]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2016, 2017 by piwi | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license.ch b | |
7 | //----------------------------------------------------------------------------- | |
8 | // Implements a card only attack based on crypto text (encrypted nonces | |
9 | // received during a nested authentication) only. Unlike other card only | |
10 | // attacks this doesn't rely on implementation errors but only on the | |
11 | // inherent weaknesses of the crypto1 cypher. Described in | |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened | |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on | |
14 | // Computer and Communications Security, 2015 | |
15 | //----------------------------------------------------------------------------- | |
16 | // some helper functions which can benefit from SIMD instructions or other special instructions | |
17 | // | |
18 | ||
19 | #include "hardnested_bitarray_core.h" | |
20 | ||
21 | #include <stdint.h> | |
22 | #include <stdio.h> | |
23 | #include <stdlib.h> | |
24 | #include <malloc.h> | |
25 | ||
26 | // #include <stdint.h> | |
27 | // #include <stdbool.h> | |
28 | // #include <stdlib.h> | |
29 | // #include <stdio.h> | |
30 | // #include <malloc.h> | |
31 | // #include <string.h> | |
32 | // #include "crapto1/crapto1.h" | |
33 | // #include "parity.h" | |
34 | ||
35 | ||
36 | // this needs to be compiled several times for each instruction set. | |
37 | // For each instruction set, define a dedicated function name: | |
38 | #if defined (__AVX512F__) | |
39 | #define MALLOC_BITARRAY malloc_bitarray_AVX512 | |
40 | #define FREE_BITARRAY free_bitarray_AVX512 | |
41 | #define BITCOUNT bitcount_AVX512 | |
42 | #define COUNT_STATES count_states_AVX512 | |
43 | #define BITARRAY_AND bitarray_AND_AVX512 | |
44 | #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX512 | |
45 | #define COUNT_BITARRAY_AND count_bitarray_AND_AVX512 | |
46 | #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX512 | |
47 | #define BITARRAY_AND4 bitarray_AND4_AVX512 | |
48 | #define BITARRAY_OR bitarray_OR_AVX512 | |
49 | #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX512 | |
50 | #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX512 | |
51 | #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX512 | |
52 | #elif defined (__AVX2__) | |
53 | #define MALLOC_BITARRAY malloc_bitarray_AVX2 | |
54 | #define FREE_BITARRAY free_bitarray_AVX2 | |
55 | #define BITCOUNT bitcount_AVX2 | |
56 | #define COUNT_STATES count_states_AVX2 | |
57 | #define BITARRAY_AND bitarray_AND_AVX2 | |
58 | #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX2 | |
59 | #define COUNT_BITARRAY_AND count_bitarray_AND_AVX2 | |
60 | #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX2 | |
61 | #define BITARRAY_AND4 bitarray_AND4_AVX2 | |
62 | #define BITARRAY_OR bitarray_OR_AVX2 | |
63 | #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX2 | |
64 | #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX2 | |
65 | #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX2 | |
66 | #elif defined (__AVX__) | |
67 | #define MALLOC_BITARRAY malloc_bitarray_AVX | |
68 | #define FREE_BITARRAY free_bitarray_AVX | |
69 | #define BITCOUNT bitcount_AVX | |
70 | #define COUNT_STATES count_states_AVX | |
71 | #define BITARRAY_AND bitarray_AND_AVX | |
72 | #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX | |
73 | #define COUNT_BITARRAY_AND count_bitarray_AND_AVX | |
74 | #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX | |
75 | #define BITARRAY_AND4 bitarray_AND4_AVX | |
76 | #define BITARRAY_OR bitarray_OR_AVX | |
77 | #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX | |
78 | #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX | |
79 | #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX | |
80 | #elif defined (__SSE2__) | |
81 | #define MALLOC_BITARRAY malloc_bitarray_SSE2 | |
82 | #define FREE_BITARRAY free_bitarray_SSE2 | |
83 | #define BITCOUNT bitcount_SSE2 | |
84 | #define COUNT_STATES count_states_SSE2 | |
85 | #define BITARRAY_AND bitarray_AND_SSE2 | |
86 | #define BITARRAY_LOW20_AND bitarray_low20_AND_SSE2 | |
87 | #define COUNT_BITARRAY_AND count_bitarray_AND_SSE2 | |
88 | #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_SSE2 | |
89 | #define BITARRAY_AND4 bitarray_AND4_SSE2 | |
90 | #define BITARRAY_OR bitarray_OR_SSE2 | |
91 | #define COUNT_BITARRAY_AND2 count_bitarray_AND2_SSE2 | |
92 | #define COUNT_BITARRAY_AND3 count_bitarray_AND3_SSE2 | |
93 | #define COUNT_BITARRAY_AND4 count_bitarray_AND4_SSE2 | |
94 | #elif defined (__MMX__) | |
95 | #define MALLOC_BITARRAY malloc_bitarray_MMX | |
96 | #define FREE_BITARRAY free_bitarray_MMX | |
97 | #define BITCOUNT bitcount_MMX | |
98 | #define COUNT_STATES count_states_MMX | |
99 | #define BITARRAY_AND bitarray_AND_MMX | |
100 | #define BITARRAY_LOW20_AND bitarray_low20_AND_MMX | |
101 | #define COUNT_BITARRAY_AND count_bitarray_AND_MMX | |
102 | #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_MMX | |
103 | #define BITARRAY_AND4 bitarray_AND4_MMX | |
104 | #define BITARRAY_OR bitarray_OR_MMX | |
105 | #define COUNT_BITARRAY_AND2 count_bitarray_AND2_MMX | |
106 | #define COUNT_BITARRAY_AND3 count_bitarray_AND3_MMX | |
107 | #define COUNT_BITARRAY_AND4 count_bitarray_AND4_MMX | |
108 | #endif | |
109 | ||
110 | ||
111 | // typedefs and declaration of functions: | |
112 | typedef uint32_t* malloc_bitarray_t(uint32_t); | |
113 | malloc_bitarray_t malloc_bitarray_AVX512, malloc_bitarray_AVX2, malloc_bitarray_AVX, malloc_bitarray_SSE2, malloc_bitarray_MMX, malloc_bitarray_dispatch; | |
114 | typedef void free_bitarray_t(uint32_t*); | |
115 | free_bitarray_t free_bitarray_AVX512, free_bitarray_AVX2, free_bitarray_AVX, free_bitarray_SSE2, free_bitarray_MMX, free_bitarray_dispatch; | |
116 | typedef uint32_t bitcount_t(uint32_t); | |
117 | bitcount_t bitcount_AVX512, bitcount_AVX2, bitcount_AVX, bitcount_SSE2, bitcount_MMX, bitcount_dispatch; | |
118 | typedef uint32_t count_states_t(uint32_t*); | |
119 | count_states_t count_states_AVX512, count_states_AVX2, count_states_AVX, count_states_SSE2, count_states_MMX, count_states_dispatch; | |
120 | typedef void bitarray_AND_t(uint32_t[], uint32_t[]); | |
121 | bitarray_AND_t bitarray_AND_AVX512, bitarray_AND_AVX2, bitarray_AND_AVX, bitarray_AND_SSE2, bitarray_AND_MMX, bitarray_AND_dispatch; | |
122 | typedef void bitarray_low20_AND_t(uint32_t*, uint32_t*); | |
123 | bitarray_low20_AND_t bitarray_low20_AND_AVX512, bitarray_low20_AND_AVX2, bitarray_low20_AND_AVX, bitarray_low20_AND_SSE2, bitarray_low20_AND_MMX, bitarray_low20_AND_dispatch; | |
124 | typedef uint32_t count_bitarray_AND_t(uint32_t*, uint32_t*); | |
125 | count_bitarray_AND_t count_bitarray_AND_AVX512, count_bitarray_AND_AVX2, count_bitarray_AND_AVX, count_bitarray_AND_SSE2, count_bitarray_AND_MMX, count_bitarray_AND_dispatch; | |
126 | typedef uint32_t count_bitarray_low20_AND_t(uint32_t*, uint32_t*); | |
127 | count_bitarray_low20_AND_t count_bitarray_low20_AND_AVX512, count_bitarray_low20_AND_AVX2, count_bitarray_low20_AND_AVX, count_bitarray_low20_AND_SSE2, count_bitarray_low20_AND_MMX, count_bitarray_low20_AND_dispatch; | |
128 | typedef void bitarray_AND4_t(uint32_t*, uint32_t*, uint32_t*, uint32_t*); | |
129 | bitarray_AND4_t bitarray_AND4_AVX512, bitarray_AND4_AVX2, bitarray_AND4_AVX, bitarray_AND4_SSE2, bitarray_AND4_MMX, bitarray_AND4_dispatch; | |
130 | typedef void bitarray_OR_t(uint32_t[], uint32_t[]); | |
131 | bitarray_OR_t bitarray_OR_AVX512, bitarray_OR_AVX2, bitarray_OR_AVX, bitarray_OR_SSE2, bitarray_OR_MMX, bitarray_OR_dispatch; | |
