]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> | |
3 | // 2016 Iceman | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // LEGIC RF simulation code | |
10 | //----------------------------------------------------------------------------- | |
11 | #include "legicrf.h" | |
12 | ||
13 | static struct legic_frame { | |
14 | uint8_t bits; | |
15 | uint32_t data; | |
16 | } current_frame; | |
17 | ||
18 | static enum { | |
19 | STATE_DISCON, | |
20 | STATE_IV, | |
21 | STATE_CON, | |
22 | } legic_state; | |
23 | ||
24 | static crc_t legic_crc; | |
25 | static int legic_read_count; | |
26 | static uint32_t legic_prng_bc; | |
27 | static uint32_t legic_prng_iv; | |
28 | ||
29 | static int legic_phase_drift; | |
30 | static int legic_frame_drift; | |
31 | static int legic_reqresp_drift; | |
32 | ||
33 | AT91PS_TC timer; | |
34 | AT91PS_TC prng_timer; | |
35 | ||
36 | /* | |
37 | static void setup_timer(void) { | |
38 | // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging | |
39 | // this it won't be terribly accurate but should be good enough. | |
40 | // | |
41 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
42 | timer = AT91C_BASE_TC1; | |
43 | timer->TC_CCR = AT91C_TC_CLKDIS; | |
44 | timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; | |
45 | timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
46 | ||
47 | // | |
48 | // Set up Timer 2 to use for measuring time between frames in | |
49 | // tag simulation mode. Runs 4x faster as Timer 1 | |
50 | // | |
51 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); | |
52 | prng_timer = AT91C_BASE_TC2; | |
53 | prng_timer->TC_CCR = AT91C_TC_CLKDIS; | |
54 | prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; | |
55 | prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
56 | } | |
57 | ||
58 | AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); | |
59 | AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; | |
60 | ||
61 | // fast clock | |
62 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable | |
63 | AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks | |
64 | AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | | |
65 | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; | |
66 | AT91C_BASE_TC0->TC_RA = 1; | |
67 | AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 | |
68 | ||
69 | */ | |
70 | ||
71 | // At TIMER_CLOCK3 (MCK/32) | |
72 | // testing calculating in ticks. 1.5ticks = 1us | |
73 | #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks | |
74 | #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks | |
75 | #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */ | |
76 | #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks | |
77 | #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 | |
78 | ||
79 | #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit | |
80 | ||
81 | #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */ | |
82 | #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */ | |
83 | ||
84 | #define OFFSET_LOG 1024 | |
85 | ||
86 | #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) | |
87 | ||
88 | #ifndef SHORT_COIL | |
89 | # define SHORT_COIL LOW(GPIO_SSC_DOUT); | |
90 | #endif | |
91 | #ifndef OPEN_COIL | |
92 | # define OPEN_COIL HIGH(GPIO_SSC_DOUT); | |
93 | #endif | |
94 | #ifndef LINE_IN | |
95 | # define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
96 | #endif | |
97 | // Pause pulse, off in 20us / 30ticks, | |
98 | // ONE / ZERO bit pulse, | |
99 | // one == 80us / 120ticks | |
100 | // zero == 40us / 60ticks | |
101 | #ifndef COIL_PULSE | |
102 | # define COIL_PULSE(x) \ | |
103 | do { \ | |
104 | SHORT_COIL; \ | |
105 | WaitTicks( (RWD_TIME_PAUSE) ); \ | |
106 | OPEN_COIL; \ | |
107 | WaitTicks((x)); \ | |
108 | } while (0); | |
109 | #endif | |
110 | ||
111 | // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. | |
112 | // Historically it used to be FREE_BUFFER_SIZE, which was 2744. | |
113 | #define LEGIC_CARD_MEMSIZE 1024 | |
114 | static uint8_t* cardmem; | |
115 | ||
116 | static void frame_append_bit(struct legic_frame * const f, uint8_t bit) { | |
117 | // Overflow, won't happen | |
118 | if (f->bits >= 31) return; | |
119 | ||
120 | f->data |= (bit << f->bits); | |
121 | f->bits++; | |
122 | } | |
123 | ||
124 | static void frame_clean(struct legic_frame * const f) { | |
125 | f->data = 0; | |
126 | f->bits = 0; | |
127 | } | |
128 | ||
129 | // Prng works when waiting in 99.1us cycles. | |
130 | // and while sending/receiving in bit frames (100, 60) | |
131 | /*static void CalibratePrng( uint32_t time){ | |
132 | // Calculate Cycles based on timer 100us | |
133 | uint32_t i = (time - sendFrameStop) / 100 ; | |
134 | ||
135 | // substract cycles of finished frames | |
136 | int k = i - legic_prng_count()+1; | |
137 | ||
138 | // substract current frame length, rewind to beginning | |
139 | if ( k > 0 ) | |
140 | legic_prng_forward(k); | |
141 | } | |
142 | */ | |
143 | ||
144 | /* Generate Keystream */ | |
145 | uint32_t get_key_stream(int skip, int count) { | |
146 | ||
147 | int i; | |
148 | ||
149 | // Use int to enlarge timer tc to 32bit | |
150 | legic_prng_bc += prng_timer->TC_CV; | |
151 | ||
152 | // reset the prng timer. | |
153 | ||
154 | /* If skip == -1, forward prng time based */ | |
155 | if(skip == -1) { | |
156 | i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ | |
157 | i -= legic_prng_count(); /* substract cycles of finished frames */ | |
158 | i -= count; /* substract current frame length, rewind to beginning */ | |
159 | legic_prng_forward(i); | |
160 | } else { | |
161 | legic_prng_forward(skip); | |
162 | } | |
163 | ||
164 | i = (count == 6) ? -1 : legic_read_count; | |
165 | ||
166 | /* Generate KeyStream */ | |
167 | return legic_prng_get_bits(count); | |
168 | } | |
169 | ||
170 | /* Send a frame in tag mode, the FPGA must have been set up by | |
171 | * LegicRfSimulate | |
172 | */ | |
173 | void frame_send_tag(uint16_t response, uint8_t bits) { | |
174 | ||
175 | uint16_t mask = 1; | |
176 | ||
177 | /* Bitbang the response */ | |
178 | SHORT_COIL; | |
179 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
180 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
181 | ||
182 | /* TAG_FRAME_WAIT -> shift by 2 */ | |
183 | legic_prng_forward(3); | |
184 | response ^= legic_prng_get_bits(bits); | |
185 | ||
186 | /* Wait for the frame start */ | |
187 | WaitTicks( TAG_FRAME_WAIT ); | |
188 | ||
189 | for (; mask < BITMASK(bits); mask <<= 1) { | |
