| 1 | //----------------------------------------------------------------------------- |
| 2 | // Copyright (C) 2015 piwi |
| 3 | // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp) |
| 4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 5 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 6 | // the license. |
| 7 | //----------------------------------------------------------------------------- |
| 8 | // Implements a card only attack based on crypto text (encrypted nonces |
| 9 | // received during a nested authentication) only. Unlike other card only |
| 10 | // attacks this doesn't rely on implementation errors but only on the |
| 11 | // inherent weaknesses of the crypto1 cypher. Described in |
| 12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened |
| 13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on |
| 14 | // Computer and Communications Security, 2015 |
| 15 | //----------------------------------------------------------------------------- |
| 16 | |
| 17 | #include <stdlib.h> |
| 18 | #include <stdio.h> |
| 19 | #include <string.h> |
| 20 | #include <pthread.h> |
| 21 | #include <locale.h> |
| 22 | #include <math.h> |
| 23 | #include "proxmark3.h" |
| 24 | #include "cmdmain.h" |
| 25 | #include "ui.h" |
| 26 | #include "util.h" |
| 27 | #include "nonce2key/crapto1.h" |
| 28 | #include "nonce2key/crypto1_bs.h" |
| 29 | #include "parity.h" |
| 30 | #ifdef __WIN32 |
| 31 | #include <windows.h> |
| 32 | #endif |
| 33 | // don't include for APPLE/mac which has malloc stuff elsewhere. |
| 34 | #ifndef __APPLE__ |
| 35 | #include <malloc.h> |
| 36 | #endif |
| 37 | #include <assert.h> |
| 38 | |
| 39 | #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull |
| 40 | #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster |
| 41 | |
| 42 | #define END_OF_LIST_MARKER 0xFFFFFFFF |
| 43 | |
| 44 | static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K |
| 45 | 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 46 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 47 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 48 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 49 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 50 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 51 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 52 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 53 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 54 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 55 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 56 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 57 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 58 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 59 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 60 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 61 | 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 62 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 63 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 64 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 65 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 66 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 67 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 68 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 69 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 70 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 71 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 72 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 73 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 74 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 75 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 76 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, |
| 77 | 0.0290 }; |
| 78 | |
| 79 | typedef struct noncelistentry { |
| 80 | uint32_t nonce_enc; |
| 81 | uint8_t par_enc; |
| 82 | void *next; |
| 83 | } noncelistentry_t; |
| 84 | |
| 85 | typedef struct noncelist { |
| 86 | uint16_t num; |
| 87 | uint16_t Sum; |
| 88 | uint16_t Sum8_guess; |
| 89 | uint8_t BitFlip[2]; |
| 90 | float Sum8_prob; |
| 91 | bool updated; |
| 92 | noncelistentry_t *first; |
| 93 | float score1, score2; |
| 94 | } noncelist_t; |
| 95 | |
| 96 | static size_t nonces_to_bruteforce = 0; |
| 97 | static noncelistentry_t *brute_force_nonces[256]; |
| 98 | static uint32_t cuid = 0; |
| 99 | static noncelist_t nonces[256]; |
| 100 | static uint8_t best_first_bytes[256]; |
| 101 | static uint16_t first_byte_Sum = 0; |
| 102 | static uint16_t first_byte_num = 0; |
| 103 | static uint16_t num_good_first_bytes = 0; |
| 104 | static uint64_t maximum_states = 0; |
| 105 | static uint64_t known_target_key; |
| 106 | static bool write_stats = false; |
| 107 | static FILE *fstats = NULL; |
| 108 | |
| 109 | |
| 110 | typedef enum { |
| 111 | EVEN_STATE = 0, |
| 112 | ODD_STATE = 1 |
| 113 | } odd_even_t; |
| 114 | |
| 115 | #define STATELIST_INDEX_WIDTH 16 |
| 116 | #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH) |
| 117 | |
| 118 | typedef struct { |
| 119 | uint32_t *states[2]; |
| 120 | uint32_t len[2]; |
| 121 | uint32_t *index[2][STATELIST_INDEX_SIZE]; |
| 122 | } partial_indexed_statelist_t; |
| 123 | |
| 124 | typedef struct { |
| 125 | uint32_t *states[2]; |
| 126 | uint32_t len[2]; |
| 127 | void* next; |
| 128 | } statelist_t; |
| 129 | |
| 130 | |
| 131 | static partial_indexed_statelist_t partial_statelist[17]; |
| 132 | static partial_indexed_statelist_t statelist_bitflip; |
| 133 | static statelist_t *candidates = NULL; |
| 134 | |
| 135 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) |
| 136 | { |
| 137 | uint8_t first_byte = nonce_enc >> 24; |
| 138 | noncelistentry_t *p1 = nonces[first_byte].first; |
| 139 | noncelistentry_t *p2 = NULL; |
| 140 | |
| 141 | if (p1 == NULL) { // first nonce with this 1st byte |
| 142 | first_byte_num++; |
| 143 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); |
| 144 | // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n", |
| 145 | // nonce_enc, |
| 146 | // par_enc, |
| 147 | // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01, |
| 148 | // parity((nonce_enc & 0xff000000) | (par_enc & 0x08)); |
| 149 | } |
| 150 | |
| 151 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { |
| 152 | p2 = p1; |
| 153 | p1 = p1->next; |
| 154 | } |
| 155 | |
| 156 | if (p1 == NULL) { // need to add at the end of the list |
| 157 | if (p2 == NULL) { // list is empty yet. Add first entry. |
| 158 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
| 159 | } else { // add new entry at end of existing list. |
| 160 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
| 161 | } |
| 162 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. |
| 163 | if (p2 == NULL) { // need to insert at start of list |
| 164 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); |
| 165 | } else { |
| 166 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); |
| 167 | } |
| 168 | } else { // we have seen this 2nd byte before. Nothing to add or insert. |
| 169 | return (0); |
| 170 | } |
| 171 | |
| 172 | // add or insert new data |
| 173 | p2->next = p1; |
| 174 | p2->nonce_enc = nonce_enc; |
| 175 | p2->par_enc = par_enc; |
| 176 | |
| 177 | if(nonces_to_bruteforce < 256){ |
| 178 | brute_force_nonces[nonces_to_bruteforce] = p2; |
| 179 | nonces_to_bruteforce++; |
| 180 | } |
| 181 | |
| 182 | nonces[first_byte].num++; |
| 183 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); |
| 184 | nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte |
| 185 | |
| 186 | return (1); // new nonce added |
| 187 | } |
| 188 | |
| 189 | static void init_nonce_memory(void) |
| 190 | { |
| 191 | for (uint16_t i = 0; i < 256; i++) { |
| 192 | nonces[i].num = 0; |
| 193 | nonces[i].Sum = 0; |
| 194 | nonces[i].Sum8_guess = 0; |
| 195 | nonces[i].Sum8_prob = 0.0; |
| 196 | nonces[i].updated = true; |
| 197 | nonces[i].first = NULL; |
| 198 | } |
| 199 | first_byte_num = 0; |
| 200 | first_byte_Sum = 0; |
| 201 | num_good_first_bytes = 0; |
| 202 | } |
| 203 | |
| 204 | static void free_nonce_list(noncelistentry_t *p) |
| 205 | { |
| 206 | if (p == NULL) { |
| 207 | return; |
| 208 | } else { |
| 209 | free_nonce_list(p->next); |
| 210 | free(p); |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | static void free_nonces_memory(void) |
| 215 | { |
| 216 | for (uint16_t i = 0; i < 256; i++) { |
| 217 | free_nonce_list(nonces[i].first); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) |
| 222 | { |
| 223 | uint16_t sum = 0; |
| 224 | for (uint16_t j = 0; j < 16; j++) { |