132 | typedef uint32_t count_bitarray_AND2_t(uint32_t*, uint32_t*); | |
133 | count_bitarray_AND2_t count_bitarray_AND2_AVX512, count_bitarray_AND2_AVX2, count_bitarray_AND2_AVX, count_bitarray_AND2_SSE2, count_bitarray_AND2_MMX, count_bitarray_AND2_dispatch; | |
134 | typedef uint32_t count_bitarray_AND3_t(uint32_t*, uint32_t*, uint32_t*); | |
135 | count_bitarray_AND3_t count_bitarray_AND3_AVX512, count_bitarray_AND3_AVX2, count_bitarray_AND3_AVX, count_bitarray_AND3_SSE2, count_bitarray_AND3_MMX, count_bitarray_AND3_dispatch; | |
136 | typedef uint32_t count_bitarray_AND4_t(uint32_t*, uint32_t*, uint32_t*, uint32_t*); | |
137 | count_bitarray_AND4_t count_bitarray_AND4_AVX512, count_bitarray_AND4_AVX2, count_bitarray_AND4_AVX, count_bitarray_AND4_SSE2, count_bitarray_AND4_MMX, count_bitarray_AND4_dispatch; | |
138 | ||
139 | ||
140 | inline uint32_t *MALLOC_BITARRAY(uint32_t x) | |
141 | { | |
142 | #ifdef _WIN32 | |
143 | return __builtin_assume_aligned(_aligned_malloc((x), __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__); | |
144 | #else | |
145 | return __builtin_assume_aligned(memalign(__BIGGEST_ALIGNMENT__, (x)), __BIGGEST_ALIGNMENT__); | |
146 | #endif | |
147 | } | |
148 | ||
149 | ||
150 | inline void FREE_BITARRAY(uint32_t *x) | |
151 | { | |
152 | #ifdef _WIN32 | |
153 | _aligned_free(x); | |
154 | #else | |
155 | free(x); | |
156 | #endif | |
157 | } | |
158 | ||
159 | ||
160 | inline uint32_t BITCOUNT(uint32_t a) | |
161 | { | |
162 | return __builtin_popcountl(a); | |
163 | } | |
164 | ||
165 | ||
166 | inline uint32_t COUNT_STATES(uint32_t *A) | |
167 | { | |
168 | uint32_t count = 0; | |
169 | for (uint32_t i = 0; i < (1<<19); i++) { | |
170 | count += BITCOUNT(A[i]); | |
171 | } | |
172 | return count; | |
173 | } | |
174 | ||
175 | ||
176 | inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) | |
177 | { | |
178 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
179 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
180 | for (uint32_t i = 0; i < (1<<19); i++) { | |
181 | A[i] &= B[i]; | |
182 | } | |
183 | } | |
184 | ||
185 | ||
186 | inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) | |
187 | { | |
188 | uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
189 | uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
190 | ||
191 | for (uint32_t i = 0; i < (1<<20); i++) { | |
192 | if (!b[i]) { | |
193 | a[i] = 0; | |
194 | } | |
195 | } | |
196 | } | |
197 | ||
198 | ||
199 | inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) | |
200 | { | |
201 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
202 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
203 | uint32_t count = 0; | |
204 | for (uint32_t i = 0; i < (1<<19); i++) { | |
205 | A[i] &= B[i]; | |
206 | count += BITCOUNT(A[i]); | |
207 | } | |
208 | return count; | |
209 | } | |
210 | ||
211 | ||
212 | inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) | |
213 | { | |
214 | uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
215 | uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
216 | uint32_t count = 0; | |
217 | ||
218 | for (uint32_t i = 0; i < (1<<20); i++) { | |
219 | if (!b[i]) { | |
220 | a[i] = 0; | |
221 | } | |
222 | count += BITCOUNT(a[i]); | |
223 | } | |
224 | return count; | |
225 | } | |
226 | ||
227 | ||
228 | inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) | |
229 | { | |
230 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
231 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
232 | C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); | |
233 | D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__); | |
234 | for (uint32_t i = 0; i < (1<<19); i++) { | |
235 | A[i] = B[i] & C[i] & D[i]; | |
236 | } | |
237 | } | |
238 | ||
239 | ||
240 | inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B) | |
241 | { | |
