;
1588 reader_StartTime = reader_EndTime - reader_modlen;
1589 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1590 return FALSE;
1591 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1592 } else {
1593 return TRUE;
1594 }
1595}
1596
1597//-----------------------------------------------------------------------------
1598// Wait a certain time for tag response
1599// If a response is captured return TRUE
1600// If it takes too long return FALSE
1601//-----------------------------------------------------------------------------
1602static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1603{
1604 uint32_t c;
1605
1606 // Set FPGA mode to "reader listen mode", no modulation (listen
1607 // only, since we are receiving, not transmitting).
1608 // Signal field is on with the appropriate LED
1609 LED_D_ON();
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1611
1612 // Now get the answer from the card
1613 DemodInit(receivedResponse, receivedResponsePar);
1614
1615 // clear RXRDY:
1616 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1617
1618 c = 0;
1619 for(;;) {
1620 WDT_HIT();
1621
1622 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1623 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1624 if(ManchesterDecoding(b, offset, 0)) {
1625 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1626 return TRUE;
1627 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1628 return FALSE;
1629 }
1630 }
1631 }
1632}
1633
1634void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1635{
1636 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1637
1638 // Send command to tag
1639 TransmitFor14443a(ToSend, ToSendMax, timing);
1640 if(trigger)
1641 LED_A_ON();
1642
1643 // Log reader command in trace buffer
1644 if (tracing) {
1645 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1646 }
1647}
1648
1649void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1650{
1651 ReaderTransmitBitsPar(frame, len*8, par, timing);
1652}
1653
1654void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1655{
1656 // Generate parity and redirect
1657 uint8_t par[MAX_PARITY_SIZE];
1658 GetParity(frame, len/8, par);
1659 ReaderTransmitBitsPar(frame, len, par, timing);
1660}
1661
1662void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1663{
1664 // Generate parity and redirect
1665 uint8_t par[MAX_PARITY_SIZE];
1666 GetParity(frame, len, par);
1667 ReaderTransmitBitsPar(frame, len*8, par, timing);
1668}
1669
1670int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1671{
1672 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1673 if (tracing) {
1674 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1675 }
1676 return Demod.len;
1677}
1678
1679int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1680{
1681 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1682 if (tracing) {
1683 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1684 }
1685 return Demod.len;
1686}
1687
1688/* performs iso14443a anticollision procedure
1689 * fills the uid pointer unless NULL
1690 * fills resp_data unless NULL */
1691int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1692 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1693 uint8_t sel_all[] = { 0x93,0x20 };
1694 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1695 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1696 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1697 uint8_t resp_par[MAX_PARITY_SIZE];
1698 byte_t uid_resp[4];
1699 size_t uid_resp_len;
1700
1701 uint8_t sak = 0x04; // cascade uid
1702 int cascade_level = 0;
1703 int len;
1704
1705 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1706 ReaderTransmitBitsPar(wupa,7,0, NULL);
1707
1708 // Receive the ATQA
1709 if(!ReaderReceive(resp, resp_par)) return 0;
1710
1711 if(p_hi14a_card) {
1712 memcpy(p_hi14a_card->atqa, resp, 2);
1713 p_hi14a_card->uidlen = 0;
1714 memset(p_hi14a_card->uid,0,10);
1715 }
1716
1717 // clear uid
1718 if (uid_ptr) {
1719 memset(uid_ptr,0,10);
1720 }
1721
1722 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1723 // which case we need to make a cascade 2 request and select - this is a long UID
1724 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1725 for(; sak & 0x04; cascade_level++) {
1726 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1727 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1728
1729 // SELECT_ALL
1730 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1731 if (!ReaderReceive(resp, resp_par)) return 0;
1732
1733 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1734 memset(uid_resp, 0, 4);
1735 uint16_t uid_resp_bits = 0;
1736 uint16_t collision_answer_offset = 0;
1737 // anti-collision-loop:
1738 while (Demod.collisionPos) {
1739 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1740 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1741 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1742 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1743 }
1744 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1745 uid_resp_bits++;
1746 // construct anticollosion command:
1747 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1748 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1749 sel_uid[2+i] = uid_resp[i];
1750 }
1751 collision_answer_offset = uid_resp_bits%8;
1752 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1753 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1754 }
1755 // finally, add the last bits and BCC of the UID
1756 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1757 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1758 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1759 }
1760
1761 } else { // no collision, use the response to SELECT_ALL as current uid
1762 memcpy(uid_resp, resp, 4);
1763 }
1764 uid_resp_len = 4;
1765
1766 // calculate crypto UID. Always use last 4 Bytes.