190 | if (response & mask) | |
191 | OPEN_COIL | |
192 | else | |
193 | SHORT_COIL | |
194 | WaitTicks(TAG_BIT_PERIOD); | |
195 | } | |
196 | SHORT_COIL; | |
197 | } | |
198 | ||
199 | /* Send a frame in reader mode, the FPGA must have been set up by | |
200 | * LegicRfReader | |
201 | */ | |
202 | void frame_sendAsReader(uint32_t data, uint8_t bits){ | |
203 | ||
204 | uint32_t starttime = GET_TICKS, send = 0, mask = 1; | |
205 | ||
206 | // xor lsfr onto data. | |
207 | send = data ^ legic_prng_get_bits(bits); | |
208 | ||
209 | for (; mask < BITMASK(bits); mask <<= 1) { | |
210 | if (send & mask) | |
211 | COIL_PULSE(RWD_TIME_1) | |
212 | else | |
213 | COIL_PULSE(RWD_TIME_0) | |
214 | } | |
215 | ||
216 | // Final pause to mark the end of the frame | |
217 | COIL_PULSE(0); | |
218 | ||
219 | // log | |
220 | uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)}; | |
221 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE); | |
222 | } | |
223 | ||
224 | /* Receive a frame from the card in reader emulation mode, the FPGA and | |
225 | * timer must have been set up by LegicRfReader and frame_sendAsReader. | |
226 | * | |
227 | * The LEGIC RF protocol from card to reader does not include explicit | |
228 | * frame start/stop information or length information. The reader must | |
229 | * know beforehand how many bits it wants to receive. (Notably: a card | |
230 | * sending a stream of 0-bits is indistinguishable from no card present.) | |
231 | * | |
232 | * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but | |
233 | * I'm not smart enough to use it. Instead I have patched hi_read_tx to output | |
234 | * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look | |
235 | * for edges. Count the edges in each bit interval. If they are approximately | |
236 | * 0 this was a 0-bit, if they are approximately equal to the number of edges | |
237 | * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the | |
238 | * timer that's still running from frame_sendAsReader in order to get a synchronization | |
239 | * with the frame that we just sent. | |
240 | * | |
241 | * FIXME: Because we're relying on the hysteresis to just do the right thing | |
242 | * the range is severely reduced (and you'll probably also need a good antenna). | |
243 | * So this should be fixed some time in the future for a proper receiver. | |
244 | */ | |
245 | static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) { | |
246 | ||
247 | if ( bits > 32 ) return; | |
248 | ||
249 | uint8_t i = bits, edges = 0; | |
250 | uint32_t the_bit = 1, next_bit_at = 0, data = 0; | |
251 | uint32_t old_level = 0; | |
252 | volatile uint32_t level = 0; | |
253 | ||
254 | frame_clean(f); | |
255 | ||
256 | // calibrate the prng. | |
257 | legic_prng_forward(2); | |
258 | data = legic_prng_get_bits(bits); | |
259 | ||
260 | //FIXED time between sending frame and now listening frame. 330us | |
261 | uint32_t starttime = GET_TICKS; | |
262 | // its about 9+9 ticks delay from end-send to here. | |
263 | WaitTicks( 477 ); | |
264 | ||
265 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; | |
266 | ||
267 | while ( i-- ){ | |
268 | edges = 0; | |
269 | while ( GET_TICKS < next_bit_at) { | |
270 | ||
271 | level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
272 | ||
273 | if (level != old_level) | |
274 | ++edges; | |
275 | ||
276 | old_level = level; | |
277 | } | |
278 | ||
279 | next_bit_at += TAG_BIT_PERIOD; | |
280 | ||
281 | // We expect 42 edges (ONE) | |
282 | if ( edges > 20 ) | |
283 | data ^= the_bit; | |
284 | ||
285 | the_bit <<= 1; | |
286 | } | |
287 | ||
288 | // output | |
289 | f->data = data; | |
290 | f->bits = bits; | |
291 | ||
292 | // log | |
293 | uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; | |
294 | LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); | |
295 | } | |
296 | ||
297 | // Setup pm3 as a Legic Reader | |
298 | static uint32_t setup_phase_reader(uint8_t iv) { | |
299 | ||
300 | // Switch on carrier and let the tag charge for 5ms | |
301 | HIGH(GPIO_SSC_DOUT); | |
302 | WaitUS(5000); | |
303 | ||
304 | ResetTicks(); | |
305 | ||
306 | legic_prng_init(0); | |
307 | ||
308 | // send IV handshake | |
309 | frame_sendAsReader(iv, 7); | |
310 | ||
311 | // tag and reader has same IV. | |
312 | legic_prng_init(iv); | |
313 | ||
314 | frame_receiveAsReader(¤t_frame, 6); | |
315 | ||
316 | // 292us (438t) - fixed delay before sending ack. | |
317 | // minus log and stuff 100tick? | |
318 | WaitTicks(338); | |
319 | legic_prng_forward(3); | |
320 | ||
321 | // Send obsfuscated acknowledgment frame. | |
322 | // 0x19 = 0x18 MIM22, 0x01 LSB READCMD | |
323 | // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD | |
324 | switch ( current_frame.data ) { | |
325 | case 0x0D: frame_sendAsReader(0x19, 6); break; | |
326 | case 0x1D: | |
327 | case 0x3D: frame_sendAsReader(0x39, 6); break; | |
328 | default: break; | |
329 | } | |
330 | ||
331 | legic_prng_forward(2); | |
332 | return current_frame.data; | |
333 | } | |
334 | ||
335 | void LegicCommonInit(bool clear_mem) { | |
336 | ||
337 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); | |
339 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
340 | ||
341 | /* Bitbang the transmitter */ | |
342 | SHORT_COIL; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
345 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
346 | ||
347 | // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. | |
348 | cardmem = BigBuf_get_EM_addr(); | |
349 | if ( clear_mem ) | |
350 | memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE); | |
351 | ||
352 | clear_trace(); | |
353 | set_tracing(TRUE); | |
354 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
355 | ||
356 | StartTicks(); | |
357 | } | |
358 | ||
359 | // Switch off carrier, make sure tag is reset | |
360 | static void switch_off_tag_rwd(void) { | |
361 | SHORT_COIL; | |
362 | WaitUS(20); | |
363 | WDT_HIT(); | |
364 | } | |
365 | ||
366 | // calculate crc4 for a legic READ command | |
367 | static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) { | |
368 | crc_clear(&legic_crc); | |
369 | uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd; | |
370 | crc_update(&legic_crc, temp, cmd_sz + 8 ); | |
371 | return crc_finish(&legic_crc); | |
372 | } | |
373 | ||
374 | int legic_read_byte( uint16_t index, uint8_t cmd_sz) { | |
375 | ||
376 | uint8_t byte, crc, calcCrc = 0; | |
377 | uint32_t cmd = (index << 1) | LEGIC_READ; | |