242 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
243 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
244 | for (uint32_t i = 0; i < (1<<19); i++) { | |
245 | A[i] |= B[i]; | |
246 | } | |
247 | } | |
248 | ||
249 | ||
250 | inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B) | |
251 | { | |
252 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
253 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
254 | uint32_t count = 0; | |
255 | for (uint32_t i = 0; i < (1<<19); i++) { | |
256 | count += BITCOUNT(A[i] & B[i]); | |
257 | } | |
258 | return count; | |
259 | } | |
260 | ||
261 | ||
262 | inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C) | |
263 | { | |
264 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
265 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
266 | C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); | |
267 | uint32_t count = 0; | |
268 | for (uint32_t i = 0; i < (1<<19); i++) { | |
269 | count += BITCOUNT(A[i] & B[i] & C[i]); | |
270 | } | |
271 | return count; | |
272 | } | |
273 | ||
274 | ||
275 | inline uint32_t COUNT_BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) | |
276 | { | |
277 | A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); | |
278 | B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); | |
279 | C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); | |
280 | D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__); | |
281 | uint32_t count = 0; | |
282 | for (uint32_t i = 0; i < (1<<19); i++) { | |
283 | count += BITCOUNT(A[i] & B[i] & C[i] & D[i]); | |
284 | } | |
285 | return count; | |
286 | } | |
287 | ||
288 | #ifndef __MMX__ | |
289 | ||
290 | // pointers to functions: | |
291 | malloc_bitarray_t *malloc_bitarray_function_p = &malloc_bitarray_dispatch; | |
292 | free_bitarray_t *free_bitarray_function_p = &free_bitarray_dispatch; | |
293 | bitcount_t *bitcount_function_p = &bitcount_dispatch; | |
294 | count_states_t *count_states_function_p = &count_states_dispatch; | |
295 | bitarray_AND_t *bitarray_AND_function_p = &bitarray_AND_dispatch; | |
296 | bitarray_low20_AND_t *bitarray_low20_AND_function_p = &bitarray_low20_AND_dispatch; | |
297 | count_bitarray_AND_t *count_bitarray_AND_function_p = &count_bitarray_AND_dispatch; | |
298 | count_bitarray_low20_AND_t *count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_dispatch; | |
299 | bitarray_AND4_t *bitarray_AND4_function_p = &bitarray_AND4_dispatch; | |
300 | bitarray_OR_t *bitarray_OR_function_p = &bitarray_OR_dispatch; | |
301 | count_bitarray_AND2_t *count_bitarray_AND2_function_p = &count_bitarray_AND2_dispatch; | |
302 | count_bitarray_AND3_t *count_bitarray_AND3_function_p = &count_bitarray_AND3_dispatch; | |
303 | count_bitarray_AND4_t *count_bitarray_AND4_function_p = &count_bitarray_AND4_dispatch; | |
304 | ||
305 | // determine the available instruction set at runtime and call the correct function | |
306 | uint32_t *malloc_bitarray_dispatch(uint32_t x) { | |
307 | if (__builtin_cpu_supports("avx512f")) malloc_bitarray_function_p = &malloc_bitarray_AVX512; | |
308 | else if (__builtin_cpu_supports("avx2")) malloc_bitarray_function_p = &malloc_bitarray_AVX2; | |
309 | else if (__builtin_cpu_supports("avx")) malloc_bitarray_function_p = &malloc_bitarray_AVX; | |
310 | else if (__builtin_cpu_supports("sse2")) malloc_bitarray_function_p = &malloc_bitarray_SSE2; | |
311 | else if (__builtin_cpu_supports("mmx")) malloc_bitarray_function_p = &malloc_bitarray_MMX; | |
312 | else { | |
313 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
314 | exit(5); | |
315 | } | |
316 | // call the most optimized function for this CPU | |
317 | return (*malloc_bitarray_function_p)(x); | |
318 | } | |
319 | ||
320 | void free_bitarray_dispatch(uint32_t *x) { | |