1767 if(cuid_ptr) {
1768 *cuid_ptr = bytes_to_num(uid_resp, 4);
1769 }
1770
1771 // Construct SELECT UID command
1772 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1773 memcpy(sel_uid+2, uid_resp, 4); // the UID
1774 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1775 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1776 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1777
1778 // Receive the SAK
1779 if (!ReaderReceive(resp, resp_par)) return 0;
1780 sak = resp[0];
1781
1782 // Test if more parts of the uid are coming
1783 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1784 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1785 // http://www.nxp.com/documents/application_note/AN10927.pdf
1786 uid_resp[0] = uid_resp[1];
1787 uid_resp[1] = uid_resp[2];
1788 uid_resp[2] = uid_resp[3];
1789
1790 uid_resp_len = 3;
1791 }
1792
1793 if(uid_ptr) {
1794 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1795 }
1796
1797 if(p_hi14a_card) {
1798 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1799 p_hi14a_card->uidlen += uid_resp_len;
1800 }
1801 }
1802
1803 if(p_hi14a_card) {
1804 p_hi14a_card->sak = sak;
1805 p_hi14a_card->ats_len = 0;
1806 }
1807
1808 // non iso14443a compliant tag
1809 if( (sak & 0x20) == 0) return 2;
1810
1811 // Request for answer to select
1812 AppendCrc14443a(rats, 2);
1813 ReaderTransmit(rats, sizeof(rats), NULL);
1814
1815 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1816
1817
1818 if(p_hi14a_card) {
1819 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1820 p_hi14a_card->ats_len = len;
1821 }
1822
1823 // reset the PCB block number
1824 iso14_pcb_blocknum = 0;
1825
1826 // set default timeout based on ATS
1827 iso14a_set_ATS_timeout(resp);
1828
1829 return 1;
1830}
1831
1832void iso14443a_setup(uint8_t fpga_minor_mode) {
1833 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1834 // Set up the synchronous serial port
1835 FpgaSetupSsc();
1836 // connect Demodulated Signal to ADC:
1837 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1838
1839 // Signal field is on with the appropriate LED
1840 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1841 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1842 LED_D_ON();
1843 } else {
1844 LED_D_OFF();
1845 }
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1847
1848 // Start the timer
1849 StartCountSspClk();
1850
1851 DemodReset();
1852 UartReset();
1853 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1854 iso14a_set_timeout(1050); // 10ms default
1855}
1856
1857int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1858 uint8_t parity[MAX_PARITY_SIZE];
1859 uint8_t real_cmd[cmd_len+4];
1860 real_cmd[0] = 0x0a; //I-Block
1861 // put block number into the PCB
1862 real_cmd[0] |= iso14_pcb_blocknum;
1863 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1864 memcpy(real_cmd+2, cmd, cmd_len);
1865 AppendCrc14443a(real_cmd,cmd_len+2);
1866
1867 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1868 size_t len = ReaderReceive(data, parity);
1869 uint8_t *data_bytes = (uint8_t *) data;
1870 if (!len)
1871 return 0; //DATA LINK ERROR
1872 // if we received an I- or R(ACK)-Block with a block number equal to the
1873 // current block number, toggle the current block number
1874 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1875 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1876 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1877 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1878 {
1879 iso14_pcb_blocknum ^= 1;
1880 }
1881
1882 return len;
1883}
1884
1885//-----------------------------------------------------------------------------
1886// Read an ISO 14443a tag. Send out commands and store answers.
