]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/cmdhfmfhard.c
FIX: "hf mf hardnested" when "key found" exting the do-while loop doesn't need to...
[proxmark3-svn] / client / cmdhfmfhard.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
17#include "cmdhfmfhard.h"
18
19#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
20#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
21#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
22#define CRACKING_THRESHOLD 39.00f // as 2^39
23
24#define END_OF_LIST_MARKER 0xFFFFFFFF
25
26static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0290 };
60
61typedef struct noncelistentry {
62 uint32_t nonce_enc;
63 uint8_t par_enc;
64 void *next;
65} noncelistentry_t;
66
67typedef struct noncelist {
68 uint16_t num;
69 uint16_t Sum;
70 uint16_t Sum8_guess;
71 uint8_t BitFlip[2];
72 float Sum8_prob;
73 bool updated;
74 noncelistentry_t *first;
75 float score1, score2;
76} noncelist_t;
77
78static size_t nonces_to_bruteforce = 0;
79static noncelistentry_t *brute_force_nonces[256];
80static uint32_t cuid = 0;
81static noncelist_t nonces[256];
82static uint8_t best_first_bytes[256];
83static uint16_t first_byte_Sum = 0;
84static uint16_t first_byte_num = 0;
85static uint16_t num_good_first_bytes = 0;
86static uint64_t maximum_states = 0;
87static uint64_t known_target_key;
88static bool write_stats = false;
89static FILE *fstats = NULL;
90
91
92typedef enum {
93 EVEN_STATE = 0,
94 ODD_STATE = 1
95} odd_even_t;
96
97#define STATELIST_INDEX_WIDTH 16
98#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
99
100typedef struct {
101 uint32_t *states[2];
102 uint32_t len[2];
103 uint32_t *index[2][STATELIST_INDEX_SIZE];
104} partial_indexed_statelist_t;
105
106typedef struct {
107 uint32_t *states[2];
108 uint32_t len[2];
109 void* next;
110} statelist_t;
111
112
113static partial_indexed_statelist_t partial_statelist[17];
114static partial_indexed_statelist_t statelist_bitflip;
115static statelist_t *candidates = NULL;
116
117bool field_off = false;
118
119static bool generate_candidates(uint16_t, uint16_t);
120static bool brute_force(void);
121
122static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
123{
124 uint8_t first_byte = nonce_enc >> 24;
125 noncelistentry_t *p1 = nonces[first_byte].first;
126 noncelistentry_t *p2 = NULL;
127
128 if (p1 == NULL) { // first nonce with this 1st byte
129 first_byte_num++;
130 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
131 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
132 // nonce_enc,
133 // par_enc,
134 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
135 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
136 }
137
138 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
139 p2 = p1;
140 p1 = p1->next;
141 }
142
143 if (p1 == NULL) { // need to add at the end of the list
144 if (p2 == NULL) { // list is empty yet. Add first entry.
145 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
146 } else { // add new entry at end of existing list.
147 p2 = p2->next = malloc(sizeof(noncelistentry_t));
148 }
149 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
150 if (p2 == NULL) { // need to insert at start of list
151 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
152 } else {
153 p2 = p2->next = malloc(sizeof(noncelistentry_t));
154 }
155 } else { // we have seen this 2nd byte before. Nothing to add or insert.