| 225 | uint32_t st = state; |
| 226 | uint16_t part_sum = 0; |
| 227 | if (odd_even == ODD_STATE) { |
| 228 | for (uint16_t i = 0; i < 5; i++) { |
| 229 | part_sum ^= filter(st); |
| 230 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
| 231 | } |
| 232 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits |
| 233 | } else { |
| 234 | for (uint16_t i = 0; i < 4; i++) { |
| 235 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; |
| 236 | part_sum ^= filter(st); |
| 237 | } |
| 238 | } |
| 239 | sum += part_sum; |
| 240 | } |
| 241 | return sum; |
| 242 | } |
| 243 | |
| 244 | // static uint16_t SumProperty(struct Crypto1State *s) |
| 245 | // { |
| 246 | // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); |
| 247 | // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); |
| 248 | // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); |
| 249 | // } |
| 250 | |
| 251 | static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) |
| 252 | { |
| 253 | // for efficient computation we are using the recursive definition |
| 254 | // (K-k+1) * (n-k+1) |
| 255 | // P(X=k) = P(X=k-1) * -------------------- |
| 256 | // k * (N-K-n+k) |
| 257 | // and |
| 258 | // (N-K)*(N-K-1)*...*(N-K-n+1) |
| 259 | // P(X=0) = ----------------------------- |
| 260 | // N*(N-1)*...*(N-n+1) |
| 261 | |
| 262 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below |
| 263 | if (k == 0) { |
| 264 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) |
| 265 | double log_result = 0.0; |
| 266 | for (int16_t i = N-K; i >= N-K-n+1; i--) { |
| 267 | log_result += log(i); |
| 268 | } |
| 269 | for (int16_t i = N; i >= N-n+1; i--) { |
| 270 | log_result -= log(i); |
| 271 | } |
| 272 | return exp(log_result); |
| 273 | } else { |
| 274 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception |
| 275 | double log_result = 0.0; |
| 276 | for (int16_t i = k+1; i <= n; i++) { |
| 277 | log_result += log(i); |
| 278 | } |
| 279 | for (int16_t i = K+1; i <= N; i++) { |
| 280 | log_result -= log(i); |
| 281 | } |
| 282 | return exp(log_result); |
| 283 | } else { // recursion |
| 284 | return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | static float sum_probability(uint16_t K, uint16_t n, uint16_t k) |
| 290 | { |
| 291 | const uint16_t N = 256; |
| 292 | |
| 293 | if (k > K || p_K[K] == 0.0) return 0.0; |
| 294 | |
| 295 | double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); |
| 296 | double p_S_is_K = p_K[K]; |
| 297 | double p_T_is_k = 0; |
| 298 | for (uint16_t i = 0; i <= 256; i++) { |
| 299 | if (p_K[i] != 0.0) { |
| 300 | p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); |
| 301 | } |
| 302 | } |
| 303 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); |
| 304 | } |
| 305 | |
| 306 | |
| 307 | static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) |
| 308 | { |
| 309 | static const uint_fast8_t common_bits_LUT[256] = { |
| 310 | 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 311 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 312 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 313 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 314 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 315 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 316 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 317 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 318 | 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 319 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 320 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 321 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 322 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 323 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 324 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, |
| 325 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 |
| 326 | }; |
| 327 | |
| 328 | return common_bits_LUT[bytes_diff]; |
| 329 | } |
| 330 | |
| 331 | static void Tests() |
| 332 | { |
| 333 | // printf("Tests: Partial Statelist sizes\n"); |
| 334 | // for (uint16_t i = 0; i <= 16; i+=2) { |
| 335 | // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); |
| 336 | // } |
| 337 | // for (uint16_t i = 0; i <= 16; i+=2) { |
| 338 | // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); |
| 339 | // } |
| 340 | |
| 341 | // #define NUM_STATISTICS 100000 |
| 342 | // uint32_t statistics_odd[17]; |
| 343 | // uint64_t statistics[257]; |
| 344 | // uint32_t statistics_even[17]; |
| 345 | // struct Crypto1State cs; |
| 346 | // time_t time1 = clock(); |
| 347 | |
| 348 | // for (uint16_t i = 0; i < 257; i++) { |
| 349 | // statistics[i] = 0; |
| 350 | // } |
| 351 | // for (uint16_t i = 0; i < 17; i++) { |
| 352 | // statistics_odd[i] = 0; |
| 353 | // statistics_even[i] = 0; |
| 354 | // } |
| 355 | |
| 356 | // for (uint64_t i = 0; i < NUM_STATISTICS; i++) { |
| 357 | // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 358 | // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); |
| 359 | // uint16_t sum_property = SumProperty(&cs); |
| 360 | // statistics[sum_property] += 1; |
| 361 | // sum_property = PartialSumProperty(cs.even, EVEN_STATE); |
| 362 | // statistics_even[sum_property]++; |
| 363 | // sum_property = PartialSumProperty(cs.odd, ODD_STATE); |
| 364 | // statistics_odd[sum_property]++; |
| 365 | // if (i%(NUM_STATISTICS/100) == 0) printf("."); |
| 366 | // } |
| 367 | |
| 368 | // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC); |
| 369 | // for (uint16_t i = 0; i < 257; i++) { |
| 370 | // if (statistics[i] != 0) { |
| 371 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); |
| 372 | // } |
| 373 | // } |
| 374 | // for (uint16_t i = 0; i <= 16; i++) { |
| 375 | // if (statistics_odd[i] != 0) { |
| 376 | // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); |
| 377 | // } |
| 378 | // } |
| 379 | // for (uint16_t i = 0; i <= 16; i++) { |
| 380 | // if (statistics_odd[i] != 0) { |
| 381 | // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); |
| 382 | // } |
| 383 | // } |
| 384 | |
| 385 | // printf("Tests: Sum Probabilities based on Partial Sums\n"); |
| 386 | // for (uint16_t i = 0; i < 257; i++) { |
| 387 | // statistics[i] = 0; |
| 388 | // } |
| 389 | // uint64_t num_states = 0; |
| 390 | // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { |
| 391 | // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { |
| 392 | // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; |
| 393 | // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
| 394 | // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); |
| 395 | // } |
| 396 | // } |
| 397 | // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48)); |
| 398 | // for (uint16_t i = 0; i < 257; i++) { |
| 399 | // if (statistics[i] != 0) { |
| 400 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); |
| 401 | // } |
| 402 | // } |
| 403 | |
| 404 | // printf("\nTests: Hypergeometric Probability for selected parameters\n"); |
| 405 | // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206)); |
| 406 | // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205)); |
| 407 | // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1)); |
| 408 | // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0)); |
| 409 | // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); |
| 410 | // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); |
| 411 | |
| 412 | // struct Crypto1State *pcs; |
| 413 | // pcs = crypto1_create(0xffffffffffff); |
| 414 | // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 415 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 416 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 417 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 418 | // best_first_bytes[0], |
| 419 | // SumProperty(pcs), |
| 420 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 421 | // //test_state_odd = pcs->odd & 0x00ffffff; |
| 422 | // //test_state_even = pcs->even & 0x00ffffff; |
| 423 | // crypto1_destroy(pcs); |
| 424 | // pcs = crypto1_create(0xa0a1a2a3a4a5); |
| 425 | // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 426 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 427 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 428 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 429 | // best_first_bytes[0], |
| 430 | // SumProperty(pcs), |
| 431 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 432 | // //test_state_odd = pcs->odd & 0x00ffffff; |
| 433 | // //test_state_even = pcs->even & 0x00ffffff; |