321 | if (__builtin_cpu_supports("avx512f")) free_bitarray_function_p = &free_bitarray_AVX512; | |
322 | else if (__builtin_cpu_supports("avx2")) free_bitarray_function_p = &free_bitarray_AVX2; | |
323 | else if (__builtin_cpu_supports("avx")) free_bitarray_function_p = &free_bitarray_AVX; | |
324 | else if (__builtin_cpu_supports("sse2")) free_bitarray_function_p = &free_bitarray_SSE2; | |
325 | else if (__builtin_cpu_supports("mmx")) free_bitarray_function_p = &free_bitarray_MMX; | |
326 | else { | |
327 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
328 | exit(5); | |
329 | } | |
330 | // call the most optimized function for this CPU | |
331 | (*free_bitarray_function_p)(x); | |
332 | } | |
333 | ||
334 | uint32_t bitcount_dispatch(uint32_t a) { | |
335 | if (__builtin_cpu_supports("avx512f")) bitcount_function_p = &bitcount_AVX512; | |
336 | else if (__builtin_cpu_supports("avx2")) bitcount_function_p = &bitcount_AVX2; | |
337 | else if (__builtin_cpu_supports("avx")) bitcount_function_p = &bitcount_AVX; | |
338 | else if (__builtin_cpu_supports("sse2")) bitcount_function_p = &bitcount_SSE2; | |
339 | else if (__builtin_cpu_supports("mmx")) bitcount_function_p = &bitcount_MMX; | |
340 | else { | |
341 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
342 | exit(5); | |
343 | } | |
344 | // call the most optimized function for this CPU | |
345 | return (*bitcount_function_p)(a); | |
346 | } | |
347 | ||
348 | uint32_t count_states_dispatch(uint32_t *bitarray) { | |
349 | if (__builtin_cpu_supports("avx512f")) count_states_function_p = &count_states_AVX512; | |
350 | else if (__builtin_cpu_supports("avx2")) count_states_function_p = &count_states_AVX2; | |
351 | else if (__builtin_cpu_supports("avx")) count_states_function_p = &count_states_AVX; | |
352 | else if (__builtin_cpu_supports("sse2")) count_states_function_p = &count_states_SSE2; | |
353 | else if (__builtin_cpu_supports("mmx")) count_states_function_p = &count_states_MMX; | |
354 | else { | |
355 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
356 | exit(5); | |
357 | } | |
358 | // call the most optimized function for this CPU | |
359 | return (*count_states_function_p)(bitarray); | |
360 | } | |
361 | ||
362 | void bitarray_AND_dispatch(uint32_t *A, uint32_t *B) { | |
363 | if (__builtin_cpu_supports("avx512f")) bitarray_AND_function_p = &bitarray_AND_AVX512; | |
364 | else if (__builtin_cpu_supports("avx2")) bitarray_AND_function_p = &bitarray_AND_AVX2; | |
365 | else if (__builtin_cpu_supports("avx")) bitarray_AND_function_p = &bitarray_AND_AVX; | |
366 | else if (__builtin_cpu_supports("sse2")) bitarray_AND_function_p = &bitarray_AND_SSE2; | |
367 | else if (__builtin_cpu_supports("mmx")) bitarray_AND_function_p = &bitarray_AND_MMX; | |
368 | else { | |
369 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
370 | exit(5); | |
371 | } | |
372 | // call the most optimized function for this CPU | |
373 | (*bitarray_AND_function_p)(A,B); | |
374 | } | |
375 | ||
376 | void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) { | |
377 | if (__builtin_cpu_supports("avx512f")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX512; | |
378 | else if (__builtin_cpu_supports("avx2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX2; | |
379 | else if (__builtin_cpu_supports("avx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX; | |
380 | else if (__builtin_cpu_supports("sse2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_SSE2; | |
381 | else if (__builtin_cpu_supports("mmx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_MMX; | |
382 | else { | |
383 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
384 | exit(5); | |
385 | } | |
386 | // call the most optimized function for this CPU | |
387 | (*bitarray_low20_AND_function_p)(A, B); | |
388 | } | |
389 | ||