156 return (0);
157 }
158
159 // add or insert new data
160 p2->next = p1;
161 p2->nonce_enc = nonce_enc;
162 p2->par_enc = par_enc;
163
164 if(nonces_to_bruteforce < 256){
165 brute_force_nonces[nonces_to_bruteforce] = p2;
166 nonces_to_bruteforce++;
167 }
168
169 nonces[first_byte].num++;
170 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
171 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
172
173 return (1); // new nonce added
174}
175
176static void init_nonce_memory(void)
177{
178 for (uint16_t i = 0; i < 256; i++) {
179 nonces[i].num = 0;
180 nonces[i].Sum = 0;
181 nonces[i].Sum8_guess = 0;
182 nonces[i].Sum8_prob = 0.0;
183 nonces[i].updated = true;
184 nonces[i].first = NULL;
185 }
186 first_byte_num = 0;
187 first_byte_Sum = 0;
188 num_good_first_bytes = 0;
189}
190
191static void free_nonce_list(noncelistentry_t *p)
192{
193 if (p == NULL) {
194 return;
195 } else {
196 free_nonce_list(p->next);
197 free(p);
198 }
199}
200
201static void free_nonces_memory(void)
202{
203 for (uint16_t i = 0; i < 256; i++) {
204 free_nonce_list(nonces[i].first);
205 }
206}
207
208static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
209{
210 uint16_t sum = 0;
211 for (uint16_t j = 0; j < 16; j++) {
212 uint32_t st = state;
213 uint16_t part_sum = 0;
214 if (odd_even == ODD_STATE) {
215 for (uint16_t i = 0; i < 5; i++) {
216 part_sum ^= filter(st);
217 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
218 }
219 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
220 } else {
221 for (uint16_t i = 0; i < 4; i++) {
222 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
223 part_sum ^= filter(st);
224 }
225 }
226 sum += part_sum;
227 }
228 return sum;
229}
230
231// static uint16_t SumProperty(struct Crypto1State *s)
232// {
233 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
234 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
235 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
236// }
237
238static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
239{
240 // for efficient computation we are using the recursive definition
241 // (K-k+1) * (n-k+1)
242 // P(X=k) = P(X=k-1) * --------------------
243 // k * (N-K-n+k)
244 // and
245 // (N-K)*(N-K-1)*...*(N-K-n+1)
246 // P(X=0) = -----------------------------
247 // N*(N-1)*...*(N-n+1)
248
249 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
250 if (k == 0) {
251 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
252 double log_result = 0.0;
253 for (int16_t i = N-K; i >= N-K-n+1; i--) {
254 log_result += log(i);
255 }
256 for (int16_t i = N; i >= N-n+1; i--) {
257 log_result -= log(i);
258 }
259 return exp(log_result);
260 } else {
261 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
262 double log_result = 0.0;
263 for (int16_t i = k+1; i <= n; i++) {
264 log_result += log(i);
265 }
266 for (int16_t i = K+1; i <= N; i++) {
267 log_result -= log(i);
268 }
269 return exp(log_result);
270 } else { // recursion
271 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
272 }
273 }
274}
275
276static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
277{
278 const uint16_t N = 256;
279
280 if (k > K || p_K[K] == 0.0) return 0.0;
281
282 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
283 double p_S_is_K = p_K[K];
284 double p_T_is_k = 0;
285 for (uint16_t i = 0; i <= 256; i++) {
286 if (p_K[i] != 0.0) {
287 double tmp = p_hypergeometric(N, i, n, k);
288 if (tmp != 0.0)
289 p_T_is_k += p_K[i] * tmp;
290 }
291 }
292 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
293}
294
295
296static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
297{
298 static const uint_fast8_t common_bits_LUT[256] = {
299 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
300 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
301 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
302 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
303 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
304 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
305 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
306 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
315 };
316
317 return common_bits_LUT[bytes_diff];
318}
319
320static void Tests()
321{
322 // printf("Tests: Partial Statelist sizes\n");
323 // for (uint16_t i = 0; i <= 16; i+=2) {
324 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
325 // }
326 // for (uint16_t i = 0; i <= 16; i+=2) {
327 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
328 // }
329
330 // #define NUM_STATISTICS 100000
331 // uint32_t statistics_odd[17];
332 // uint64_t statistics[257];
333 // uint32_t statistics_even[17];
334 // struct Crypto1State cs;
335 // time_t time1 = clock();
336
337 // for (uint16_t i = 0; i < 257; i++) {
338 // statistics[i] = 0;
339 // }
340 // for (uint16_t i = 0; i < 17; i++) {
341 // statistics_odd[i] = 0;
342 // statistics_even[i] = 0;
343 // }
344
345 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
346 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
347 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
348 // uint16_t sum_property = SumProperty(&cs);
349 // statistics[sum_property] += 1;
350 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
351 // statistics_even[sum_property]++;
352 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
353 // statistics_odd[sum_property]++;
354 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
355 // }
356
357 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
358 // for (uint16_t i = 0; i < 257; i++) {
359 // if (statistics[i] != 0) {
360 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