| 434 | // crypto1_destroy(pcs); |
| 435 | // pcs = crypto1_create(0xa6b9aa97b955); |
| 436 | // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 437 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 438 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 439 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", |
| 440 | // best_first_bytes[0], |
| 441 | // SumProperty(pcs), |
| 442 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); |
| 443 | //test_state_odd = pcs->odd & 0x00ffffff; |
| 444 | //test_state_even = pcs->even & 0x00ffffff; |
| 445 | // crypto1_destroy(pcs); |
| 446 | |
| 447 | |
| 448 | // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); |
| 449 | |
| 450 | // printf("\nTests: Actual BitFlipProperties odd/even:\n"); |
| 451 | // for (uint16_t i = 0; i < 256; i++) { |
| 452 | // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); |
| 453 | // if (i % 8 == 7) { |
| 454 | // printf("\n"); |
| 455 | // } |
| 456 | // } |
| 457 | |
| 458 | // printf("\nTests: Sorted First Bytes:\n"); |
| 459 | // for (uint16_t i = 0; i < 256; i++) { |
| 460 | // uint8_t best_byte = best_first_bytes[i]; |
| 461 | // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", |
| 462 | // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", |
| 463 | // i, best_byte, |
| 464 | // nonces[best_byte].num, |
| 465 | // nonces[best_byte].Sum, |
| 466 | // nonces[best_byte].Sum8_guess, |
| 467 | // nonces[best_byte].Sum8_prob * 100, |
| 468 | // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' |
| 469 | // //nonces[best_byte].score1, |
| 470 | // //nonces[best_byte].score2 |
| 471 | // ); |
| 472 | // } |
| 473 | |
| 474 | // printf("\nTests: parity performance\n"); |
| 475 | // time_t time1p = clock(); |
| 476 | // uint32_t par_sum = 0; |
| 477 | // for (uint32_t i = 0; i < 100000000; i++) { |
| 478 | // par_sum += parity(i); |
| 479 | // } |
| 480 | // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); |
| 481 | |
| 482 | // time1p = clock(); |
| 483 | // par_sum = 0; |
| 484 | // for (uint32_t i = 0; i < 100000000; i++) { |
| 485 | // par_sum += evenparity32(i); |
| 486 | // } |
| 487 | // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); |
| 488 | |
| 489 | |
| 490 | } |
| 491 | |
| 492 | static void sort_best_first_bytes(void) |
| 493 | { |
| 494 | // sort based on probability for correct guess |
| 495 | for (uint16_t i = 0; i < 256; i++ ) { |
| 496 | uint16_t j = 0; |
| 497 | float prob1 = nonces[i].Sum8_prob; |
| 498 | float prob2 = nonces[best_first_bytes[0]].Sum8_prob; |
| 499 | while (prob1 < prob2 && j < i) { |
| 500 | prob2 = nonces[best_first_bytes[++j]].Sum8_prob; |
| 501 | } |
| 502 | if (j < i) { |
| 503 | for (uint16_t k = i; k > j; k--) { |
| 504 | best_first_bytes[k] = best_first_bytes[k-1]; |
| 505 | } |
| 506 | } |
| 507 | best_first_bytes[j] = i; |
| 508 | } |
| 509 | |
| 510 | // determine how many are above the CONFIDENCE_THRESHOLD |
| 511 | uint16_t num_good_nonces = 0; |
| 512 | for (uint16_t i = 0; i < 256; i++) { |
| 513 | if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { |
| 514 | ++num_good_nonces; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | uint16_t best_first_byte = 0; |
| 519 | |
| 520 | // select the best possible first byte based on number of common bits with all {b'} |
| 521 | // uint16_t max_common_bits = 0; |
| 522 | // for (uint16_t i = 0; i < num_good_nonces; i++) { |
| 523 | // uint16_t sum_common_bits = 0; |
| 524 | // for (uint16_t j = 0; j < num_good_nonces; j++) { |
| 525 | // if (i != j) { |
| 526 | // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]); |
| 527 | // } |
| 528 | // } |
| 529 | // if (sum_common_bits > max_common_bits) { |
| 530 | // max_common_bits = sum_common_bits; |
| 531 | // best_first_byte = i; |
| 532 | // } |
| 533 | // } |
| 534 | |
| 535 | // select best possible first byte {b} based on least likely sum/bitflip property |
| 536 | float min_p_K = 1.0; |
| 537 | for (uint16_t i = 0; i < num_good_nonces; i++ ) { |
| 538 | uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess; |
| 539 | float bitflip_prob = 1.0; |
| 540 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { |
| 541 | bitflip_prob = 0.09375; |
| 542 | } |
| 543 | nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; |
| 544 | if (p_K[sum8] * bitflip_prob <= min_p_K) { |
| 545 | min_p_K = p_K[sum8] * bitflip_prob; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | |
| 550 | // use number of commmon bits as a tie breaker |
| 551 | uint16_t max_common_bits = 0; |
| 552 | for (uint16_t i = 0; i < num_good_nonces; i++) { |
| 553 | float bitflip_prob = 1.0; |
| 554 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { |
| 555 | bitflip_prob = 0.09375; |
| 556 | } |
| 557 | if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { |
| 558 | uint16_t sum_common_bits = 0; |
| 559 | for (uint16_t j = 0; j < num_good_nonces; j++) { |
| 560 | sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); |
| 561 | } |
| 562 | nonces[best_first_bytes[i]].score2 = sum_common_bits; |
| 563 | if (sum_common_bits > max_common_bits) { |
| 564 | max_common_bits = sum_common_bits; |
| 565 | best_first_byte = i; |
| 566 | } |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | // swap best possible first byte to the pole position |
| 571 | uint16_t temp = best_first_bytes[0]; |
| 572 | best_first_bytes[0] = best_first_bytes[best_first_byte]; |
| 573 | best_first_bytes[best_first_byte] = temp; |
| 574 | |
| 575 | } |
| 576 | |
| 577 | static uint16_t estimate_second_byte_sum(void) |
| 578 | { |
| 579 | |
| 580 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { |
| 581 | float Sum8_prob = 0.0; |
| 582 | uint16_t Sum8 = 0; |
| 583 | if (nonces[first_byte].updated) { |
| 584 | for (uint16_t sum = 0; sum <= 256; sum++) { |
| 585 | float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum); |
| 586 | if (prob > Sum8_prob) { |
| 587 | Sum8_prob = prob; |
| 588 | Sum8 = sum; |
| 589 | } |
| 590 | } |
| 591 | nonces[first_byte].Sum8_guess = Sum8; |
| 592 | nonces[first_byte].Sum8_prob = Sum8_prob; |
| 593 | nonces[first_byte].updated = false; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | sort_best_first_bytes(); |
| 598 | |
| 599 | uint16_t num_good_nonces = 0; |
| 600 | for (uint16_t i = 0; i < 256; i++) { |
| 601 | if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { |
| 602 | ++num_good_nonces; |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | return num_good_nonces; |
| 607 | } |
| 608 | |
| 609 | static int read_nonce_file(void) |
| 610 | { |
| 611 | FILE *fnonces = NULL; |
| 612 | uint8_t trgBlockNo = 0; |
| 613 | uint8_t trgKeyType = 0; |
| 614 | uint8_t read_buf[9]; |
| 615 | uint32_t nt_enc1 = 0, nt_enc2 = 0; |
| 616 | uint8_t par_enc = 0; |
| 617 | int total_num_nonces = 0; |
| 618 | |
| 619 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { |
| 620 | PrintAndLog("Could not open file nonces.bin"); |
| 621 | return 1; |
| 622 | } |
| 623 | |
| 624 | PrintAndLog("Reading nonces from file nonces.bin..."); |
| 625 | size_t bytes_read = fread(read_buf, 1, 6, fnonces); |
| 626 | if ( bytes_read == 0) { |
| 627 | PrintAndLog("File reading error."); |
| 628 | fclose(fnonces); |
| 629 | return 1; |
| 630 | } |
| 631 | cuid = bytes_to_num(read_buf, 4); |
| 632 | trgBlockNo = bytes_to_num(read_buf+4, 1); |
| 633 | trgKeyType = bytes_to_num(read_buf+5, 1); |
| 634 | |
| 635 | while (fread(read_buf, 1, 9, fnonces) == 9) { |
| 636 | nt_enc1 = bytes_to_num(read_buf, 4); |
| 637 | nt_enc2 = bytes_to_num(read_buf+4, 4); |
| 638 | par_enc = bytes_to_num(read_buf+8, 1); |
| 639 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); |
| 640 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); |
| 641 | add_nonce(nt_enc1, par_enc >> 4); |
| 642 | add_nonce(nt_enc2, par_enc & 0x0f); |
| 643 | total_num_nonces += 2; |
| 644 | } |
| 645 | fclose(fnonces); |
| 646 | PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | static void Check_for_FilterFlipProperties(void) |
| 651 | { |
| 652 | printf("Checking for Filter Flip Properties...\n"); |
| 653 | |
| 654 | uint16_t num_bitflips = 0; |
| 655 | |
| 656 | for (uint16_t i = 0; i < 256; i++) { |
| 657 | nonces[i].BitFlip[ODD_STATE] = false; |
| 658 | nonces[i].BitFlip[EVEN_STATE] = false; |
| 659 | } |
| 660 | |
| 661 | for (uint16_t i = 0; i < 256; i++) { |
| 662 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte |
| 663 | uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped |
| 664 | uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped |
| 665 | |