390 | uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B) { | |
391 | if (__builtin_cpu_supports("avx512f")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX512; | |
392 | else if (__builtin_cpu_supports("avx2")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX2; | |
393 | else if (__builtin_cpu_supports("avx")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX; | |
394 | else if (__builtin_cpu_supports("sse2")) count_bitarray_AND_function_p = &count_bitarray_AND_SSE2; | |
395 | else if (__builtin_cpu_supports("mmx")) count_bitarray_AND_function_p = &count_bitarray_AND_MMX; | |
396 | else { | |
397 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
398 | exit(5); | |
399 | } | |
400 | // call the most optimized function for this CPU | |
401 | return (*count_bitarray_AND_function_p)(A, B); | |
402 | } | |
403 | ||
404 | uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) { | |
405 | if (__builtin_cpu_supports("avx512f")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX512; | |
406 | else if (__builtin_cpu_supports("avx2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX2; | |
407 | else if (__builtin_cpu_supports("avx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX; | |
408 | else if (__builtin_cpu_supports("sse2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_SSE2; | |
409 | else if (__builtin_cpu_supports("mmx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_MMX; | |
410 | else { | |
411 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
412 | exit(5); | |
413 | } | |
414 | // call the most optimized function for this CPU | |
415 | return (*count_bitarray_low20_AND_function_p)(A, B); | |
416 | } | |
417 | ||
418 | void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { | |
419 | if (__builtin_cpu_supports("avx512f")) bitarray_AND4_function_p = &bitarray_AND4_AVX512; | |
420 | else if (__builtin_cpu_supports("avx2")) bitarray_AND4_function_p = &bitarray_AND4_AVX2; | |
421 | else if (__builtin_cpu_supports("avx")) bitarray_AND4_function_p = &bitarray_AND4_AVX; | |
422 | else if (__builtin_cpu_supports("sse2")) bitarray_AND4_function_p = &bitarray_AND4_SSE2; | |
423 | else if (__builtin_cpu_supports("mmx")) bitarray_AND4_function_p = &bitarray_AND4_MMX; | |
424 | else { | |
425 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
426 | exit(5); | |
427 | } | |
428 | // call the most optimized function for this CPU | |
429 | (*bitarray_AND4_function_p)(A, B, C, D); | |
430 | } | |
431 | ||
432 | void bitarray_OR_dispatch(uint32_t *A, uint32_t *B) { | |
433 | if (__builtin_cpu_supports("avx512f")) bitarray_OR_function_p = &bitarray_OR_AVX512; | |
434 | else if (__builtin_cpu_supports("avx2")) bitarray_OR_function_p = &bitarray_OR_AVX2; | |
435 | else if (__builtin_cpu_supports("avx")) bitarray_OR_function_p = &bitarray_OR_AVX; | |
436 | else if (__builtin_cpu_supports("sse2")) bitarray_OR_function_p = &bitarray_OR_SSE2; | |
437 | else if (__builtin_cpu_supports("mmx")) bitarray_OR_function_p = &bitarray_OR_MMX; | |
438 | else { | |
439 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
440 | exit(5); | |
441 | } | |
442 | // call the most optimized function for this CPU | |
443 | (*bitarray_OR_function_p)(A,B); | |
444 | } | |
445 | ||
446 | uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B) { | |
447 | if (__builtin_cpu_supports("avx512f")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX512; | |
448 | else if (__builtin_cpu_supports("avx2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX2; | |
449 | else if (__builtin_cpu_supports("avx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX; | |
450 | else if (__builtin_cpu_supports("sse2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_SSE2; | |
451 | else if (__builtin_cpu_supports("mmx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_MMX; | |
452 | else { | |