378 | ||
379 | // 90ticks = 60us (should be 100us but crc calc takes time.) | |
380 | //WaitTicks(330); // 330ticks prng(4) - works | |
381 | WaitTicks(240); // 240ticks prng(3) - works | |
382 | ||
383 | frame_sendAsReader(cmd, cmd_sz); | |
384 | frame_receiveAsReader(¤t_frame, 12); | |
385 | ||
386 | // CRC check. | |
387 | byte = BYTEx(current_frame.data, 0); | |
388 | crc = BYTEx(current_frame.data, 1); | |
389 | calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz); | |
390 | ||
391 | if( calcCrc != crc ) { | |
392 | Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc); | |
393 | return -1; | |
394 | } | |
395 | ||
396 | legic_prng_forward(3); | |
397 | return byte; | |
398 | } | |
399 | ||
400 | /* | |
401 | * - assemble a write_cmd_frame with crc and send it | |
402 | * - wait until the tag sends back an ACK ('1' bit unencrypted) | |
403 | * - forward the prng based on the timing | |
404 | */ | |
405 | bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { | |
406 | ||
407 | bool isOK = false; | |
408 | int8_t i = 40; | |
409 | uint8_t edges = 0; | |
410 | uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd; | |
411 | uint32_t steps = 0, next_bit_at, start, crc, old_level = 0; | |
412 | ||
413 | crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1); | |
414 | ||
415 | // send write command | |
416 | uint32_t cmd = LEGIC_WRITE; | |
417 | cmd |= index << 1; // index | |
418 | cmd |= byte << (addr_sz+1); // Data | |
419 | cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC | |
420 | ||
421 | WaitTicks(240); | |
422 | ||
423 | frame_sendAsReader(cmd, cmd_sz); | |
424 | ||
425 | LINE_IN; | |
426 | ||
427 | start = GET_TICKS; | |
428 | ||
429 | // ACK, - one single "1" bit after 3.6ms | |
430 | // 3.6ms = 3600us * 1.5 = 5400ticks. | |
431 | WaitTicks(5400); | |
432 | ||
433 | next_bit_at = GET_TICKS + TAG_BIT_PERIOD; | |
434 | ||
435 | while ( i-- ) { | |
436 | WDT_HIT(); | |
437 | edges = 0; | |
438 | while ( GET_TICKS < next_bit_at) { | |
439 | ||
440 | volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
441 | ||
442 | if (level != old_level) | |
443 | ++edges; | |
444 | ||
445 | old_level = level; | |
446 | } | |
447 | ||
448 | next_bit_at += TAG_BIT_PERIOD; | |
449 | ||
450 | // We expect 42 edges (ONE) | |
451 | if(edges > 20 ) { | |
452 | steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD); | |
453 | legic_prng_forward(steps); | |
454 | isOK = true; | |
455 | goto OUT; | |
456 | } | |
457 | } | |
458 | ||
459 | OUT: ; | |
460 | legic_prng_forward(1); | |
461 | ||
462 | uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) }; | |
463 | LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE); | |
464 | return isOK; | |
465 | } | |
466 | ||
467 | int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { | |
468 | ||
469 | uint16_t i = 0; | |
470 | uint8_t isOK = 1; | |
471 | legic_card_select_t card; | |
472 | ||
473 | LegicCommonInit(TRUE); | |
474 | ||
475 | if ( legic_select_card_iv(&card, iv) ) { | |
476 | isOK = 0; | |
477 | goto OUT; | |
478 | } | |
479 | ||
480 | if (len + offset > card.cardsize) | |
481 | len = card.cardsize - offset; | |
482 | ||
483 | LED_B_ON(); | |
484 | while (i < len) { | |
485 | int r = legic_read_byte(offset + i, card.cmdsize); | |
486 | ||
487 | if (r == -1 || BUTTON_PRESS()) { | |
488 | if ( MF_DBGLEVEL >= 2) DbpString("operation aborted"); | |
489 | isOK = 0; | |
490 | goto OUT; | |
491 | } | |
492 | cardmem[i++] = r; | |
493 | WDT_HIT(); | |
494 | } | |
495 | ||
496 | OUT: | |
497 | WDT_HIT(); | |
498 | switch_off_tag_rwd(); | |
499 | LEDsoff(); | |
500 | cmd_send(CMD_ACK, isOK, len, 0, cardmem, len); | |
501 | return 0; | |
502 | } | |
503 | ||
504 | void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) { | |
505 | ||
506 | #define LOWERLIMIT 4 | |
507 | uint8_t isOK = 1, msg = 0; | |
508 | legic_card_select_t card; | |
509 | ||
510 | // uid NOT is writeable. | |
511 | if ( offset <= LOWERLIMIT ) { | |
512 | isOK = 0; | |
513 | goto OUT; | |
514 | } | |
515 | ||
516 | LegicCommonInit(TRUE); | |
517 | ||
518 | if ( legic_select_card_iv(&card, iv) ) { | |
519 | isOK = 0; | |
520 | msg = 1; | |
521 | goto OUT; | |
522 | } | |
523 | ||
524 | if ( len + offset > card.cardsize) | |
525 | len = card.cardsize - offset; | |
526 | ||
527 | LED_B_ON(); | |
528 | while( len > 0 ) { | |
529 | --len; | |
530 | if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) { | |
531 | Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] ); | |
532 | isOK = 0; | |
533 | goto OUT; | |
534 | } | |
535 | WDT_HIT(); | |
536 | } | |
537 | OUT: | |
538 | cmd_send(CMD_ACK, isOK, msg,0,0,0); | |
539 | switch_off_tag_rwd(); | |
540 | LEDsoff(); | |
541 | } | |
542 | ||
543 | int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){ | |
544 | ||
545 | if ( p_card == NULL ) return 1; | |
546 | ||
547 | p_card->tagtype = setup_phase_reader(iv); | |
548 | ||
549 | switch(p_card->tagtype) { | |
550 | case 0x0d: | |
551 | p_card->cmdsize = 6; | |
552 | p_card->addrsize = 5; | |
553 | p_card->cardsize = 22; | |
554 | break; | |
555 | case 0x1d: | |
556 | p_card->cmdsize = 9; | |
557 | p_card->addrsize = 8; | |
558 | p_card->cardsize = 256; | |
559 | break; | |
560 | case 0x3d: | |
561 | p_card->cmdsize = 11; | |
562 | p_card->addrsize = 10; | |
563 | p_card->cardsize = 1024; | |
564 | break; | |
565 | default: | |
566 | p_card->cmdsize = 0; | |
567 | p_card->addrsize = 0; | |
568 | p_card->cardsize = 0; | |
569 | return 2; | |
570 | } | |
571 | return 0; | |
572 | } | |
573 | int legic_select_card(legic_card_select_t *p_card){ | |
574 | return legic_select_card_iv(p_card, 0x01); | |
575 | } | |
576 | ||
577 | //----------------------------------------------------------------------------- | |
578 | // Work with emulator memory | |
579 | // | |
580 | // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not | |
581 | // involved in dealing with emulator memory. But if it is called later, it might | |
582 | // destroy the Emulator Memory. | |
583 | //----------------------------------------------------------------------------- | |
584 | // arg0 = offset | |
585 | // arg1 = num of bytes | |
586 | void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) { | |
587 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
588 | legic_emlset_mem(data, arg0, arg1); | |
589 | } | |
590 | // arg0 = offset | |
591 | // arg1 = num of bytes | |
592 | void LegicEMemGet(uint32_t arg0, uint32_t arg1) { | |