| 666 | if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits |
| 667 | nonces[i].BitFlip[ODD_STATE] = true; |
| 668 | num_bitflips++; |
| 669 | } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits |
| 670 | nonces[i].BitFlip[EVEN_STATE] = true; |
| 671 | num_bitflips++; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | if (write_stats) { |
| 676 | fprintf(fstats, "%d;", num_bitflips); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) |
| 681 | { |
| 682 | struct Crypto1State sim_cs = {0, 0}; |
| 683 | // init cryptostate with key: |
| 684 | for(int8_t i = 47; i > 0; i -= 2) { |
| 685 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); |
| 686 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); |
| 687 | } |
| 688 | |
| 689 | *par_enc = 0; |
| 690 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
| 691 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { |
| 692 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; |
| 693 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte |
| 694 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; |
| 695 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit |
| 696 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it |
| 697 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; |
| 698 | } |
| 699 | |
| 700 | } |
| 701 | |
| 702 | static void simulate_acquire_nonces() |
| 703 | { |
| 704 | clock_t time1 = clock(); |
| 705 | bool filter_flip_checked = false; |
| 706 | uint32_t total_num_nonces = 0; |
| 707 | uint32_t next_fivehundred = 500; |
| 708 | uint32_t total_added_nonces = 0; |
| 709 | |
| 710 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); |
| 711 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); |
| 712 | |
| 713 | printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid); |
| 714 | fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid); |
| 715 | |
| 716 | do { |
| 717 | uint32_t nt_enc = 0; |
| 718 | uint8_t par_enc = 0; |
| 719 | |
| 720 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); |
| 721 | //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc); |
| 722 | total_added_nonces += add_nonce(nt_enc, par_enc); |
| 723 | total_num_nonces++; |
| 724 | |
| 725 | if (first_byte_num == 256 ) { |
| 726 | // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); |
| 727 | if (!filter_flip_checked) { |
| 728 | Check_for_FilterFlipProperties(); |
| 729 | filter_flip_checked = true; |
| 730 | } |
| 731 | num_good_first_bytes = estimate_second_byte_sum(); |
| 732 | if (total_num_nonces > next_fivehundred) { |
| 733 | next_fivehundred = (total_num_nonces/500+1) * 500; |
| 734 | printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", |
| 735 | total_num_nonces, |
| 736 | total_added_nonces, |
| 737 | CONFIDENCE_THRESHOLD * 100.0, |
| 738 | num_good_first_bytes); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); |
| 743 | |
| 744 | time1 = clock() - time1; |
| 745 | if ( time1 > 0 ) { |
| 746 | PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", |
| 747 | total_num_nonces, |
| 748 | ((float)time1)/CLOCKS_PER_SEC, |
| 749 | total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); |
| 750 | } |
| 751 | fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); |
| 752 | |
| 753 | } |
| 754 | |
| 755 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) |
| 756 | { |
| 757 | clock_t time1 = clock(); |
| 758 | bool initialize = true; |
| 759 | bool field_off = false; |
| 760 | bool finished = false; |
| 761 | bool filter_flip_checked = false; |
| 762 | uint32_t flags = 0; |
| 763 | uint8_t write_buf[9]; |
| 764 | uint32_t total_num_nonces = 0; |
| 765 | uint32_t next_fivehundred = 500; |
| 766 | uint32_t total_added_nonces = 0; |
| 767 | FILE *fnonces = NULL; |
| 768 | UsbCommand resp; |
| 769 | |
| 770 | printf("Acquiring nonces...\n"); |
| 771 | |
| 772 | clearCommandBuffer(); |
| 773 | |
| 774 | do { |
| 775 | flags = 0; |
| 776 | flags |= initialize ? 0x0001 : 0; |
| 777 | flags |= slow ? 0x0002 : 0; |
| 778 | flags |= field_off ? 0x0004 : 0; |
| 779 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; |
| 780 | memcpy(c.d.asBytes, key, 6); |
| 781 | |
| 782 | SendCommand(&c); |
| 783 | |
| 784 | if (field_off) finished = true; |
| 785 | |
| 786 | if (initialize) { |
| 787 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; |
| 788 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard |
| 789 | |
| 790 | cuid = resp.arg[1]; |
| 791 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); |
| 792 | if (nonce_file_write && fnonces == NULL) { |
| 793 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { |
| 794 | PrintAndLog("Could not create file nonces.bin"); |
| 795 | return 3; |
| 796 | } |
| 797 | PrintAndLog("Writing acquired nonces to binary file nonces.bin"); |
| 798 | num_to_bytes(cuid, 4, write_buf); |
| 799 | fwrite(write_buf, 1, 4, fnonces); |
| 800 | fwrite(&trgBlockNo, 1, 1, fnonces); |
| 801 | fwrite(&trgKeyType, 1, 1, fnonces); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | if (!initialize) { |
| 806 | uint32_t nt_enc1, nt_enc2; |
| 807 | uint8_t par_enc; |
| 808 | uint16_t num_acquired_nonces = resp.arg[2]; |
| 809 | uint8_t *bufp = resp.d.asBytes; |
| 810 | for (uint16_t i = 0; i < num_acquired_nonces; i+=2) { |
| 811 | nt_enc1 = bytes_to_num(bufp, 4); |
| 812 | nt_enc2 = bytes_to_num(bufp+4, 4); |
| 813 | par_enc = bytes_to_num(bufp+8, 1); |
| 814 | |
| 815 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); |
| 816 | total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); |
| 817 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); |
| 818 | total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); |
| 819 | |
| 820 | if (nonce_file_write) { |
| 821 | fwrite(bufp, 1, 9, fnonces); |
| 822 | } |
| 823 | |
| 824 | bufp += 9; |
| 825 | } |
| 826 | |
| 827 | total_num_nonces += num_acquired_nonces; |
| 828 | } |
| 829 | |
| 830 | if (first_byte_num == 256 ) { |
| 831 | // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); |
| 832 | if (!filter_flip_checked) { |
| 833 | Check_for_FilterFlipProperties(); |
| 834 | filter_flip_checked = true; |
| 835 | } |
| 836 | num_good_first_bytes = estimate_second_byte_sum(); |
| 837 | if (total_num_nonces > next_fivehundred) { |
| 838 | next_fivehundred = (total_num_nonces/500+1) * 500; |
| 839 | printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", |
| 840 | total_num_nonces, |
| 841 | total_added_nonces, |
| 842 | CONFIDENCE_THRESHOLD * 100.0, |
| 843 | num_good_first_bytes); |
| 844 | } |
| 845 | if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) { |
| 846 | field_off = true; // switch off field with next SendCommand and then finish |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | if (!initialize) { |
| 851 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { |
| 852 | fclose(fnonces); |
| 853 | return 1; |
| 854 | } |
| 855 | if (resp.arg[0]) { |
| 856 | fclose(fnonces); |
| 857 | return resp.arg[0]; // error during nested_hard |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | initialize = false; |
| 862 | |
| 863 | } while (!finished); |
| 864 | |
| 865 | |
| 866 | if (nonce_file_write) { |
| 867 | fclose(fnonces); |
| 868 | } |
| 869 | |
| 870 | time1 = clock() - time1; |
| 871 | if ( time1 > 0 ) { |
| 872 | PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", |
| 873 | total_num_nonces, |
| 874 | ((float)time1)/CLOCKS_PER_SEC, |
| 875 | total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 |
| 876 | ); |
| 877 | } |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | static int init_partial_statelists(void) |
| 882 | { |
| 883 | const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; |
| 884 | const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; |
| 885 | |
| 886 | printf("Allocating memory for partial statelists...\n"); |
| 887 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 888 | for (uint16_t i = 0; i <= 16; i+=2) { |
| 889 | partial_statelist[i].len[odd_even] = 0; |
| 890 | uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i]; |
| 891 | partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states); |
| 892 | if (partial_statelist[i].states[odd_even] == NULL) { |
| 893 | PrintAndLog("Cannot allocate enough memory. Aborting"); |
| 894 | return 4; |
| 895 | } |
| 896 | for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) { |
| 897 | partial_statelist[i].index[odd_even][j] = NULL; |
| 898 | } |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | printf("Generating partial statelists...\n"); |
| 903 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { |
| 904 | uint32_t index = -1; |
| 905 | uint32_t num_of_states = 1<<20; |
| 906 | for (uint32_t state = 0; state < num_of_states; state++) { |
| 907 | uint16_t sum_property = PartialSumProperty(state, odd_even); |
| 908 | uint32_t *p = partial_statelist[sum_property].states[odd_even]; |
| 909 | p += partial_statelist[sum_property].len[odd_even]; |
| 910 | *p = state; |
| 911 | partial_statelist[sum_property].len[odd_even]++; |
| 912 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); |
| 913 | if ((state & index_mask) != index) { |
| 914 | index = state & index_mask; |
| 915 | } |
| 916 | if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { |
| 917 | partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p; |
| 918 | } |
| 919 | } |
| 920 | // add End Of List markers |
| 921 | for (uint16_t i = 0; i <= 16; i += 2) { |
| 922 | uint32_t *p = partial_statelist[i].states[odd_even]; |
| 923 | p += partial_statelist[i].len[odd_even]; |
| 924 | *p = END_OF_LIST_MARKER; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | return 0; |
| 929 | } |
| 930 | |
| 931 | static void init_BitFlip_statelist(void) |
| 932 | { |
| 933 | printf("Generating bitflip statelist...\n"); |
| 934 | uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20); |
| 935 | uint32_t index = -1; |
| 936 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); |
| 937 | for (uint32_t state = 0; state < (1 << 20); state++) { |
| 938 | if (filter(state) != filter(state^1)) { |
| 939 | if ((state & index_mask) != index) { |
| 940 | index = state & index_mask; |
| 941 | } |
| 942 | if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { |
| 943 | statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p; |
| 944 | } |
| 945 | *p++ = state; |
| 946 | } |
| 947 | } |
| 948 | // set len and add End Of List marker |
| 949 | statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; |
| 950 | *p = END_OF_LIST_MARKER; |
| 951 | statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); |
| 952 | } |
| 953 | |
| 954 | static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) |
| 955 | { |
| 956 | uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index |
| 957 | |
| 958 | if (p == NULL) return NULL; |
| 959 | while (*p < (state & mask)) p++; |
| 960 | if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match |
| 961 | if ((*p & mask) == (state & mask)) return p; // found a match. |
| 962 | return NULL; // no match |
| 963 | } |
| 964 | |
| 965 | static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
| 966 | { |
| 967 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); |
| 968 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit |
| 969 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function |
| 970 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; |
| 971 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 |
| 972 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits |
| 973 | return !all_diff; |
| 974 | } |
| 975 | |
| 976 | static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) |
| 977 | { |
| 978 | uint_fast8_t j_bit_mask = 0x01 << bit; |
| 979 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit |
| 980 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; |
| 981 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 |
| 982 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits |
| 983 | return all_diff; |
| 984 | } |
| 985 | |
| 986 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) |
| 987 | { |
| 988 | if (odd_even) { |
| 989 | // odd bits |
| 990 | switch (num_common_bits) { |
| 991 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; |
| 992 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; |
| 993 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; |
| 994 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; |
| 995 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; |
| 996 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; |
| 997 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; |
| 998 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; |
| 999 | } |
| 1000 | } else { |
| 1001 | // even bits |
| 1002 | switch (num_common_bits) { |
| 1003 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; |
| 1004 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; |
| 1005 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; |
| 1006 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; |
| 1007 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; |
| 1008 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; |
| 1009 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | return true; // valid state |
| 1014 | } |
| 1015 | |
| 1016 | static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) |
| 1017 | { |
| 1018 | for (uint16_t i = 1; i < num_good_first_bytes; i++) { |
| 1019 | uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; |
| 1020 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i]; |
| 1021 | uint_fast8_t j = common_bits(bytes_diff); |
| 1022 | uint32_t mask = 0xfffffff0; |
| 1023 | if (odd_even == ODD_STATE) { |
| 1024 | mask >>= j/2; |
| 1025 | } else { |
| 1026 | mask >>= (j+1)/2; |
| 1027 | } |
| 1028 | mask &= 0x000fffff; |
| 1029 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); |
| 1030 | bool found_match = false; |
| 1031 | for (uint16_t r = 0; r <= 16 && !found_match; r += 2) { |
| 1032 | for (uint16_t s = 0; s <= 16 && !found_match; s += 2) { |
| 1033 | if (r*(16-s) + (16-r)*s == sum_a8) { |
| 1034 | //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s); |
| 1035 | uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; |
| 1036 | uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); |
| 1037 | if (p != NULL) { |
| 1038 | while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { |
| 1039 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { |
| 1040 | found_match = true; |
| 1041 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1042 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1043 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1044 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1045 | // } |
| 1046 | break; |
| 1047 | } else { |
| 1048 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1049 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1050 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1051 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1052 | // } |
| 1053 | } |
| 1054 | p++; |
| 1055 | } |
| 1056 | } else { |
| 1057 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1058 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1059 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1060 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1061 | // } |
| 1062 | } |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | if (!found_match) { |
| 1068 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1069 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1070 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); |
| 1071 | // } |
| 1072 | return false; |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | return true; |
| 1077 | } |
| 1078 | |
| 1079 | static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) |
| 1080 | { |
| 1081 | for (uint16_t i = 0; i < 256; i++) { |
| 1082 | if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) { |
| 1083 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ i; |
| 1084 | uint_fast8_t j = common_bits(bytes_diff); |
| 1085 | uint32_t mask = 0xfffffff0; |
| 1086 | if (odd_even == ODD_STATE) { |
| 1087 | mask >>= j/2; |
| 1088 | } else { |
| 1089 | mask >>= (j+1)/2; |
| 1090 | } |
| 1091 | mask &= 0x000fffff; |
| 1092 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); |
| 1093 | bool found_match = false; |
| 1094 | uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0); |
| 1095 | if (p != NULL) { |
| 1096 | while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { |
| 1097 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { |
| 1098 | found_match = true; |
| 1099 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1100 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1101 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1102 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1103 | // } |
| 1104 | break; |
| 1105 | } else { |
| 1106 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1107 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1108 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1109 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1110 | // } |