453 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
454 | exit(5); | |
455 | } | |
456 | // call the most optimized function for this CPU | |
457 | return (*count_bitarray_AND2_function_p)(A, B); | |
458 | } | |
459 | ||
460 | uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C) { | |
461 | if (__builtin_cpu_supports("avx512f")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX512; | |
462 | else if (__builtin_cpu_supports("avx2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX2; | |
463 | else if (__builtin_cpu_supports("avx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX; | |
464 | else if (__builtin_cpu_supports("sse2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_SSE2; | |
465 | else if (__builtin_cpu_supports("mmx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_MMX; | |
466 | else { | |
467 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
468 | exit(5); | |
469 | } | |
470 | // call the most optimized function for this CPU | |
471 | return (*count_bitarray_AND3_function_p)(A, B, C); | |
472 | } | |
473 | ||
474 | uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { | |
475 | if (__builtin_cpu_supports("avx512f")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX512; | |
476 | else if (__builtin_cpu_supports("avx2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX2; | |
477 | else if (__builtin_cpu_supports("avx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX; | |
478 | else if (__builtin_cpu_supports("sse2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_SSE2; | |
479 | else if (__builtin_cpu_supports("mmx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_MMX; | |
480 | else { | |
481 | printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n"); | |
482 | exit(5); | |
483 | } | |
484 | // call the most optimized function for this CPU | |
485 | return (*count_bitarray_AND4_function_p)(A, B, C, D); | |
486 | } | |
487 | ||
488 | ||
489 | ///////////////////////////////////////////////77 | |
490 | // Entries to dispatched function calls | |
491 | ||
492 | uint32_t *malloc_bitarray(uint32_t x) { | |
493 | return (*malloc_bitarray_function_p)(x); | |
494 | } | |
495 | ||
496 | void free_bitarray(uint32_t *x) { | |
497 | (*free_bitarray_function_p)(x); | |
498 | } | |
499 | ||
500 | uint32_t bitcount(uint32_t a) { | |
501 | return (*bitcount_function_p)(a); | |
502 | } | |
503 | ||
504 | uint32_t count_states(uint32_t *bitarray) { | |
505 | return (*count_states_function_p)(bitarray); | |
506 | } | |
507 | ||
508 | void bitarray_AND(uint32_t *A, uint32_t *B) { | |
509 | (*bitarray_AND_function_p)(A, B); | |
510 | } | |
511 | ||
512 | void bitarray_low20_AND(uint32_t *A, uint32_t *B) { | |
513 | (*bitarray_low20_AND_function_p)(A, B); | |
514 | } | |
515 | ||
516 | uint32_t count_bitarray_AND(uint32_t *A, uint32_t *B) { | |
517 | return (*count_bitarray_AND_function_p)(A, B); | |
518 | } | |
519 | ||
520 | uint32_t count_bitarray_low20_AND(uint32_t *A, uint32_t *B) { | |
521 | return (*count_bitarray_low20_AND_function_p)(A, B); | |
522 | } | |
523 | ||
524 | void bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { | |
525 | (*bitarray_AND4_function_p)(A, B, C, D); | |
526 | } | |
527 | ||
528 | void bitarray_OR(uint32_t *A, uint32_t *B) { | |
529 | (*bitarray_OR_function_p)(A, B); | |
530 | } | |
531 | ||
532 | uint32_t count_bitarray_AND2(uint32_t *A, uint32_t *B) { | |
533 | return (*count_bitarray_AND2_function_p)(A, B); | |
534 | } | |
535 | ||
536 | uint32_t count_bitarray_AND3(uint32_t *A, uint32_t *B, uint32_t *C) { | |
537 | return (*count_bitarray_AND3_function_p)(A, B, C); | |
538 | } | |
539 | ||
540 | uint32_t count_bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { | |
541 | return (*count_bitarray_AND4_function_p)(A, B, C, D); | |
542 | } | |
543 | ||
544 | #endif | |
545 |