1887//
1888//-----------------------------------------------------------------------------
1889void ReaderIso14443a(UsbCommand *c)
1890{
1891 iso14a_command_t param = c->arg[0];
1892 uint8_t *cmd = c->d.asBytes;
1893 size_t len = c->arg[1];
1894 size_t lenbits = c->arg[2];
1895 uint32_t arg0 = 0;
1896 byte_t buf[USB_CMD_DATA_SIZE];
1897 uint8_t par[MAX_PARITY_SIZE];
1898
1899 if(param & ISO14A_CONNECT) {
1900 clear_trace();
1901 }
1902
1903 set_tracing(TRUE);
1904
1905 if(param & ISO14A_REQUEST_TRIGGER) {
1906 iso14a_set_trigger(TRUE);
1907 }
1908
1909 if(param & ISO14A_CONNECT) {
1910 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1911 if(!(param & ISO14A_NO_SELECT)) {
1912 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1913 arg0 = iso14443a_select_card(NULL,card,NULL);
1914 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1915 }
1916 }
1917
1918 if(param & ISO14A_SET_TIMEOUT) {
1919 iso14a_set_timeout(c->arg[2]);
1920 }
1921
1922 if(param & ISO14A_APDU) {
1923 arg0 = iso14_apdu(cmd, len, buf);
1924 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1925 }
1926
1927 if(param & ISO14A_RAW) {
1928 if(param & ISO14A_APPEND_CRC) {
1929 AppendCrc14443a(cmd,len);
1930 len += 2;
1931 if (lenbits) lenbits += 16;
1932 }
1933 if(lenbits>0) {
1934 GetParity(cmd, lenbits/8, par);
1935 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
1936 } else {
1937 ReaderTransmit(cmd,len, NULL);
1938 }
1939 arg0 = ReaderReceive(buf, par);
1940 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1941 }
1942
1943 if(param & ISO14A_REQUEST_TRIGGER) {
1944 iso14a_set_trigger(FALSE);
1945 }
1946
1947 if(param & ISO14A_NO_DISCONNECT) {
1948 return;
1949 }
1950
1951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1952 LEDsoff();
1953}
1954
1955
1956// Determine the distance between two nonces.
1957// Assume that the difference is small, but we don't know which is first.
1958// Therefore try in alternating directions.
1959int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1960
1961 uint16_t i;
1962 uint32_t nttmp1, nttmp2;
1963
1964 if (nt1 == nt2) return 0;
1965
1966 nttmp1 = nt1;
1967 nttmp2 = nt2;
1968
1969 for (i = 1; i < 32768; i++) {
1970 nttmp1 = prng_successor(nttmp1, 1);
1971 if (nttmp1 == nt2) return i;
1972 nttmp2 = prng_successor(nttmp2, 1);
1973 if (nttmp2 == nt1) return -i;
1974 }
1975
1976 return(-99999); // either nt1 or nt2 are invalid nonces
1977}
1978
1979
1980//-----------------------------------------------------------------------------
1981// Recover several bits of the cypher stream. This implements (first stages of)
1982// the algorithm described in "The Dark Side of Security by Obscurity and
1983// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1984// (article by Nicolas T. Courtois, 2009)
1985//-----------------------------------------------------------------------------
1986void ReaderMifare(bool first_try)
1987{
1988 // Mifare AUTH
1989 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1990 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1991 static uint8_t mf_nr_ar3;
1992
1993 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
1994 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
1995
1996 // free eventually allocated BigBuf memory. We want all for tracing.
1997 BigBuf_free();
1998
1999 clear_trace();
2000 set_tracing(TRUE);
2001
2002 byte_t nt_diff = 0;
2003 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2004 static byte_t par_low = 0;
2005 bool led_on = TRUE;
2006 uint8_t uid[10] ={0};
2007 uint32_t cuid;
2008
2009 uint32_t nt = 0;
2010 uint32_t previous_nt = 0;
2011 static uint32_t nt_attacked = 0;
2012 byte_t par_list[8] = {0x00};
2013 byte_t ks_list[8] = {0x00};
2014
2015 static uint32_t sync_time;
2016 static uint32_t sync_cycles;
2017 int catch_up_cycles = 0;
2018 int last_catch_up = 0;
2019 uint16_t consecutive_resyncs = 0;
2020 int isOK = 0;
2021
2022 if (first_try) {
2023 mf_nr_ar3 = 0;
2024 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2025 sync_time = GetCountSspClk() & 0xfffffff8;
2026 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2027 nt_attacked = 0;
2028 nt = 0;
2029 par[0] = 0;
2030 }
2031 else {
2032 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2033 mf_nr_ar3++;
2034 mf_nr_ar[3] = mf_nr_ar3;
2035 par[0] = par_low;
2036 }
2037
2038 LED_A_ON();
2039 LED_B_OFF();
2040 LED_C_OFF();
2041
2042
2043 for(uint16_t i = 0; TRUE; i++) {
2044
2045 WDT_HIT();
2046
2047 // Test if the action was cancelled
2048 if(BUTTON_PRESS()) {
2049 break;
2050 }
2051
2052 LED_C_ON();
2053
2054 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2055 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2056 continue;
2057 }
2058
2059 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2060 catch_up_cycles = 0;
2061
2062 // if we missed the sync time already, advance to the next nonce repeat