| 1111 | } |
| 1112 | p++; |
| 1113 | } |
| 1114 | } else { |
| 1115 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1116 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1117 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", |
| 1118 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); |
| 1119 | // } |
| 1120 | } |
| 1121 | if (!found_match) { |
| 1122 | // if ((odd_even == ODD_STATE && state == test_state_odd) |
| 1123 | // || (odd_even == EVEN_STATE && state == test_state_even)) { |
| 1124 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); |
| 1125 | // } |
| 1126 | return false; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | } |
| 1131 | |
| 1132 | return true; |
| 1133 | } |
| 1134 | |
| 1135 | static struct sl_cache_entry { |
| 1136 | uint32_t *sl; |
| 1137 | uint32_t len; |
| 1138 | } sl_cache[17][17][2]; |
| 1139 | |
| 1140 | static void init_statelist_cache(void) |
| 1141 | { |
| 1142 | for (uint16_t i = 0; i < 17; i+=2) { |
| 1143 | for (uint16_t j = 0; j < 17; j+=2) { |
| 1144 | for (uint16_t k = 0; k < 2; k++) { |
| 1145 | sl_cache[i][j][k].sl = NULL; |
| 1146 | sl_cache[i][j][k].len = 0; |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) |
| 1153 | { |
| 1154 | uint32_t worstcase_size = 1<<20; |
| 1155 | |
| 1156 | // check cache for existing results |
| 1157 | if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) { |
| 1158 | candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl; |
| 1159 | candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len; |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); |
| 1164 | if (candidates->states[odd_even] == NULL) { |
| 1165 | PrintAndLog("Out of memory error.\n"); |
| 1166 | return 4; |
| 1167 | } |
| 1168 | uint32_t *add_p = candidates->states[odd_even]; |
| 1169 | for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) { |
| 1170 | uint32_t search_mask = 0x000ffff0; |
| 1171 | uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); |
| 1172 | if (p2 != NULL) { |
| 1173 | while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) { |
| 1174 | if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) |
| 1175 | || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { |
| 1176 | if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { |
| 1177 | if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) { |
| 1178 | *add_p++ = (*p1 << 4) | *p2; |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | p2++; |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | // set end of list marker and len |
| 1188 | *add_p = END_OF_LIST_MARKER; |
| 1189 | candidates->len[odd_even] = add_p - candidates->states[odd_even]; |
| 1190 | |
| 1191 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); |
| 1192 | |
| 1193 | sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even]; |
| 1194 | sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even]; |
| 1195 | |
| 1196 | return 0; |
| 1197 | } |
| 1198 | |
| 1199 | static statelist_t *add_more_candidates(statelist_t *current_candidates) |
| 1200 | { |
| 1201 | statelist_t *new_candidates = NULL; |
| 1202 | if (current_candidates == NULL) { |
| 1203 | if (candidates == NULL) { |
| 1204 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); |
| 1205 | } |
| 1206 | new_candidates = candidates; |
| 1207 | } else { |
| 1208 | new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); |
| 1209 | } |
| 1210 | new_candidates->next = NULL; |
| 1211 | new_candidates->len[ODD_STATE] = 0; |
| 1212 | new_candidates->len[EVEN_STATE] = 0; |
| 1213 | new_candidates->states[ODD_STATE] = NULL; |
| 1214 | new_candidates->states[EVEN_STATE] = NULL; |
| 1215 | return new_candidates; |
| 1216 | } |
| 1217 | |
| 1218 | static void TestIfKeyExists(uint64_t key) |
| 1219 | { |
| 1220 | struct Crypto1State *pcs; |
| 1221 | pcs = crypto1_create(key); |
| 1222 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); |
| 1223 | |
| 1224 | uint32_t state_odd = pcs->odd & 0x00ffffff; |
| 1225 | uint32_t state_even = pcs->even & 0x00ffffff; |
| 1226 | //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); |
| 1227 | |
| 1228 | uint64_t count = 0; |
| 1229 | for (statelist_t *p = candidates; p != NULL; p = p->next) { |
| 1230 | bool found_odd = false; |
| 1231 | bool found_even = false; |
| 1232 | uint32_t *p_odd = p->states[ODD_STATE]; |
| 1233 | uint32_t *p_even = p->states[EVEN_STATE]; |
| 1234 | while (*p_odd != END_OF_LIST_MARKER) { |
| 1235 | if ((*p_odd & 0x00ffffff) == state_odd) { |
| 1236 | found_odd = true; |
| 1237 | break; |
| 1238 | } |
| 1239 | p_odd++; |
| 1240 | } |
| 1241 | while (*p_even != END_OF_LIST_MARKER) { |
| 1242 | if ((*p_even & 0x00ffffff) == state_even) { |
| 1243 | found_even = true; |
| 1244 | } |
| 1245 | p_even++; |
| 1246 | } |
| 1247 | count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); |
| 1248 | if (found_odd && found_even) { |
| 1249 | PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", |
| 1250 | count, |
| 1251 | log(count)/log(2), |
| 1252 | maximum_states, |
| 1253 | log(maximum_states)/log(2) |
| 1254 | ); |
| 1255 | if (write_stats) { |
| 1256 | fprintf(fstats, "1\n"); |
| 1257 | } |
| 1258 | crypto1_destroy(pcs); |
| 1259 | return; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | printf("Key NOT found!\n"); |
| 1264 | if (write_stats) { |
| 1265 | fprintf(fstats, "0\n"); |
| 1266 | } |
| 1267 | crypto1_destroy(pcs); |
| 1268 | } |
| 1269 | |
| 1270 | static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) |
| 1271 | { |
| 1272 | printf("Generating crypto1 state candidates... \n"); |
| 1273 | |
| 1274 | statelist_t *current_candidates = NULL; |
| 1275 | // estimate maximum candidate states |
| 1276 | maximum_states = 0; |
| 1277 | for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { |
| 1278 | for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { |
| 1279 | if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { |
| 1280 | maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8); |
| 1281 | } |
| 1282 | } |
| 1283 | } |
| 1284 | printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); |
| 1285 | |
| 1286 | init_statelist_cache(); |
| 1287 | |
| 1288 | for (uint16_t p = 0; p <= 16; p += 2) { |
| 1289 | for (uint16_t q = 0; q <= 16; q += 2) { |
| 1290 | if (p*(16-q) + (16-p)*q == sum_a0) { |
| 1291 | printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", |
| 1292 | p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); |
| 1293 | for (uint16_t r = 0; r <= 16; r += 2) { |
| 1294 | for (uint16_t s = 0; s <= 16; s += 2) { |
| 1295 | if (r*(16-s) + (16-r)*s == sum_a8) { |
| 1296 | current_candidates = add_more_candidates(current_candidates); |
| 1297 | // check for the smallest partial statelist. Try this first - it might give 0 candidates |
| 1298 | // and eliminate the need to calculate the other part |
| 1299 | if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) |
| 1300 | < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { |
| 1301 | add_matching_states(current_candidates, p, r, ODD_STATE); |
| 1302 | if(current_candidates->len[ODD_STATE]) { |
| 1303 | add_matching_states(current_candidates, q, s, EVEN_STATE); |
| 1304 | } else { |
| 1305 | current_candidates->len[EVEN_STATE] = 0; |
| 1306 | uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); |
| 1307 | *p = END_OF_LIST_MARKER; |
| 1308 | } |
| 1309 | } else { |
| 1310 | add_matching_states(current_candidates, q, s, EVEN_STATE); |
| 1311 | if(current_candidates->len[EVEN_STATE]) { |
| 1312 | add_matching_states(current_candidates, p, r, ODD_STATE); |
| 1313 | } else { |
| 1314 | current_candidates->len[ODD_STATE] = 0; |
| 1315 | uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t)); |
| 1316 | *p = END_OF_LIST_MARKER; |
| 1317 | } |
| 1318 | } |
| 1319 | //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); |
| 1320 | //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); |
| 1321 | } |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | |
| 1329 | maximum_states = 0; |
| 1330 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { |
| 1331 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; |
| 1332 | } |
| 1333 | printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); |
| 1334 | if (write_stats) { |
| 1335 | if (maximum_states != 0) { |
| 1336 | fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0)); |
| 1337 | } else { |
| 1338 | fprintf(fstats, "%1.1f;", 0.0); |
| 1339 | } |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | static void free_candidates_memory(statelist_t *sl) |
| 1344 | { |