361 // }
362 // }
363 // for (uint16_t i = 0; i <= 16; i++) {
364 // if (statistics_odd[i] != 0) {
365 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
366 // }
367 // }
368 // for (uint16_t i = 0; i <= 16; i++) {
369 // if (statistics_odd[i] != 0) {
370 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
371 // }
372 // }
373
374 // printf("Tests: Sum Probabilities based on Partial Sums\n");
375 // for (uint16_t i = 0; i < 257; i++) {
376 // statistics[i] = 0;
377 // }
378 // uint64_t num_states = 0;
379 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
380 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
381 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
382 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
383 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
384 // }
385 // }
386 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
387 // for (uint16_t i = 0; i < 257; i++) {
388 // if (statistics[i] != 0) {
389 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
390 // }
391 // }
392
393 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
394 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
395 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
396 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
397 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
398 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
399 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
400
401 // struct Crypto1State *pcs;
402 // pcs = crypto1_create(0xffffffffffff);
403 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
404 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
405 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
406 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
407 // best_first_bytes[0],
408 // SumProperty(pcs),
409 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
410 // //test_state_odd = pcs->odd & 0x00ffffff;
411 // //test_state_even = pcs->even & 0x00ffffff;
412 // crypto1_destroy(pcs);
413 // pcs = crypto1_create(0xa0a1a2a3a4a5);
414 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
415 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
416 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
417 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
418 // best_first_bytes[0],
419 // SumProperty(pcs),
420 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
421 // //test_state_odd = pcs->odd & 0x00ffffff;
422 // //test_state_even = pcs->even & 0x00ffffff;
423 // crypto1_destroy(pcs);
424 // pcs = crypto1_create(0xa6b9aa97b955);
425 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
428 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // best_first_bytes[0],
430 // SumProperty(pcs),
431 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
432 //test_state_odd = pcs->odd & 0x00ffffff;
433 //test_state_even = pcs->even & 0x00ffffff;
434 // crypto1_destroy(pcs);
435
436
437 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
438
439 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
440 // for (uint16_t i = 0; i < 256; i++) {
441 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
442 // if (i % 8 == 7) {
443 // printf("\n");
444 // }
445 // }
446
447 // printf("\nTests: Sorted First Bytes:\n");
448 // for (uint16_t i = 0; i < 256; i++) {
449 // uint8_t best_byte = best_first_bytes[i];
450 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
451 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
452 // i, best_byte,
453 // nonces[best_byte].num,
454 // nonces[best_byte].Sum,
455 // nonces[best_byte].Sum8_guess,
456 // nonces[best_byte].Sum8_prob * 100,
457 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
458 // //nonces[best_byte].score1,
459 // //nonces[best_byte].score2
460 // );
461 // }
462
463 // printf("\nTests: parity performance\n");
464 // time_t time1p = clock();
465 // uint32_t par_sum = 0;
466 // for (uint32_t i = 0; i < 100000000; i++) {
467 // par_sum += parity(i);
468 // }
469 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
470
471 // time1p = clock();
472 // par_sum = 0;
473 // for (uint32_t i = 0; i < 100000000; i++) {
474 // par_sum += evenparity32(i);
475 // }
476 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
477
478
479}
480
481static void sort_best_first_bytes(void)
482{
483 // sort based on probability for correct guess
484 for (uint16_t i = 0; i < 256; i++ ) {
485 uint16_t j = 0;
486 float prob1 = nonces[i].Sum8_prob;
487 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
488 while (prob1 < prob2 && j < i) {
489 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
490 }
491 if (j < i) {
492 for (uint16_t k = i; k > j; k--) {
493 best_first_bytes[k] = best_first_bytes[k-1];
494 }
495 }
496 best_first_bytes[j] = i;
497 }
498
499 // determine how many are above the CONFIDENCE_THRESHOLD
500 uint16_t num_good_nonces = 0;
501 for (uint16_t i = 0; i < 256; i++) {
502 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
503 ++num_good_nonces;
504 }
505 }
506
507 uint16_t best_first_byte = 0;
508
509 // select the best possible first byte based on number of common bits with all {b'}
510 // uint16_t max_common_bits = 0;
511 // for (uint16_t i = 0; i < num_good_nonces; i++) {
512 // uint16_t sum_common_bits = 0;
513 // for (uint16_t j = 0; j < num_good_nonces; j++) {
514 // if (i != j) {
515 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
516 // }
517 // }
518 // if (sum_common_bits > max_common_bits) {
519 // max_common_bits = sum_common_bits;
520 // best_first_byte = i;
521 // }
522 // }
523
524 // select best possible first byte {b} based on least likely sum/bitflip property