2063 while(GetCountSspClk() > sync_time) {
2064 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2065 }
2066
2067 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2068 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2069
2070 // Receive the (4 Byte) "random" nonce
2071 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2072 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2073 continue;
2074 }
2075
2076 previous_nt = nt;
2077 nt = bytes_to_num(receivedAnswer, 4);
2078
2079 // Transmit reader nonce with fake par
2080 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2081
2082 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2083 int nt_distance = dist_nt(previous_nt, nt);
2084 if (nt_distance == 0) {
2085 nt_attacked = nt;
2086 }
2087 else {
2088 if (nt_distance == -99999) { // invalid nonce received, try again
2089 continue;
2090 }
2091 sync_cycles = (sync_cycles - nt_distance);
2092 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2093 continue;
2094 }
2095 }
2096
2097 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2098 catch_up_cycles = -dist_nt(nt_attacked, nt);
2099 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2100 catch_up_cycles = 0;
2101 continue;
2102 }
2103 if (catch_up_cycles == last_catch_up) {
2104 consecutive_resyncs++;
2105 }
2106 else {
2107 last_catch_up = catch_up_cycles;
2108 consecutive_resyncs = 0;
2109 }
2110 if (consecutive_resyncs < 3) {
2111 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2112 }
2113 else {
2114 sync_cycles = sync_cycles + catch_up_cycles;
2115 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2116 }
2117 continue;
2118 }
2119
2120 consecutive_resyncs = 0;
2121
2122 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2123 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2124 {
2125 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2126
2127 if (nt_diff == 0)
2128 {
2129 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2130 }
2131
2132 led_on = !led_on;
2133 if(led_on) LED_B_ON(); else LED_B_OFF();
2134
2135 par_list[nt_diff] = SwapBits(par[0], 8);
2136 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2137
2138 // Test if the information is complete
2139 if (nt_diff == 0x07) {
2140 isOK = 1;
2141 break;
2142 }
2143
2144 nt_diff = (nt_diff + 1) & 0x07;
2145 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2146 par[0] = par_low;
2147 } else {
2148 if (nt_diff == 0 && first_try)
2149 {
2150 par[0]++;
2151 } else {
2152 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2153 }
2154 }
2155 }
2156
2157
2158 mf_nr_ar[3] &= 0x1F;
2159
2160 byte_t buf[28];
2161 memcpy(buf + 0, uid, 4);
2162 num_to_bytes(nt, 4, buf + 4);
2163 memcpy(buf + 8, par_list, 8);
2164 memcpy(buf + 16, ks_list, 8);
2165 memcpy(buf + 24, mf_nr_ar, 4);
2166
2167 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2168
2169 // Thats it...
2170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2171 LEDsoff();
2172
2173 set_tracing(FALSE);
2174}
2175
2176/**
2177 *MIFARE 1K simulate.
2178 *
2179 *@param flags :
2180 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2181 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2182 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2183 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2184 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2185 */
2186void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2187{
2188 int cardSTATE = MFEMUL_NOFIELD;
2189 int _7BUID = 0;
2190 int vHf = 0; // in mV
2191 int res;
2192 uint32_t selTimer = 0;
2193 uint32_t authTimer = 0;
2194 uint16_t len = 0;
2195 uint8_t cardWRBL = 0;
2196 uint8_t cardAUTHSC = 0;
2197 uint8_t cardAUTHKEY = 0xff; // no authentication
2198 uint32_t cardRr = 0;
2199 uint32_t cuid = 0;
2200 //uint32_t rn_enc = 0;
2201 uint32_t ans = 0;
2202 uint32_t cardINTREG = 0;
2203 uint8_t cardINTBLOCK = 0;
2204 struct Crypto1State mpcs = {0, 0};
2205 struct Crypto1State *pcs;
2206 pcs = &mpcs;
2207 uint32_t numReads = 0;//Counts numer of times reader read a block
2208 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2209 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2210 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2211 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2212
2213 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2214 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2215 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2216 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2217 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2218
2219 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2220 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2221
2222 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2223 // This can be used in a reader-only attack.