593 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
594 | uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; | |
595 | legic_emlget_mem(buf, arg0, arg1); | |
596 | LED_B_ON(); | |
597 | cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE); | |
598 | LED_B_OFF(); | |
599 | } | |
600 | void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) { | |
601 | cardmem = BigBuf_get_EM_addr(); | |
602 | memcpy(cardmem + offset, data, numofbytes); | |
603 | } | |
604 | void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) { | |
605 | cardmem = BigBuf_get_EM_addr(); | |
606 | memcpy(data, cardmem + offset, numofbytes); | |
607 | } | |
608 | ||
609 | void LegicRfInfo(void){ | |
610 | ||
611 | int r; | |
612 | ||
613 | uint8_t buf[sizeof(legic_card_select_t)] = {0x00}; | |
614 | legic_card_select_t *card = (legic_card_select_t*) buf; | |
615 | ||
616 | LegicCommonInit(FALSE); | |
617 | ||
618 | if ( legic_select_card(card) ) { | |
619 | cmd_send(CMD_ACK,0,0,0,0,0); | |
620 | goto OUT; | |
621 | } | |
622 | ||
623 | // read UID bytes | |
624 | for ( uint8_t i = 0; i < sizeof(card->uid); ++i) { | |
625 | r = legic_read_byte(i, card->cmdsize); | |
626 | if ( r == -1 ) { | |
627 | cmd_send(CMD_ACK,0,0,0,0,0); | |
628 | goto OUT; | |
629 | } | |
630 | card->uid[i] = r & 0xFF; | |
631 | } | |
632 | ||
633 | // MCC byte. | |
634 | r = legic_read_byte(4, card->cmdsize); | |
635 | uint32_t calc_mcc = CRC8Legic(card->uid, 4);; | |
636 | if ( r != calc_mcc) { | |
637 | cmd_send(CMD_ACK,0,0,0,0,0); | |
638 | goto OUT; | |
639 | } | |
640 | ||
641 | // OK | |
642 | cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t)); | |
643 | ||
644 | OUT: | |
645 | switch_off_tag_rwd(); | |
646 | LEDsoff(); | |
647 | } | |
648 | ||
649 | /* Handle (whether to respond) a frame in tag mode | |
650 | * Only called when simulating a tag. | |
651 | */ | |
652 | static void frame_handle_tag(struct legic_frame const * const f) | |
653 | { | |
654 | // log | |
655 | //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)}; | |
656 | //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE); | |
657 | //Dbprintf("ICE: enter frame_handle_tag: %02x ", f->bits); | |
658 | ||
659 | /* First Part of Handshake (IV) */ | |
660 | if(f->bits == 7) { | |
661 | ||
662 | LED_C_ON(); | |
663 | ||
664 | // Reset prng timer | |
665 | //ResetTimer(prng_timer); | |
666 | ResetTicks(); | |
667 | ||
668 | // IV from reader. | |
669 | legic_prng_init(f->data); | |
670 | ||
671 | Dbprintf("ICE: IV: %02x ", f->data); | |
672 | ||
673 | // We should have three tagtypes with three different answers. | |
674 | legic_prng_forward(2); | |
675 | //frame_send_tag(0x3d, 6); /* MIM1024 0x3d^0x26 = 0x1B */ | |
676 | frame_send_tag(0x1d, 6); // MIM256 | |
677 | ||
678 | legic_state = STATE_IV; | |
679 | legic_read_count = 0; | |
680 | legic_prng_bc = 0; | |
681 | legic_prng_iv = f->data; | |
682 | ||
683 | //ResetTimer(timer); | |
684 | //WaitUS(280); | |
685 | WaitTicks(388); | |
686 | return; | |
687 | } | |
688 | ||
689 | /* 0x19==??? */ | |
690 | if(legic_state == STATE_IV) { | |
691 | uint32_t local_key = get_key_stream(3, 6); | |
692 | int xored = 0x39 ^ local_key; | |
693 | if((f->bits == 6) && (f->data == xored)) { | |
694 | legic_state = STATE_CON; | |
695 | ||
696 | ResetTimer(timer); | |
697 | WaitTicks(300); | |
698 | return; | |
699 | ||
700 | } else { | |
701 | legic_state = STATE_DISCON; | |
702 | LED_C_OFF(); | |
703 | Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored); | |
704 | return; | |
705 | } | |
706 | } | |
707 | ||
708 | /* Read */ | |
709 | if(f->bits == 11) { | |
710 | if(legic_state == STATE_CON) { | |
711 | uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11); | |
712 | uint16_t addr = f->data ^ key; | |
713 | addr >>= 1; | |
714 | uint8_t data = cardmem[addr]; | |
715 | ||
716 | uint32_t crc = legic4Crc(LEGIC_READ, addr, data, 11) << 8; | |
717 | ||
718 | //legic_read_count++; | |
719 | //legic_prng_forward(legic_reqresp_drift); | |
720 | ||
721 | frame_send_tag(crc | data, 12); | |
722 | //ResetTimer(timer); | |
723 | legic_prng_forward(2); | |
724 | WaitTicks(330); | |
725 | return; | |
726 | } | |
727 | } | |
728 | ||
729 | /* Write */ | |
730 | if (f->bits == 23 || f->bits == 21 ) { | |
731 | uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23); | |
732 | uint16_t addr = f->data ^ key; | |
733 | addr >>= 1; | |
734 | addr &= 0x3ff; | |
735 | uint32_t data = f->data ^ key; | |
736 | data >>= 11; | |
737 | data &= 0xff; | |
738 | ||
739 | cardmem[addr] = data; | |
740 | /* write command */ | |
741 | legic_state = STATE_DISCON; | |
742 | LED_C_OFF(); | |
743 | Dbprintf("write - addr: %x, data: %x", addr, data); | |
744 | // should send a ACK after 3.6ms | |
745 | return; | |
746 | } | |
747 | ||
748 | if(legic_state != STATE_DISCON) { | |
749 | Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); | |
750 | Dbprintf("IV: %03.3x", legic_prng_iv); | |
751 | } | |
752 | ||
753 | legic_state = STATE_DISCON; | |
754 | legic_read_count = 0; | |
755 | WaitMS(10); | |
756 | LED_C_OFF(); | |
757 | return; | |
758 | } | |
759 | ||
760 | /* Read bit by bit untill full frame is received | |
761 | * Call to process frame end answer | |
762 | */ | |
763 | static void emit(int bit) { | |
764 | ||
765 | switch (bit) { | |
766 | case 1: | |
767 | frame_append_bit(¤t_frame, 1); | |
768 | break; | |
769 | case 0: | |
770 | frame_append_bit(¤t_frame, 0); | |
771 | break; | |
772 | default: | |
773 | if(current_frame.bits <= 4) { | |
774 | frame_clean(¤t_frame); | |
775 | } else { | |
776 | frame_handle_tag(¤t_frame); | |
777 | frame_clean(¤t_frame); | |
778 | } | |
779 | WDT_HIT(); | |
780 | break; | |
781 | } | |
782 | } | |
783 | ||
784 | void LegicRfSimulate(int phase, int frame, int reqresp) | |
785 | { | |
786 | /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, | |
787 | * modulation mode set to 212kHz subcarrier. We are getting the incoming raw | |
788 | * envelope waveform on DIN and should send our response on DOUT. | |
789 | * | |
790 | * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll | |
791 | * measure the time between two rising edges on DIN, and no encoding on the | |
792 | * subcarrier from card to reader, so we'll just shift out our verbatim data | |
793 | * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, | |
794 | * seems to be 330us. | |
795 | */ | |
796 | ||
797 | int old_level = 0, active = 0; | |
798 | volatile int32_t level = 0; | |
799 | ||