525 float min_p_K = 1.0;
526 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
527 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
528 float bitflip_prob = 1.0;
529 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
530 bitflip_prob = 0.09375;
531 }
532 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
533 if (p_K[sum8] * bitflip_prob <= min_p_K) {
534 min_p_K = p_K[sum8] * bitflip_prob;
535 }
536 }
537
538
539 // use number of commmon bits as a tie breaker
540 uint16_t max_common_bits = 0;
541 for (uint16_t i = 0; i < num_good_nonces; i++) {
542 float bitflip_prob = 1.0;
543 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
544 bitflip_prob = 0.09375;
545 }
546 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
547 uint16_t sum_common_bits = 0;
548 for (uint16_t j = 0; j < num_good_nonces; j++) {
549 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
550 }
551 nonces[best_first_bytes[i]].score2 = sum_common_bits;
552 if (sum_common_bits > max_common_bits) {
553 max_common_bits = sum_common_bits;
554 best_first_byte = i;
555 }
556 }
557 }
558
559 // swap best possible first byte to the pole position
560 if (best_first_byte != 0) {
561 uint16_t temp = best_first_bytes[0];
562 best_first_bytes[0] = best_first_bytes[best_first_byte];
563 best_first_bytes[best_first_byte] = temp;
564 }
565
566}
567
568static uint16_t estimate_second_byte_sum(void)
569{
570
571 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
572 float Sum8_prob = 0.0;
573 uint16_t Sum8 = 0;
574 if (nonces[first_byte].updated) {
575 for (uint16_t sum = 0; sum <= 256; sum++) {
576 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
577 if (prob > Sum8_prob) {
578 Sum8_prob = prob;
579 Sum8 = sum;
580 }
581 }
582 nonces[first_byte].Sum8_guess = Sum8;
583 nonces[first_byte].Sum8_prob = Sum8_prob;
584 nonces[first_byte].updated = false;
585 }
586 }
587
588 sort_best_first_bytes();
589
590 uint16_t num_good_nonces = 0;
591 for (uint16_t i = 0; i < 256; i++) {
592 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
593 ++num_good_nonces;
594 }
595 }
596
597 return num_good_nonces;
598}
599
600static int read_nonce_file(void)
601{
602 FILE *fnonces = NULL;
603 uint8_t trgBlockNo = 0;
604 uint8_t trgKeyType = 0;
605 uint8_t read_buf[9];
606 uint32_t nt_enc1 = 0, nt_enc2 = 0;
607 uint8_t par_enc = 0;
608 int total_num_nonces = 0;
609
610 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
611 PrintAndLog("Could not open file nonces.bin");
612 return 1;
613 }
614
615 PrintAndLog("Reading nonces from file nonces.bin...");
616 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
617 if ( bytes_read == 0) {
618 PrintAndLog("File reading error.");
619 fclose(fnonces);
620 return 1;
621 }
622 cuid = bytes_to_num(read_buf, 4);
623 trgBlockNo = bytes_to_num(read_buf+4, 1);
624 trgKeyType = bytes_to_num(read_buf+5, 1);
625
626 while (fread(read_buf, 1, 9, fnonces) == 9) {
627 nt_enc1 = bytes_to_num(read_buf, 4);
628 nt_enc2 = bytes_to_num(read_buf+4, 4);
629 par_enc = bytes_to_num(read_buf+8, 1);
630 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
631 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
632 add_nonce(nt_enc1, par_enc >> 4);
633 add_nonce(nt_enc2, par_enc & 0x0f);
634 total_num_nonces += 2;
635 }
636 fclose(fnonces);
637 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
638 return 0;
639}
640
641static void Check_for_FilterFlipProperties(void)
642{
643 printf("Checking for Filter Flip Properties...\n");
644
645 uint16_t num_bitflips = 0;
646
647 for (uint16_t i = 0; i < 256; i++) {
648 nonces[i].BitFlip[ODD_STATE] = false;
649 nonces[i].BitFlip[EVEN_STATE] = false;
650 }
651
652 for (uint16_t i = 0; i < 256; i++) {
653 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
654 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
655 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
656
657 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
658 nonces[i].BitFlip[ODD_STATE] = true;
659 num_bitflips++;
660 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
661 nonces[i].BitFlip[EVEN_STATE] = true;
662 num_bitflips++;
663 }
664 }
665
666 if (write_stats) {
667 fprintf(fstats, "%d;", num_bitflips);
668 }
669}
670
671static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
672{
673 struct Crypto1State sim_cs = {0, 0};
674 // init cryptostate with key:
675 for(int8_t i = 47; i > 0; i -= 2) {
676 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
677 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
678 }
679
680 *par_enc = 0;
681 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
682 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
683 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
684 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
685 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
686 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
687 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
688 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
689 }
690
691}
692
693static void simulate_acquire_nonces()
694{
695 clock_t time1 = clock();
696 bool filter_flip_checked = false;
697 uint32_t total_num_nonces = 0;
698 uint32_t next_fivehundred = 500;
699 uint32_t total_added_nonces = 0;
700
701 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
702 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
703
704 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
705 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
706
707 do {
708 uint32_t nt_enc = 0;
709 uint8_t par_enc = 0;
710