2224 // (it can also be retrieved via 'hf 14a list', but hey...
2225 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2226 uint8_t ar_nr_collected = 0;
2227
2228 // free eventually allocated BigBuf memory but keep Emulator Memory
2229 BigBuf_free_keep_EM();
2230
2231 // clear trace
2232 clear_trace();
2233 set_tracing(TRUE);
2234
2235 // Authenticate response - nonce
2236 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2237
2238 //-- Determine the UID
2239 // Can be set from emulator memory, incoming data
2240 // and can be 7 or 4 bytes long
2241 if (flags & FLAG_4B_UID_IN_DATA)
2242 {
2243 // 4B uid comes from data-portion of packet
2244 memcpy(rUIDBCC1,datain,4);
2245 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2246
2247 } else if (flags & FLAG_7B_UID_IN_DATA) {
2248 // 7B uid comes from data-portion of packet
2249 memcpy(&rUIDBCC1[1],datain,3);
2250 memcpy(rUIDBCC2, datain+3, 4);
2251 _7BUID = true;
2252 } else {
2253 // get UID from emul memory
2254 emlGetMemBt(receivedCmd, 7, 1);
2255 _7BUID = !(receivedCmd[0] == 0x00);
2256 if (!_7BUID) { // ---------- 4BUID
2257 emlGetMemBt(rUIDBCC1, 0, 4);
2258 } else { // ---------- 7BUID
2259 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2260 emlGetMemBt(rUIDBCC2, 3, 4);
2261 }
2262 }
2263
2264 /*
2265 * Regardless of what method was used to set the UID, set fifth byte and modify
2266 * the ATQA for 4 or 7-byte UID
2267 */
2268 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2269 if (_7BUID) {
2270 rATQA[0] = 0x44;
2271 rUIDBCC1[0] = 0x88;
2272 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2273 }
2274
2275 // We need to listen to the high-frequency, peak-detected path.
2276 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2277
2278
2279 if (MF_DBGLEVEL >= 1) {
2280 if (!_7BUID) {
2281 Dbprintf("4B UID: %02x%02x%02x%02x",
2282 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2283 } else {
2284 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2285 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2286 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2287 }
2288 }
2289
2290 bool finished = FALSE;
2291 while (!BUTTON_PRESS() && !finished) {
2292 WDT_HIT();
2293
2294 // find reader field
2295 if (cardSTATE == MFEMUL_NOFIELD) {
2296 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2297 if (vHf > MF_MINFIELDV) {
2298 cardSTATE_TO_IDLE();
2299 LED_A_ON();
2300 }
2301 }
2302 if(cardSTATE == MFEMUL_NOFIELD) continue;
2303
2304 //Now, get data
2305
2306 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2307 if (res == 2) { //Field is off!
2308 cardSTATE = MFEMUL_NOFIELD;
2309 LEDsoff();
2310 continue;
2311 } else if (res == 1) {
2312 break; //return value 1 means button press
2313 }
2314
2315 // REQ or WUP request in ANY state and WUP in HALTED state
2316 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2317 selTimer = GetTickCount();
2318 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2319 cardSTATE = MFEMUL_SELECT1;
2320
2321 // init crypto block
2322 LED_B_OFF();
2323 LED_C_OFF();
2324 crypto1_destroy(pcs);
2325 cardAUTHKEY = 0xff;
2326 continue;
2327 }
2328
2329 switch (cardSTATE) {
2330 case MFEMUL_NOFIELD:
2331 case MFEMUL_HALTED:
2332 case MFEMUL_IDLE:{
2333 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2334 break;
2335 }
2336 case MFEMUL_SELECT1:{
2337 // select all
2338 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2339 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2340 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2341 break;
2342 }
2343
2344 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2345 {
2346 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2347 }
2348 // select card
2349 if (len == 9 &&
2350 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2351 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2352 cuid = bytes_to_num(rUIDBCC1, 4);
2353 if (!_7BUID) {
2354 cardSTATE = MFEMUL_WORK;
2355 LED_B_ON();
2356 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2357 break;
2358 } else {
2359 cardSTATE = MFEMUL_SELECT2;
2360 }
2361 }
2362 break;
2363 }
2364 case MFEMUL_AUTH1:{
2365 if( len != 8)
2366 {
2367 cardSTATE_TO_IDLE();
2368 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2369 break;
2370 }
2371
2372 uint32_t ar = bytes_to_num(receivedCmd, 4);
2373 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2374
2375 //Collect AR/NR
2376 if(ar_nr_collected < 2){
2377 if(ar_nr_responses[2] != ar)
2378 {// Avoid duplicates... probably not necessary, ar should vary.