800 | legic_state = STATE_DISCON; | |
801 | legic_phase_drift = phase; | |
802 | legic_frame_drift = frame; | |
803 | legic_reqresp_drift = reqresp; | |
804 | ||
805 | ||
806 | /* to get the stream of bits from FPGA in sim mode.*/ | |
807 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
808 | // Set up the synchronous serial port | |
809 | //FpgaSetupSsc(); | |
810 | // connect Demodulated Signal to ADC: | |
811 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
812 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K); | |
813 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
814 | ||
815 | #define LEGIC_DMA_BUFFER 256 | |
816 | // The DMA buffer, used to stream samples from the FPGA | |
817 | //uint8_t *dmaBuf = BigBuf_malloc(LEGIC_DMA_BUFFER); | |
818 | //uint8_t *data = dmaBuf; | |
819 | // Setup and start DMA. | |
820 | // if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER) ){ | |
821 | // if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
822 | // return; | |
823 | // } | |
824 | ||
825 | //StartCountSspClk(); | |
826 | /* Bitbang the receiver */ | |
827 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; | |
828 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; | |
829 | ||
830 | // need a way to determine which tagtype we are simulating | |
831 | ||
832 | // hook up emulator memory | |
833 | cardmem = BigBuf_get_EM_addr(); | |
834 | ||
835 | clear_trace(); | |
836 | set_tracing(TRUE); | |
837 | ||
838 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
839 | ||
840 | StartTicks(); | |
841 | ||
842 | LED_B_ON(); | |
843 | DbpString("Starting Legic emulator, press button to end"); | |
844 | ||
845 | /* | |
846 | * The mode FPGA_HF_SIMULATOR_MODULATE_212K works like this. | |
847 | * - A 1-bit input to the FPGA becomes 8 pulses on 212kHz (fc/64) (18.88us). | |
848 | * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us | |
849 | * | |
850 | * In this mode the SOF can be written as 00011101 = 0x1D | |
851 | * The EOF can be written as 10111000 = 0xb8 | |
852 | * A logic 1 is 01 | |
853 | * A logic 0 is 10 | |
854 | volatile uint8_t b; | |
855 | uint8_t i = 0; | |
856 | while( !BUTTON_PRESS() ) { | |
857 | WDT_HIT(); | |
858 | ||
859 | // not sending anything. | |
860 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
861 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
862 | } | |
863 | ||
864 | // receive | |
865 | if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) { | |
866 | b = (uint8_t) AT91C_BASE_SSC->SSC_RHR; | |
867 | bd[i] = b; | |
868 | ++i; | |
869 | // if(OutOfNDecoding(b & 0x0f)) | |
870 | // *len = Uart.byteCnt; | |
871 | } | |
872 | ||
873 | } | |
874 | */ | |
875 | ||
876 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
877 | ||
878 | level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); | |
879 | ||
880 | uint32_t time = GET_TICKS; | |
881 | ||
882 | if (level != old_level) { | |
883 | if (level == 1) { | |
884 | ||
885 | //Dbprintf("start, %u ", time); | |
886 | StartTicks(); | |
887 | // did we get a signal | |
888 | if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { | |
889 | // 1 bit | |
890 | emit(1); | |
891 | active = 1; | |
892 | LED_A_ON(); | |
893 | } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { | |
894 | // 0 bit | |
895 | emit(0); | |
896 | active = 1; | |
897 | LED_A_ON(); | |
898 | } else if (active) { | |
899 | // invalid | |
900 | emit(-1); | |
901 | active = 0; | |
902 | LED_A_OFF(); | |
903 | } | |
904 | } | |
905 | } | |
906 | ||
907 | ||
908 | /* Frame end */ | |
909 | if(time >= (RWD_TIME_1 + RWD_TIME_FUZZ) && active) { | |
910 | emit(-1); | |
911 | active = 0; | |
912 | LED_A_OFF(); | |
913 | } | |
914 | ||
915 | /* | |
916 | * Disable the counter, Then wait for the clock to acknowledge the | |
917 | * shutdown in its status register. Reading the SR has the | |
918 | * side-effect of clearing any pending state in there. | |
919 | */ | |
920 | //if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) | |
921 | if(time >= (20 * RWD_TIME_1) ) | |
922 | StopTicks(); | |
923 | ||
924 | old_level = level; | |
925 | WDT_HIT(); | |
926 | } | |
927 | ||
928 | WDT_HIT(); | |
929 | DbpString("LEGIC Prime emulator stopped"); | |
930 | switch_off_tag_rwd(); | |
931 | FpgaDisableSscDma(); | |
932 | LEDsoff(); | |
933 | cmd_send(CMD_ACK, 1, 0, 0, 0, 0); | |
934 | } | |
935 | ||
936 | ||
937 | //----------------------------------------------------------------------------- | |
938 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
939 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
940 | // them yet, just leaves them ready to send in ToSend[]. | |
941 | //----------------------------------------------------------------------------- | |
942 | // static void CodeLegicAsTag(const uint8_t *cmd, int len) | |
943 | // { | |
944 | // int i; | |
945 | ||
946 | // ToSendReset(); | |
947 | ||
948 | // // Transmit a burst of ones, as the initial thing that lets the | |
949 | // // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
950 | // // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
951 | // // so I will too. | |
952 | // for(i = 0; i < 20; i++) { | |
953 | // ToSendStuffBit(1); | |
954 | // ToSendStuffBit(1); | |
955 | // ToSendStuffBit(1); | |
956 | // ToSendStuffBit(1); | |
957 | // } | |
958 | ||
959 | // // Send SOF. | |
960 | // for(i = 0; i < 10; i++) { | |
961 | // ToSendStuffBit(0); | |
962 | // ToSendStuffBit(0); | |
963 | // ToSendStuffBit(0); | |
964 | // ToSendStuffBit(0); | |
965 | // } | |
966 | // for(i = 0; i < 2; i++) { | |
967 | // ToSendStuffBit(1); | |
968 | // ToSendStuffBit(1); | |
969 | // ToSendStuffBit(1); | |
970 | // ToSendStuffBit(1); | |
971 | // } | |
972 | ||
973 | // for(i = 0; i < len; i++) { | |
974 | // int j; | |
975 | // uint8_t b = cmd[i]; | |
976 | ||
977 | // // Start bit | |
978 | // ToSendStuffBit(0); | |
979 | // ToSendStuffBit(0); | |
980 | // ToSendStuffBit(0); | |
981 | // ToSendStuffBit(0); | |
982 | ||
983 | // // Data bits | |
984 | // for(j = 0; j < 8; j++) { | |
985 | // if(b & 1) { | |
986 | // ToSendStuffBit(1); | |
987 | // ToSendStuffBit(1); | |
988 | // ToSendStuffBit(1); | |
989 | // ToSendStuffBit(1); | |
990 | // } else { | |
991 | // ToSendStuffBit(0); | |
992 | // ToSendStuffBit(0); | |
993 | // ToSendStuffBit(0); | |
994 | // ToSendStuffBit(0); | |
995 | // } | |
996 | // b >>= 1; | |
997 | // } | |
998 | ||
999 | // // Stop bit | |
1000 | // ToSendStuffBit(1); | |
1001 | // ToSendStuffBit(1); | |