| 1345 | if (sl == NULL) { |
| 1346 | return; |
| 1347 | } else { |
| 1348 | free_candidates_memory(sl->next); |
| 1349 | free(sl); |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | static void free_statelist_cache(void) |
| 1354 | { |
| 1355 | for (uint16_t i = 0; i < 17; i+=2) { |
| 1356 | for (uint16_t j = 0; j < 17; j+=2) { |
| 1357 | for (uint16_t k = 0; k < 2; k++) { |
| 1358 | free(sl_cache[i][j][k].sl); |
| 1359 | } |
| 1360 | } |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | uint64_t foundkey = 0; |
| 1365 | size_t keys_found = 0; |
| 1366 | size_t bucket_count = 0; |
| 1367 | statelist_t* buckets[128]; |
| 1368 | size_t total_states_tested = 0; |
| 1369 | size_t thread_count = 4; |
| 1370 | |
| 1371 | // these bitsliced states will hold identical states in all slices |
| 1372 | bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE]; |
| 1373 | |
| 1374 | // arrays of bitsliced states with identical values in all slices |
| 1375 | bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE]; |
| 1376 | bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE]; |
| 1377 | |
| 1378 | #define EXACT_COUNT |
| 1379 | |
| 1380 | static const uint64_t crack_states_bitsliced(statelist_t *p){ |
| 1381 | // the idea to roll back the half-states before combining them was suggested/explained to me by bla |
| 1382 | // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop |
| 1383 | uint64_t key = -1; |
| 1384 | uint8_t bSize = sizeof(bitslice_t); |
| 1385 | |
| 1386 | #ifdef EXACT_COUNT |
| 1387 | size_t bucket_states_tested = 0; |
| 1388 | size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES]; |
| 1389 | #else |
| 1390 | const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]); |
| 1391 | #endif |
| 1392 | |
| 1393 | bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES]; |
| 1394 | size_t bitsliced_blocks = 0; |
| 1395 | uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE]; |
| 1396 | |
| 1397 | // bitslice all the even states |
| 1398 | for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){ |
| 1399 | |
| 1400 | #ifdef __WIN32 |
| 1401 | #ifdef __MINGW32__ |
| 1402 | bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); |
| 1403 | #else |
| 1404 | bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); |
| 1405 | #endif |
| 1406 | #else |
| 1407 | #ifdef __APPLE__ |
| 1408 | bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize); |
| 1409 | #else |
| 1410 | bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize); |
| 1411 | #endif |
| 1412 | #endif |
| 1413 | |
| 1414 | if ( !lstate_p ) { |
| 1415 | __sync_fetch_and_add(&total_states_tested, bucket_states_tested); |
| 1416 | return key; |
| 1417 | } |
| 1418 | |
| 1419 | memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits |
| 1420 | |
| 1421 | // bitslice even half-states |
| 1422 | const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES; |
| 1423 | #ifdef EXACT_COUNT |
| 1424 | bucket_size[bitsliced_blocks] = max_slices; |
| 1425 | #endif |
| 1426 | for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){ |
| 1427 | uint32_t e = *(p_even+slice_idx); |
| 1428 | for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){ |
| 1429 | // set even bits |
| 1430 | if(e&1){ |
| 1431 | lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63); |
| 1432 | } |
| 1433 | } |
| 1434 | } |
| 1435 | // compute the rollback bits |
| 1436 | for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){ |
| 1437 | // inlined crypto1_bs_lfsr_rollback |
| 1438 | const bitslice_value_t feedout = lstate_p[0].value; |
| 1439 | ++lstate_p; |
| 1440 | const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p); |
| 1441 | const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^ |
| 1442 | lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^ |
| 1443 | lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^ |
| 1444 | lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^ |
| 1445 | lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^ |
| 1446 | lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value); |
| 1447 | lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value; |
| 1448 | } |
| 1449 | bitsliced_even_states[bitsliced_blocks++] = lstate_p; |
| 1450 | } |
| 1451 | |
| 1452 | // bitslice every odd state to every block of even half-states with half-finished rollback |
| 1453 | for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){ |
| 1454 | // early abort |
| 1455 | if(keys_found){ |
| 1456 | goto out; |
| 1457 | } |
| 1458 | |
| 1459 | // set the odd bits and compute rollback |
| 1460 | uint64_t o = (uint64_t) *p_odd; |
| 1461 | lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1); |
| 1462 | // pre-compute part of the odd feedback bits (minus rollback) |
| 1463 | bool odd_feedback_bit = parity(o&0x9ce5c); |
| 1464 | |
| 1465 | crypto1_bs_rewind_a0(); |
| 1466 | // set odd bits |
| 1467 | for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){ |
| 1468 | if(o & 1){ |
| 1469 | state_p[state_idx] = bs_ones; |
| 1470 | } else { |
| 1471 | state_p[state_idx] = bs_zeroes; |
| 1472 | } |
| 1473 | } |
| 1474 | const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; |
| 1475 | |
| 1476 | for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ |
| 1477 | const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx]; |
| 1478 | size_t state_idx; |
| 1479 | // set even bits |
| 1480 | for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){ |
| 1481 | state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; |
| 1482 | } |
| 1483 | // set rollback bits |
| 1484 | uint64_t lo = o; |
| 1485 | for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){ |
| 1486 | // set the odd bits and take in the odd rollback bits from the even states |
| 1487 | if(lo & 1){ |
| 1488 | state_p[state_idx].value = ~bitsliced_even_state[state_idx].value; |
| 1489 | } else { |
| 1490 | state_p[state_idx] = bitsliced_even_state[state_idx]; |
| 1491 | } |
| 1492 | |
| 1493 | // set the even bits and take in the even rollback bits from the odd states |
| 1494 | if((lo >> 32) & 1){ |
| 1495 | state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value; |
| 1496 | } else { |
| 1497 | state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; |
| 1498 | } |
| 1499 | } |
| 1500 | |
| 1501 | #ifdef EXACT_COUNT |
| 1502 | bucket_states_tested += bucket_size[block_idx]; |
| 1503 | #endif |
| 1504 | // pre-compute first keystream and feedback bit vectors |
| 1505 | const bitslice_value_t ksb = crypto1_bs_f20(state_p); |
| 1506 | const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits |
| 1507 | state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ |
| 1508 | state_p[47-24].value ^ state_p[47-42].value); |
| 1509 | |
| 1510 | // vector to contain test results (1 = passed, 0 = failed) |
| 1511 | bitslice_t results = bs_ones; |
| 1512 | |
| 1513 | for(size_t tests = 0; tests < NONCE_TESTS; ++tests){ |
| 1514 | size_t parity_bit_idx = 0; |
| 1515 | bitslice_value_t fb_bits = fbb; |
| 1516 | bitslice_value_t ks_bits = ksb; |
| 1517 | state_p = &states[KEYSTREAM_SIZE-1]; |
| 1518 | bitslice_value_t parity_bit_vector = bs_zeroes.value; |
| 1519 | |
| 1520 | // highest bit is transmitted/received first |
| 1521 | for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){ |
| 1522 | // decrypt nonce bits |
| 1523 | const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value; |
| 1524 | const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits); |
| 1525 | |
| 1526 | // compute real parity bits on the fly |
| 1527 | parity_bit_vector ^= decrypted_nonce_bit_vector; |
| 1528 | |
| 1529 | // update state |
| 1530 | state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector); |
| 1531 | |
| 1532 | // compute next keystream bit |
| 1533 | ks_bits = crypto1_bs_f20(state_p); |
| 1534 | |
| 1535 | // for each byte: |
| 1536 | if((ks_idx&7) == 0){ |
| 1537 | // get encrypted parity bits |
| 1538 | const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value; |
| 1539 | |
| 1540 | // decrypt parity bits |
| 1541 | const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits); |
| 1542 | |
| 1543 | // compare actual parity bits with decrypted parity bits and take count in results vector |
| 1544 | results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector); |
| 1545 | |
| 1546 | // make sure we still have a match in our set |
| 1547 | // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){ |
| 1548 | |
| 1549 | // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ??? |