2379 ar_nr_responses[ar_nr_collected*4] = cuid;
2380 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2381 ar_nr_responses[ar_nr_collected*4+2] = ar;
2382 ar_nr_responses[ar_nr_collected*4+3] = nr;
2383 ar_nr_collected++;
2384 }
2385 }
2386
2387 // --- crypto
2388 crypto1_word(pcs, ar , 1);
2389 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2390
2391 // test if auth OK
2392 if (cardRr != prng_successor(nonce, 64)){
2393 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2394 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2395 cardRr, prng_successor(nonce, 64));
2396 // Shouldn't we respond anything here?
2397 // Right now, we don't nack or anything, which causes the
2398 // reader to do a WUPA after a while. /Martin
2399 // -- which is the correct response. /piwi
2400 cardSTATE_TO_IDLE();
2401 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2402 break;
2403 }
2404
2405 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2406
2407 num_to_bytes(ans, 4, rAUTH_AT);
2408 // --- crypto
2409 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2410 LED_C_ON();
2411 cardSTATE = MFEMUL_WORK;
2412 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2413 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2414 GetTickCount() - authTimer);
2415 break;
2416 }
2417 case MFEMUL_SELECT2:{
2418 if (!len) {
2419 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2420 break;
2421 }
2422 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2423 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2424 break;
2425 }
2426
2427 // select 2 card
2428 if (len == 9 &&
2429 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2430 EmSendCmd(rSAK, sizeof(rSAK));
2431 cuid = bytes_to_num(rUIDBCC2, 4);
2432 cardSTATE = MFEMUL_WORK;
2433 LED_B_ON();
2434 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2435 break;
2436 }
2437
2438 // i guess there is a command). go into the work state.
2439 if (len != 4) {
2440 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2441 break;
2442 }
2443 cardSTATE = MFEMUL_WORK;
2444 //goto lbWORK;
2445 //intentional fall-through to the next case-stmt
2446 }
2447
2448 case MFEMUL_WORK:{
2449 if (len == 0) {
2450 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2451 break;
2452 }
2453
2454 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2455
2456 if(encrypted_data) {
2457 // decrypt seqence
2458 mf_crypto1_decrypt(pcs, receivedCmd, len);
2459 }
2460
2461 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2462 authTimer = GetTickCount();
2463 cardAUTHSC = receivedCmd[1] / 4; // received block num
2464 cardAUTHKEY = receivedCmd[0] - 0x60;
2465 crypto1_destroy(pcs);//Added by martin
2466 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2467
2468 if (!encrypted_data) { // first authentication
2469 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2470
2471 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2472 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2473 } else { // nested authentication
2474 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2475 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2476 num_to_bytes(ans, 4, rAUTH_AT);
2477 }
2478
2479 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2480 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2481 cardSTATE = MFEMUL_AUTH1;
2482 break;
2483 }
2484
2485 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2486 // BUT... ACK --> NACK
2487 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2488 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2489 break;
2490 }
2491
2492 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2493 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2494 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2495 break;
2496 }
2497
2498 if(len != 4) {
2499 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2500 break;
2501 }
2502
2503 if(receivedCmd[0] == 0x30 // read block
2504 || receivedCmd[0] == 0xA0 // write block
2505 || receivedCmd[0] == 0xC0 // inc
2506 || receivedCmd[0] == 0xC1 // dec
2507 || receivedCmd[0] == 0xC2 // restore
2508 || receivedCmd[0] == 0xB0) { // transfer
2509 if (receivedCmd[1] >= 16 * 4) {
2510 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2511 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2512 break;
2513 }
2514
2515 if (receivedCmd[1] / 4 != cardAUTHSC) {
2516 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2517 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2518 break;
2519 }
2520 }
2521 // read block
2522 if (receivedCmd[0] == 0x30) {
2523 if (MF_DBGLEVEL >= 4) {
2524 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2525 }
2526 emlGetMem(response, receivedCmd[1], 1);
2527 AppendCrc14443a(response, 16);
2528 mf_crypto1_encrypt(pcs, response, 18, response_par);