1002 | // ToSendStuffBit(1); | |
1003 | // ToSendStuffBit(1); | |
1004 | // } | |
1005 | ||
1006 | // // Send EOF. | |
1007 | // for(i = 0; i < 10; i++) { | |
1008 | // ToSendStuffBit(0); | |
1009 | // ToSendStuffBit(0); | |
1010 | // ToSendStuffBit(0); | |
1011 | // ToSendStuffBit(0); | |
1012 | // } | |
1013 | // for(i = 0; i < 2; i++) { | |
1014 | // ToSendStuffBit(1); | |
1015 | // ToSendStuffBit(1); | |
1016 | // ToSendStuffBit(1); | |
1017 | // ToSendStuffBit(1); | |
1018 | // } | |
1019 | ||
1020 | // // Convert from last byte pos to length | |
1021 | // ToSendMax++; | |
1022 | // } | |
1023 | ||
1024 | //----------------------------------------------------------------------------- | |
1025 | // The software UART that receives commands from the reader, and its state | |
1026 | // variables. | |
1027 | //----------------------------------------------------------------------------- | |
1028 | /* | |
1029 | static struct { | |
1030 | enum { | |
1031 | STATE_UNSYNCD, | |
1032 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
1033 | STATE_AWAITING_START_BIT, | |
1034 | STATE_RECEIVING_DATA | |
1035 | } state; | |
1036 | uint16_t shiftReg; | |
1037 | int bitCnt; | |
1038 | int byteCnt; | |
1039 | int byteCntMax; | |
1040 | int posCnt; | |
1041 | uint8_t *output; | |
1042 | } Uart; | |
1043 | */ | |
1044 | /* Receive & handle a bit coming from the reader. | |
1045 | * | |
1046 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
1047 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1048 | * | |
1049 | * LED handling: | |
1050 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
1051 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
1052 | * | |
1053 | * Returns: true if we received a EOF | |
1054 | * false if we are still waiting for some more | |
1055 | */ | |
1056 | // static RAMFUNC int HandleLegicUartBit(uint8_t bit) | |
1057 | // { | |
1058 | // switch(Uart.state) { | |
1059 | // case STATE_UNSYNCD: | |
1060 | // if(!bit) { | |
1061 | // // we went low, so this could be the beginning of an SOF | |
1062 | // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
1063 | // Uart.posCnt = 0; | |
1064 | // Uart.bitCnt = 0; | |
1065 | // } | |
1066 | // break; | |
1067 | ||
1068 | // case STATE_GOT_FALLING_EDGE_OF_SOF: | |
1069 | // Uart.posCnt++; | |
1070 | // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
1071 | // if(bit) { | |
1072 | // if(Uart.bitCnt > 9) { | |
1073 | // // we've seen enough consecutive | |
1074 | // // zeros that it's a valid SOF | |
1075 | // Uart.posCnt = 0; | |
1076 | // Uart.byteCnt = 0; | |
1077 | // Uart.state = STATE_AWAITING_START_BIT; | |
1078 | // LED_A_ON(); // Indicate we got a valid SOF | |
1079 | // } else { | |
1080 | // // didn't stay down long enough | |
1081 | // // before going high, error | |
1082 | // Uart.state = STATE_UNSYNCD; | |
1083 | // } | |
1084 | // } else { | |
1085 | // // do nothing, keep waiting | |
1086 | // } | |
1087 | // Uart.bitCnt++; | |
1088 | // } | |
1089 | // if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
1090 | // if(Uart.bitCnt > 12) { | |
1091 | // // Give up if we see too many zeros without | |
1092 | // // a one, too. | |
1093 | // LED_A_OFF(); | |
1094 | // Uart.state = STATE_UNSYNCD; | |
1095 | // } | |
1096 | // break; | |
1097 | ||
1098 | // case STATE_AWAITING_START_BIT: | |
1099 | // Uart.posCnt++; | |
1100 | // if(bit) { | |
1101 | // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
1102 | // // stayed high for too long between | |
1103 | // // characters, error | |
1104 | // Uart.state = STATE_UNSYNCD; | |
1105 | // } | |
1106 | // } else { | |
1107 | // // falling edge, this starts the data byte | |
1108 | // Uart.posCnt = 0; | |
1109 | // Uart.bitCnt = 0; | |
1110 | // Uart.shiftReg = 0; | |
1111 | // Uart.state = STATE_RECEIVING_DATA; | |
1112 | // } | |
1113 | // break; | |
1114 | ||
1115 | // case STATE_RECEIVING_DATA: | |
1116 | // Uart.posCnt++; | |
1117 | // if(Uart.posCnt == 2) { | |
1118 | // // time to sample a bit | |
1119 | // Uart.shiftReg >>= 1; | |
1120 | // if(bit) { | |
1121 | // Uart.shiftReg |= 0x200; | |
1122 | // } | |
1123 | // Uart.bitCnt++; | |
1124 | // } | |
1125 | // if(Uart.posCnt >= 4) { | |
1126 | // Uart.posCnt = 0; | |
1127 | // } | |
1128 | // if(Uart.bitCnt == 10) { | |
1129 | // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
1130 | // { | |
1131 | // // this is a data byte, with correct | |
1132 | // // start and stop bits | |
1133 | // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
1134 | // Uart.byteCnt++; | |
1135 | ||
1136 | // if(Uart.byteCnt >= Uart.byteCntMax) { | |
1137 | // // Buffer overflowed, give up | |
1138 | // LED_A_OFF(); | |
1139 | // Uart.state = STATE_UNSYNCD; | |
1140 | // } else { | |
1141 | // // so get the next byte now | |
1142 | // Uart.posCnt = 0; | |
1143 | // Uart.state = STATE_AWAITING_START_BIT; | |
1144 | // } | |
1145 | // } else if (Uart.shiftReg == 0x000) { | |
1146 | // // this is an EOF byte | |
1147 | // LED_A_OFF(); // Finished receiving | |
1148 | // Uart.state = STATE_UNSYNCD; | |
1149 | // if (Uart.byteCnt != 0) { | |
1150 | // return TRUE; | |
1151 | // } | |
1152 | // } else { | |
1153 | // // this is an error | |
1154 | // LED_A_OFF(); | |
1155 | // Uart.state = STATE_UNSYNCD; | |
1156 | // } | |
1157 | // } | |
1158 | // break; | |
1159 | ||
1160 | // default: | |
1161 | // LED_A_OFF(); | |
1162 | // Uart.state = STATE_UNSYNCD; | |
1163 | // break; | |
1164 | // } | |
1165 | ||
1166 | // return FALSE; | |
1167 | // } | |
1168 | /* | |
1169 | ||
1170 | static void UartReset() { | |
1171 | Uart.byteCntMax = 3; | |
1172 | Uart.state = STATE_UNSYNCD; | |
1173 | Uart.byteCnt = 0; | |
1174 | Uart.bitCnt = 0; | |
1175 | Uart.posCnt = 0; | |
1176 | memset(Uart.output, 0x00, 3); | |
1177 | } | |
1178 | */ | |
1179 | // static void UartInit(uint8_t *data) { | |
1180 | // Uart.output = data; | |
1181 | // UartReset(); | |
1182 | // } | |
1183 | ||
1184 | //============================================================================= | |
1185 | // An LEGIC reader. We take layer two commands, code them | |
1186 | // appropriately, and then send them to the tag. We then listen for the | |
1187 | // tag's response, which we leave in the buffer to be demodulated on the | |
1188 | // PC side. | |
1189 | //============================================================================= | |
1190 | /* | |
1191 | static struct { | |
1192 | enum { | |
1193 | DEMOD_UNSYNCD, | |