| 1550 | // the short-circuiting also helps |
| 1551 | if(results.bytes64[0] == 0 |
| 1552 | #if MAX_BITSLICES > 64 |
| 1553 | && results.bytes64[1] == 0 |
| 1554 | #endif |
| 1555 | #if MAX_BITSLICES > 128 |
| 1556 | && results.bytes64[2] == 0 |
| 1557 | && results.bytes64[3] == 0 |
| 1558 | #endif |
| 1559 | ){ |
| 1560 | goto stop_tests; |
| 1561 | } |
| 1562 | // this is about as fast but less portable (requires -std=gnu99) |
| 1563 | // asm goto ("ptest %1, %0\n\t" |
| 1564 | // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests); |
| 1565 | parity_bit_vector = bs_zeroes.value; |
| 1566 | } |
| 1567 | // compute next feedback bit vector |
| 1568 | fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ |
| 1569 | state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ |
| 1570 | state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ |
| 1571 | state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ |
| 1572 | state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ |
| 1573 | state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); |
| 1574 | } |
| 1575 | } |
| 1576 | // all nonce tests were successful: we've found the key in this block! |
| 1577 | state_t keys[MAX_BITSLICES]; |
| 1578 | crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys); |
| 1579 | for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){ |
| 1580 | if(get_vector_bit(results_idx, results)){ |
| 1581 | key = keys[results_idx].value; |
| 1582 | goto out; |
| 1583 | } |
| 1584 | } |
| 1585 | stop_tests: |
| 1586 | // prepare to set new states |
| 1587 | crypto1_bs_rewind_a0(); |
| 1588 | continue; |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | out: |
| 1593 | for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ |
| 1594 | |
| 1595 | #ifdef __WIN32 |
| 1596 | #ifdef __MINGW32__ |
| 1597 | __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); |
| 1598 | #else |
| 1599 | _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); |
| 1600 | #endif |
| 1601 | #else |
| 1602 | free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); |
| 1603 | #endif |
| 1604 | |
| 1605 | } |
| 1606 | __sync_fetch_and_add(&total_states_tested, bucket_states_tested); |
| 1607 | return key; |
| 1608 | } |
| 1609 | |
| 1610 | static void* crack_states_thread(void* x){ |
| 1611 | const size_t thread_id = (size_t)x; |
| 1612 | size_t current_bucket = thread_id; |
| 1613 | while(current_bucket < bucket_count){ |
| 1614 | statelist_t * bucket = buckets[current_bucket]; |
| 1615 | if(bucket){ |
| 1616 | const uint64_t key = crack_states_bitsliced(bucket); |
| 1617 | if(key != -1){ |
| 1618 | __sync_fetch_and_add(&keys_found, 1); |
| 1619 | __sync_fetch_and_add(&foundkey, key); |
| 1620 | break; |
| 1621 | } else if(keys_found){ |
| 1622 | break; |
| 1623 | } else { |
| 1624 | printf("."); |
| 1625 | fflush(stdout); |
| 1626 | } |
| 1627 | } |
| 1628 | current_bucket += thread_count; |
| 1629 | } |
| 1630 | return NULL; |
| 1631 | } |
| 1632 | |
| 1633 | static void brute_force(void) |
| 1634 | { |
| 1635 | if (known_target_key != -1) { |
| 1636 | PrintAndLog("Looking for known target key in remaining key space..."); |
| 1637 | TestIfKeyExists(known_target_key); |
| 1638 | } else { |
| 1639 | PrintAndLog("Brute force phase starting."); |
| 1640 | time_t start, end; |
| 1641 | time(&start); |
| 1642 | keys_found = 0; |
| 1643 | foundkey = 0; |
| 1644 | |
| 1645 | crypto1_bs_init(); |
| 1646 | |
| 1647 | PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); |
| 1648 | PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24)); |
| 1649 | // convert to 32 bit little-endian |
| 1650 | crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); |
| 1651 | |
| 1652 | PrintAndLog("Bitslicing nonces..."); |
| 1653 | for(size_t tests = 0; tests < NONCE_TESTS; tests++){ |
| 1654 | uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc; |
| 1655 | uint8_t test_parity = brute_force_nonces[tests]->par_enc; |
| 1656 | // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine |
| 1657 | crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32); |
| 1658 | // convert to 32 bit little-endian |
| 1659 | crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4); |
| 1660 | } |
| 1661 | total_states_tested = 0; |
| 1662 | |
| 1663 | // count number of states to go |
| 1664 | bucket_count = 0; |
| 1665 | for (statelist_t *p = candidates; p != NULL; p = p->next) { |
| 1666 | buckets[bucket_count] = p; |
| 1667 | bucket_count++; |
| 1668 | } |
| 1669 | |
| 1670 | #ifndef __WIN32 |
| 1671 | thread_count = sysconf(_SC_NPROCESSORS_CONF); |
| 1672 | if ( thread_count < 1) |
| 1673 | thread_count = 1; |
| 1674 | #endif /* _WIN32 */ |
| 1675 | |
| 1676 | pthread_t threads[thread_count]; |
| 1677 | |
| 1678 | // enumerate states using all hardware threads, each thread handles one bucket |
| 1679 | PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states); |
| 1680 | |
| 1681 | for(size_t i = 0; i < thread_count; i++){ |
| 1682 | pthread_create(&threads[i], NULL, crack_states_thread, (void*) i); |
| 1683 | } |
| 1684 | for(size_t i = 0; i < thread_count; i++){ |
| 1685 | pthread_join(threads[i], 0); |
| 1686 | } |
| 1687 | |
| 1688 | time(&end); |
| 1689 | double elapsed_time = difftime(end, start); |
| 1690 | |
| 1691 | if(keys_found){ |
| 1692 | PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time); |
| 1693 | PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); |
| 1694 | } else { |
| 1695 | PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time); |
| 1696 | } |
| 1697 | // reset this counter for the next call |
| 1698 | nonces_to_bruteforce = 0; |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) |
| 1703 | { |
| 1704 | // initialize Random number generator |
| 1705 | time_t t; |
| 1706 | srand((unsigned) time(&t)); |
| 1707 | |
| 1708 | if (trgkey != NULL) { |
| 1709 | known_target_key = bytes_to_num(trgkey, 6); |
| 1710 | } else { |
| 1711 | known_target_key = -1; |
| 1712 | } |
| 1713 | |
| 1714 | init_partial_statelists(); |
| 1715 | init_BitFlip_statelist(); |
| 1716 | write_stats = false; |
| 1717 | |
| 1718 | if (tests) { |
| 1719 | // set the correct locale for the stats printing |
| 1720 | setlocale(LC_ALL, ""); |
| 1721 | write_stats = true; |
| 1722 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { |
| 1723 | PrintAndLog("Could not create/open file hardnested_stats.txt"); |
| 1724 | return 3; |
| 1725 | } |
| 1726 | for (uint32_t i = 0; i < tests; i++) { |
| 1727 | init_nonce_memory(); |
| 1728 | simulate_acquire_nonces(); |
| 1729 | Tests(); |
| 1730 | printf("Sum(a0) = %d\n", first_byte_Sum); |
| 1731 | fprintf(fstats, "%d;", first_byte_Sum); |
| 1732 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); |
| 1733 | brute_force(); |
| 1734 | free_nonces_memory(); |
| 1735 | free_statelist_cache(); |
| 1736 | free_candidates_memory(candidates); |
| 1737 | candidates = NULL; |
| 1738 | } |
| 1739 | fclose(fstats); |
| 1740 | } else { |
| 1741 | init_nonce_memory(); |
| 1742 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin |
| 1743 | if (read_nonce_file() != 0) { |
| 1744 | return 3; |
| 1745 | } |
| 1746 | Check_for_FilterFlipProperties(); |
| 1747 | num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); |
| 1748 | } else { // acquire nonces. |
| 1749 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); |
| 1750 | if (is_OK != 0) { |
| 1751 | return is_OK; |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | //Tests(); |
| 1756 | |
| 1757 | //PrintAndLog(""); |
| 1758 | //PrintAndLog("Sum(a0) = %d", first_byte_Sum); |
| 1759 | // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", |
| 1760 | // best_first_bytes[0], |
| 1761 | // best_first_bytes[1], |
| 1762 | // best_first_bytes[2], |
| 1763 | // best_first_bytes[3], |
| 1764 | // best_first_bytes[4], |
| 1765 | // best_first_bytes[5], |
| 1766 | // best_first_bytes[6], |
| 1767 | // best_first_bytes[7], |
| 1768 | // best_first_bytes[8], |
| 1769 | // best_first_bytes[9] ); |
| 1770 | PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); |
| 1771 | |
| 1772 | clock_t time1 = clock(); |
| 1773 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); |
| 1774 | time1 = clock() - time1; |
| 1775 | if ( time1 > 0 ) |
| 1776 | PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); |
| 1777 | |
| 1778 | brute_force(); |
| 1779 | |
| 1780 | free_nonces_memory(); |
| 1781 | free_statelist_cache(); |
| 1782 | free_candidates_memory(candidates); |
| 1783 | candidates = NULL; |
| 1784 | } |
| 1785 | return 0; |
| 1786 | } |
| 1787 | |
| 1788 | |