2529 EmSendCmdPar(response, 18, response_par);
2530 numReads++;
2531 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2532 Dbprintf("%d reads done, exiting", numReads);
2533 finished = true;
2534 }
2535 break;
2536 }
2537 // write block
2538 if (receivedCmd[0] == 0xA0) {
2539 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2540 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2541 cardSTATE = MFEMUL_WRITEBL2;
2542 cardWRBL = receivedCmd[1];
2543 break;
2544 }
2545 // increment, decrement, restore
2546 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2547 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2548 if (emlCheckValBl(receivedCmd[1])) {
2549 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2550 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2551 break;
2552 }
2553 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2554 if (receivedCmd[0] == 0xC1)
2555 cardSTATE = MFEMUL_INTREG_INC;
2556 if (receivedCmd[0] == 0xC0)
2557 cardSTATE = MFEMUL_INTREG_DEC;
2558 if (receivedCmd[0] == 0xC2)
2559 cardSTATE = MFEMUL_INTREG_REST;
2560 cardWRBL = receivedCmd[1];
2561 break;
2562 }
2563 // transfer
2564 if (receivedCmd[0] == 0xB0) {
2565 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2566 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2567 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2568 else
2569 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2570 break;
2571 }
2572 // halt
2573 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2574 LED_B_OFF();
2575 LED_C_OFF();
2576 cardSTATE = MFEMUL_HALTED;
2577 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2578 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2579 break;
2580 }
2581 // RATS
2582 if (receivedCmd[0] == 0xe0) {//RATS
2583 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2584 break;
2585 }
2586 // command not allowed
2587 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2588 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2589 break;
2590 }
2591 case MFEMUL_WRITEBL2:{
2592 if (len == 18){
2593 mf_crypto1_decrypt(pcs, receivedCmd, len);
2594 emlSetMem(receivedCmd, cardWRBL, 1);
2595 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2596 cardSTATE = MFEMUL_WORK;
2597 } else {
2598 cardSTATE_TO_IDLE();
2599 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2600 }
2601 break;
2602 }
2603
2604 case MFEMUL_INTREG_INC:{
2605 mf_crypto1_decrypt(pcs, receivedCmd, len);
2606 memcpy(&ans, receivedCmd, 4);
2607 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2608 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2609 cardSTATE_TO_IDLE();
2610 break;
2611 }
2612 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2613 cardINTREG = cardINTREG + ans;
2614 cardSTATE = MFEMUL_WORK;
2615 break;
2616 }
2617 case MFEMUL_INTREG_DEC:{
2618 mf_crypto1_decrypt(pcs, receivedCmd, len);
2619 memcpy(&ans, receivedCmd, 4);
2620 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2621 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2622 cardSTATE_TO_IDLE();
2623 break;
2624 }
2625 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2626 cardINTREG = cardINTREG - ans;
2627 cardSTATE = MFEMUL_WORK;
2628 break;
2629 }
2630 case MFEMUL_INTREG_REST:{
2631 mf_crypto1_decrypt(pcs, receivedCmd, len);
2632 memcpy(&ans, receivedCmd, 4);
2633 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2634 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2635 cardSTATE_TO_IDLE();
2636 break;
2637 }
2638 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2639 cardSTATE = MFEMUL_WORK;
2640 break;
2641 }
2642 }
2643 }
2644
2645 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2646 LEDsoff();
2647
2648 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2649 {
2650 //May just aswell send the collected ar_nr in the response aswell
2651 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2652 }
2653
2654 if(flags & FLAG_NR_AR_ATTACK)
2655 {
2656 if(ar_nr_collected > 1) {
2657 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2658 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2659 ar_nr_responses[0], // UID
2660 ar_nr_responses[1], //NT
2661 ar_nr_responses[2], //AR1
2662 ar_nr_responses[3], //NR1
2663 ar_nr_responses[6], //AR2
2664 ar_nr_responses[7] //NR2
2665 );
2666 } else {
2667 Dbprintf("Failed to obtain two AR/NR pairs!");
2668 if(ar_nr_collected >0) {
2669 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2670 ar_nr_responses[0], // UID
2671 ar_nr_responses[1], //NT
2672 ar_nr_responses[2], //AR1
2673 ar_nr_responses[3] //NR1
2674 );
2675 }
2676 }
2677 }
2678 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2679
2680}
2681
2682
2683
2684//-----------------------------------------------------------------------------
2685// MIFARE sniffer.