1194 | DEMOD_PHASE_REF_TRAINING, | |
1195 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
1196 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
1197 | DEMOD_AWAITING_START_BIT, | |
1198 | DEMOD_RECEIVING_DATA | |
1199 | } state; | |
1200 | int bitCount; | |
1201 | int posCount; | |
1202 | int thisBit; | |
1203 | uint16_t shiftReg; | |
1204 | uint8_t *output; | |
1205 | int len; | |
1206 | int sumI; | |
1207 | int sumQ; | |
1208 | } Demod; | |
1209 | */ | |
1210 | /* | |
1211 | * Handles reception of a bit from the tag | |
1212 | * | |
1213 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
1214 | * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us | |
1215 | * | |
1216 | * LED handling: | |
1217 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
1218 | * LED C -> OFF once we have received EOF or are unsynced | |
1219 | * | |
1220 | * Returns: true if we received a EOF | |
1221 | * false if we are still waiting for some more | |
1222 | * | |
1223 | */ | |
1224 | ||
1225 | /* | |
1226 | static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) | |
1227 | { | |
1228 | int v = 0; | |
1229 | int ai = ABS(ci); | |
1230 | int aq = ABS(cq); | |
1231 | int halfci = (ai >> 1); | |
1232 | int halfcq = (aq >> 1); | |
1233 | ||
1234 | switch(Demod.state) { | |
1235 | case DEMOD_UNSYNCD: | |
1236 | ||
1237 | CHECK_FOR_SUBCARRIER() | |
1238 | ||
1239 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
1240 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
1241 | Demod.sumI = ci; | |
1242 | Demod.sumQ = cq; | |
1243 | Demod.posCount = 1; | |
1244 | } | |
1245 | break; | |
1246 | ||
1247 | case DEMOD_PHASE_REF_TRAINING: | |
1248 | if(Demod.posCount < 8) { | |
1249 | ||
1250 | CHECK_FOR_SUBCARRIER() | |
1251 | ||
1252 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
1253 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
1254 | // note: synchronization time > 80 1/fs | |
1255 | Demod.sumI += ci; | |
1256 | Demod.sumQ += cq; | |
1257 | ++Demod.posCount; | |
1258 | } else { | |
1259 | // subcarrier lost | |
1260 | Demod.state = DEMOD_UNSYNCD; | |
1261 | } | |
1262 | } else { | |
1263 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
1264 | } | |
1265 | break; | |
1266 | ||
1267 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
1268 | ||
1269 | MAKE_SOFT_DECISION() | |
1270 | ||
1271 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
1272 | // logic '0' detected | |
1273 | if (v <= 0) { | |
1274 | ||
1275 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
1276 | ||
1277 | // start of SOF sequence | |
1278 | Demod.posCount = 0; | |
1279 | } else { | |
1280 | // maximum length of TR1 = 200 1/fs | |
1281 | if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; | |
1282 | } | |
1283 | ++Demod.posCount; | |
1284 | break; | |
1285 | ||
1286 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
1287 | ++Demod.posCount; | |
1288 | ||
1289 | MAKE_SOFT_DECISION() | |
1290 | ||
1291 | if(v > 0) { | |
1292 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
1293 | if(Demod.posCount < 10*2) { | |
1294 | Demod.state = DEMOD_UNSYNCD; | |
1295 | } else { | |
1296 | LED_C_ON(); // Got SOF | |
1297 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1298 | Demod.posCount = 0; | |
1299 | Demod.len = 0; | |
1300 | } | |
1301 | } else { | |
1302 | // low phase of SOF too long (> 12 etu) | |
1303 | if(Demod.posCount > 13*2) { | |
1304 | Demod.state = DEMOD_UNSYNCD; | |
1305 | LED_C_OFF(); | |
1306 | } | |
1307 | } | |
1308 | break; | |
1309 | ||
1310 | case DEMOD_AWAITING_START_BIT: | |
1311 | ++Demod.posCount; | |
1312 | ||
1313 | MAKE_SOFT_DECISION() | |
1314 | ||
1315 | if(v > 0) { | |
1316 | // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
1317 | if(Demod.posCount > 3*2) { | |
1318 | Demod.state = DEMOD_UNSYNCD; | |
1319 | LED_C_OFF(); | |
1320 | } | |
1321 | } else { | |
1322 | // start bit detected | |
1323 | Demod.bitCount = 0; | |
1324 | Demod.posCount = 1; // this was the first half | |
1325 | Demod.thisBit = v; | |
1326 | Demod.shiftReg = 0; | |
1327 | Demod.state = DEMOD_RECEIVING_DATA; | |
1328 | } | |
1329 | break; | |
1330 | ||
1331 | case DEMOD_RECEIVING_DATA: | |
1332 | ||
1333 | MAKE_SOFT_DECISION() | |
1334 | ||
1335 | if(Demod.posCount == 0) { | |
1336 | // first half of bit | |
1337 | Demod.thisBit = v; | |
1338 | Demod.posCount = 1; | |
1339 | } else { | |
1340 | // second half of bit | |
1341 | Demod.thisBit += v; | |
1342 | Demod.shiftReg >>= 1; | |
1343 | // logic '1' | |
1344 | if(Demod.thisBit > 0) | |
1345 | Demod.shiftReg |= 0x200; | |
1346 | ||
1347 | ++Demod.bitCount; | |
1348 | ||
1349 | if(Demod.bitCount == 10) { | |
1350 | ||
1351 | uint16_t s = Demod.shiftReg; | |
1352 | ||
1353 | if((s & 0x200) && !(s & 0x001)) { | |
1354 | // stop bit == '1', start bit == '0' | |
1355 | uint8_t b = (s >> 1); | |
1356 | Demod.output[Demod.len] = b; | |
1357 | ++Demod.len; | |
1358 | Demod.state = DEMOD_AWAITING_START_BIT; | |
1359 | } else { | |
1360 | Demod.state = DEMOD_UNSYNCD; | |
1361 | LED_C_OFF(); | |
1362 | ||
1363 | if(s == 0x000) { | |
1364 | // This is EOF (start, stop and all data bits == '0' | |
1365 | return TRUE; | |
1366 | } | |
1367 | } | |
1368 | } | |
1369 | Demod.posCount = 0; | |
1370 | } | |
1371 | break; | |
1372 | ||
1373 | default: | |
1374 | Demod.state = DEMOD_UNSYNCD; | |
1375 | LED_C_OFF(); | |
1376 | break; | |
1377 | } | |
1378 | return FALSE; | |
1379 | } | |
1380 | */ | |
1381 | /* | |
1382 | // Clear out the state of the "UART" that receives from the tag. | |
1383 | static void DemodReset() { | |
1384 | Demod.len = 0; | |
1385 | Demod.state = DEMOD_UNSYNCD; | |
1386 | Demod.posCount = 0; | |
1387 | Demod.sumI = 0; | |
1388 | Demod.sumQ = 0; | |
1389 | Demod.bitCount = 0; | |
1390 | Demod.thisBit = 0; | |
1391 | Demod.shiftReg = 0; | |
1392 | memset(Demod.output, 0x00, 3); | |
1393 | } | |
1394 | ||
1395 | static void DemodInit(uint8_t *data) { | |
1396 | Demod.output = data; | |
1397 | DemodReset(); | |
1398 | } | |
1399 | */ | |
1400 | ||
1401 | /* | |
1402 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
1403 | * quiet: set to 'TRUE' to disable debug output | |
1404 | */ | |
1405 | ||
1406 | /* | |
1407 | #define LEGIC_DMA_BUFFER_SIZE 256 | |
1408 | ||
1409 | static void GetSamplesForLegicDemod(int n, bool quiet) | |
1410 | { | |
1411 | int max = 0; | |
1412 | bool gotFrame = FALSE; | |
1413 | int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1414 | int ci, cq, samples = 0; | |