711 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
712 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
713 total_added_nonces += add_nonce(nt_enc, par_enc);
714 total_num_nonces++;
715
716 if (first_byte_num == 256 ) {
717 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
718 if (!filter_flip_checked) {
719 Check_for_FilterFlipProperties();
720 filter_flip_checked = true;
721 }
722 num_good_first_bytes = estimate_second_byte_sum();
723 if (total_num_nonces > next_fivehundred) {
724 next_fivehundred = (total_num_nonces/500+1) * 500;
725 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
726 total_num_nonces,
727 total_added_nonces,
728 CONFIDENCE_THRESHOLD * 100.0,
729 num_good_first_bytes);
730 }
731 }
732
733 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
734
735 time1 = clock() - time1;
736 if ( time1 > 0 ) {
737 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
738 total_num_nonces,
739 ((float)time1)/CLOCKS_PER_SEC,
740 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
741 }
742 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
743
744}
745
746static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
747{
748 clock_t time1 = clock();
749 bool initialize = true;
750 bool finished = false;
751 bool filter_flip_checked = false;
752 uint32_t flags = 0;
753 uint8_t write_buf[9];
754 uint32_t total_num_nonces = 0;
755 uint32_t next_fivehundred = 500;
756 uint32_t total_added_nonces = 0;
757 uint32_t idx = 1;
758 FILE *fnonces = NULL;
759 UsbCommand resp;
760
761 field_off = false;
762
763 printf("Acquiring nonces...\n");
764
765 do {
766 flags = 0;
767 flags |= initialize ? 0x0001 : 0;
768 flags |= slow ? 0x0002 : 0;
769 flags |= field_off ? 0x0004 : 0;
770 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
771 memcpy(c.d.asBytes, key, 6);
772
773 clearCommandBuffer();
774 SendCommand(&c);
775
776 if (field_off) break;
777
778 if (initialize) {
779 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
780 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
781
782 cuid = resp.arg[1];
783 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
784 if (nonce_file_write && fnonces == NULL) {
785 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
786 PrintAndLog("Could not create file nonces.bin");
787 return 3;
788 }
789 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
790 num_to_bytes(cuid, 4, write_buf);
791 fwrite(write_buf, 1, 4, fnonces);
792 fwrite(&trgBlockNo, 1, 1, fnonces);
793 fwrite(&trgKeyType, 1, 1, fnonces);
794 fflush(fnonces);
795 }
796 }
797
798 if (!initialize) {
799 uint32_t nt_enc1, nt_enc2;
800 uint8_t par_enc;
801 uint16_t num_acquired_nonces = resp.arg[2];
802 uint8_t *bufp = resp.d.asBytes;
803 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
804 nt_enc1 = bytes_to_num(bufp, 4);
805 nt_enc2 = bytes_to_num(bufp+4, 4);
806 par_enc = bytes_to_num(bufp+8, 1);
807
808 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
809 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
810 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
811 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
812
813 if (nonce_file_write && fnonces) {
814 fwrite(bufp, 1, 9, fnonces);
815 fflush(fnonces);
816 }
817
818 bufp += 9;
819 }
820
821 total_num_nonces += num_acquired_nonces;
822 }
823
824 if (first_byte_num == 256 && !field_off) {
825 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
826 if (!filter_flip_checked) {
827 Check_for_FilterFlipProperties();
828 filter_flip_checked = true;
829 }
830
831 num_good_first_bytes = estimate_second_byte_sum();
832 if (total_num_nonces > next_fivehundred) {
833 next_fivehundred = (total_num_nonces/500+1) * 500;
834 printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
835 total_num_nonces,
836 total_added_nonces,
837 NONCES_THRESHOLD * idx,
838 CONFIDENCE_THRESHOLD * 100.0,
839 num_good_first_bytes);
840 }
841
842 if (total_added_nonces >= (NONCES_THRESHOLD * idx))
843 {
844 num_good_first_bytes = estimate_second_byte_sum();
845 clock_t time1 = clock();
846 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
847 time1 = clock() - time1;
848 if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
849
850 if (cracking || known_target_key != -1) {
851 field_off = brute_force(); // switch off field with next SendCommand and then finish
852 }
853
854 idx++;
855 }
856 }
857
858 if (!initialize) {
859 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
860 if (fnonces) fclose(fnonces);
861 return 1;
862 }
863
864 if (resp.arg[0]) {
865 if (fnonces) fclose(fnonces);
866 return resp.arg[0]; // error during nested_hard
867 }
868 }
869
870 initialize = false;
871
872 } while (!finished);
873
874 if (nonce_file_write && fnonces)
875 fclose(fnonces);
876
877 time1 = clock() - time1;
878 if ( time1 > 0 ) {
879 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
880 total_num_nonces,
881 ((float)time1)/CLOCKS_PER_SEC,
882 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
883 );
884 }
885 return 0;
886}
887
888static int init_partial_statelists(void)
889{
890 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
891// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
892 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
893
894 printf("Allocating memory for partial statelists...\n");
895 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
896 for (uint16_t i = 0; i <= 16; i+=2) {
897 partial_statelist[i].len[odd_even] = 0;
898 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
899 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
900 if (partial_statelist[i].states[odd_even] == NULL) {