2686//
2687//-----------------------------------------------------------------------------
2688void RAMFUNC SniffMifare(uint8_t param) {
2689 // param:
2690 // bit 0 - trigger from first card answer
2691 // bit 1 - trigger from first reader 7-bit request
2692
2693 // C(red) A(yellow) B(green)
2694 LEDsoff();
2695 // init trace buffer
2696 clear_trace();
2697 set_tracing(TRUE);
2698
2699 // The command (reader -> tag) that we're receiving.
2700 // The length of a received command will in most cases be no more than 18 bytes.
2701 // So 32 should be enough!
2702 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2703 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2704 // The response (tag -> reader) that we're receiving.
2705 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2706 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2707
2708 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2709 // into trace, along with its length and other annotations.
2710 //uint8_t *trace = (uint8_t *)BigBuf;
2711
2712 // free eventually allocated BigBuf memory
2713 BigBuf_free();
2714 // allocate the DMA buffer, used to stream samples from the FPGA
2715 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2716 uint8_t *data = dmaBuf;
2717 uint8_t previous_data = 0;
2718 int maxDataLen = 0;
2719 int dataLen = 0;
2720 bool ReaderIsActive = FALSE;
2721 bool TagIsActive = FALSE;
2722
2723 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2724
2725 // Set up the demodulator for tag -> reader responses.
2726 DemodInit(receivedResponse, receivedResponsePar);
2727
2728 // Set up the demodulator for the reader -> tag commands
2729 UartInit(receivedCmd, receivedCmdPar);
2730
2731 // Setup for the DMA.
2732 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2733
2734 LED_D_OFF();
2735
2736 // init sniffer
2737 MfSniffInit();
2738
2739 // And now we loop, receiving samples.
2740 for(uint32_t sniffCounter = 0; TRUE; ) {
2741
2742 if(BUTTON_PRESS()) {
2743 DbpString("cancelled by button");
2744 break;
2745 }
2746
2747 LED_A_ON();
2748 WDT_HIT();
2749
2750 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2751 // check if a transaction is completed (timeout after 2000ms).
2752 // if yes, stop the DMA transfer and send what we have so far to the client
2753 if (MfSniffSend(2000)) {
2754 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2755 sniffCounter = 0;
2756 data = dmaBuf;
2757 maxDataLen = 0;
2758 ReaderIsActive = FALSE;
2759 TagIsActive = FALSE;
2760 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2761 }
2762 }
2763
2764 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2765 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2766 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2767 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2768 } else {
2769 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2770 }
2771 // test for length of buffer
2772 if(dataLen > maxDataLen) { // we are more behind than ever...
2773 maxDataLen = dataLen;
2774 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2775 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2776 break;
2777 }
2778 }
2779 if(dataLen < 1) continue;
2780
2781 // primary buffer was stopped ( <-- we lost data!
2782 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2783 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2784 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2785 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2786 }
2787 // secondary buffer sets as primary, secondary buffer was stopped
2788 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2789 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2790 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2791 }
2792
2793 LED_A_OFF();
2794
2795 if (sniffCounter & 0x01) {
2796
2797 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2798 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2799 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2800 LED_C_INV();
2801 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2802
2803 /* And ready to receive another command. */
2804 UartReset();
2805
2806 /* And also reset the demod code */
2807 DemodReset();
2808 }
2809 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2810 }
2811
2812 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2813 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2814 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2815 LED_C_INV();
2816
2817 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2818
2819 // And ready to receive another response.
2820 DemodReset();
2821 }
2822 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2823 }
2824 }
2825
2826 previous_data = *data;
2827 sniffCounter++;
2828 data++;
2829 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2830 data = dmaBuf;
2831 }
2832
2833 } // main cycle
2834
2835 DbpString("COMMAND FINISHED");
2836
2837 FpgaDisableSscDma();
2838 MfSniffEnd();
2839
2840 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2841 LEDsoff();
2842}
Impressum, Datenschutz