1415 | ||
1416 | BigBuf_free(); | |
1417 | ||
1418 | // And put the FPGA in the appropriate mode | |
1419 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); | |
1420 | ||
1421 | // The response (tag -> reader) that we're receiving. | |
1422 | // Set up the demodulator for tag -> reader responses. | |
1423 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1424 | ||
1425 | // The DMA buffer, used to stream samples from the FPGA | |
1426 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); | |
1427 | int8_t *upTo = dmaBuf; | |
1428 | ||
1429 | // Setup and start DMA. | |
1430 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ | |
1431 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1432 | return; | |
1433 | } | |
1434 | ||
1435 | // Signal field is ON with the appropriate LED: | |
1436 | LED_D_ON(); | |
1437 | for(;;) { | |
1438 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
1439 | if(behindBy > max) max = behindBy; | |
1440 | ||
1441 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { | |
1442 | ci = upTo[0]; | |
1443 | cq = upTo[1]; | |
1444 | upTo += 2; | |
1445 | if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { | |
1446 | upTo = dmaBuf; | |
1447 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
1448 | AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; | |
1449 | } | |
1450 | lastRxCounter -= 2; | |
1451 | if(lastRxCounter <= 0) | |
1452 | lastRxCounter = LEGIC_DMA_BUFFER_SIZE; | |
1453 | ||
1454 | samples += 2; | |
1455 | ||
1456 | gotFrame = HandleLegicSamplesDemod(ci , cq ); | |
1457 | if ( gotFrame ) | |
1458 | break; | |
1459 | } | |
1460 | ||
1461 | if(samples > n || gotFrame) | |
1462 | break; | |
1463 | } | |
1464 | ||
1465 | FpgaDisableSscDma(); | |
1466 | ||
1467 | if (!quiet && Demod.len == 0) { | |
1468 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
1469 | max, | |
1470 | samples, | |
1471 | gotFrame, | |
1472 | Demod.len, | |
1473 | Demod.sumI, | |
1474 | Demod.sumQ | |
1475 | ); | |
1476 | } | |
1477 | ||
1478 | //Tracing | |
1479 | if (Demod.len > 0) { | |
1480 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1481 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
1482 | } | |
1483 | } | |
1484 | ||
1485 | */ | |
1486 | ||
1487 | //----------------------------------------------------------------------------- | |
1488 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1489 | //----------------------------------------------------------------------------- | |
1490 | /* | |
1491 | static void TransmitForLegic(void) | |
1492 | { | |
1493 | int c; | |
1494 | ||
1495 | FpgaSetupSsc(); | |
1496 | ||
1497 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) | |
1498 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1499 | ||
1500 | // Signal field is ON with the appropriate Red LED | |
1501 | LED_D_ON(); | |
1502 | ||
1503 | // Signal we are transmitting with the Green LED | |
1504 | LED_B_ON(); | |
1505 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1506 | ||
1507 | for(c = 0; c < 10;) { | |
1508 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1509 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
1510 | c++; | |
1511 | } | |
1512 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1513 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1514 | (void)r; | |
1515 | } | |
1516 | WDT_HIT(); | |
1517 | } | |
1518 | ||
1519 | c = 0; | |
1520 | for(;;) { | |
1521 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1522 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
1523 | legic_prng_forward(1); // forward the lfsr | |
1524 | c++; | |
1525 | if(c >= ToSendMax) { | |
1526 | break; | |
1527 | } | |
1528 | } | |
1529 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1530 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1531 | (void)r; | |
1532 | } | |
1533 | WDT_HIT(); | |
1534 | } | |
1535 | LED_B_OFF(); | |
1536 | } | |
1537 | */ | |
1538 | ||
1539 | //----------------------------------------------------------------------------- | |
1540 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1541 | // so that it is ready to transmit to the tag using TransmitForLegic(). | |
1542 | //----------------------------------------------------------------------------- | |
1543 | /* | |
1544 | static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
1545 | { | |
1546 | int i, j; | |
1547 | uint8_t b; | |
1548 | ||
1549 | ToSendReset(); | |
1550 | ||
1551 | // Send SOF | |
1552 | for(i = 0; i < 7; i++) | |
1553 | ToSendStuffBit(1); | |
1554 | ||
1555 | ||
1556 | for(i = 0; i < cmdlen; i++) { | |
1557 | // Start bit | |
1558 | ToSendStuffBit(0); | |
1559 | ||
1560 | // Data bits | |
1561 | b = cmd[i]; | |
1562 | for(j = 0; j < bits; j++) { | |
1563 | if(b & 1) { | |
1564 | ToSendStuffBit(1); | |
1565 | } else { | |
1566 | ToSendStuffBit(0); | |
1567 | } | |
1568 | b >>= 1; | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | // Convert from last character reference to length | |
1573 | ++ToSendMax; | |
1574 | } | |
1575 | */ | |
1576 | /** | |
1577 | Convenience function to encode, transmit and trace Legic comms | |
1578 | **/ | |
1579 | /* | |
1580 | static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) | |
1581 | { | |
1582 | CodeLegicBitsAsReader(cmd, cmdlen, bits); | |
1583 | TransmitForLegic(); | |
1584 | if (tracing) { | |
1585 | uint8_t parity[1] = {0x00}; | |
1586 | LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); | |
1587 | } | |
1588 | } | |
1589 | ||
1590 | */ | |
1591 | // Set up LEGIC communication | |
1592 | /* | |
1593 | void ice_legic_setup() { | |
1594 | ||
1595 | // standard things. | |
1596 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1597 | BigBuf_free(); BigBuf_Clear_ext(false); | |
1598 | clear_trace(); | |
1599 | set_tracing(TRUE); | |
1600 | DemodReset(); | |
1601 | UartReset(); | |
1602 | ||
1603 | // Set up the synchronous serial port | |
1604 | FpgaSetupSsc(); | |
1605 | ||
1606 | // connect Demodulated Signal to ADC: | |
1607 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1608 | ||
1609 | // Signal field is on with the appropriate LED | |
1610 | LED_D_ON(); | |
1611 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1612 | SpinDelay(20); | |
1613 | // Start the timer | |
1614 | //StartCountSspClk(); | |
1615 | ||
1616 | // initalize CRC | |
1617 | crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); | |
1618 | ||
1619 | // initalize prng | |
1620 | legic_prng_init(0); | |
1621 | } | |
1622 | */ |