901 PrintAndLog("Cannot allocate enough memory. Aborting");
902 return 4;
903 }
904 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
905 partial_statelist[i].index[odd_even][j] = NULL;
906 }
907 }
908 }
909
910 printf("Generating partial statelists...\n");
911 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
912 uint32_t index = -1;
913 uint32_t num_of_states = 1<<20;
914 for (uint32_t state = 0; state < num_of_states; state++) {
915 uint16_t sum_property = PartialSumProperty(state, odd_even);
916 uint32_t *p = partial_statelist[sum_property].states[odd_even];
917 p += partial_statelist[sum_property].len[odd_even];
918 *p = state;
919 partial_statelist[sum_property].len[odd_even]++;
920 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
921 if ((state & index_mask) != index) {
922 index = state & index_mask;
923 }
924 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
925 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
926 }
927 }
928 // add End Of List markers
929 for (uint16_t i = 0; i <= 16; i += 2) {
930 uint32_t *p = partial_statelist[i].states[odd_even];
931 p += partial_statelist[i].len[odd_even];
932 *p = END_OF_LIST_MARKER;
933 }
934 }
935
936 return 0;
937}
938
939static void init_BitFlip_statelist(void)
940{
941 printf("Generating bitflip statelist...\n");
942 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
943 uint32_t index = -1;
944 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
945 for (uint32_t state = 0; state < (1 << 20); state++) {
946 if (filter(state) != filter(state^1)) {
947 if ((state & index_mask) != index) {
948 index = state & index_mask;
949 }
950 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
951 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
952 }
953 *p++ = state;
954 }
955 }
956 // set len and add End Of List marker
957 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
958 *p = END_OF_LIST_MARKER;
959 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
960}
961
962static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
963{
964 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
965
966 if (p == NULL) return NULL;
967 while (*p < (state & mask)) p++;
968 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
969 if ((*p & mask) == (state & mask)) return p; // found a match.
970 return NULL; // no match
971}
972
973static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
974{
975 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
976 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
977 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
978 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
979 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
980 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
981 return !all_diff;
982}
983
984static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
985{
986 uint_fast8_t j_bit_mask = 0x01 << bit;
987 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
988 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
989 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
990 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
991 return all_diff;
992}
993
994static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
995{
996 if (odd_even) {
997 // odd bits
998 switch (num_common_bits) {
999 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1000 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1001 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1002 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1003 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1004 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1005 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1006 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
1007 }
1008 } else {
1009 // even bits
1010 switch (num_common_bits) {
1011 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1012 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1013 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1014 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1015 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1016 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1017 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
1018 }
1019 }
1020
1021 return true; // valid state
1022}
1023
1024static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1025{
1026 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1027 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
1028 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1029 uint_fast8_t j = common_bits(bytes_diff);
1030 uint32_t mask = 0xfffffff0;
1031 if (odd_even == ODD_STATE) {
1032 mask >>= j/2;
1033 } else {
1034 mask >>= (j+1)/2;
1035 }
1036 mask &= 0x000fffff;
1037 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1038 bool found_match = false;
1039 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1040 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1041 if (r*(16-s) + (16-r)*s == sum_a8) {
1042 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1043 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1044 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1045 if (p != NULL) {
1046 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
1047 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
1048 found_match = true;
1049 // if ((odd_even == ODD_STATE && state == test_state_odd)
1050 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1051 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1052 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1053 // }
1054 break;
1055 } else {
1056 // if ((odd_even == ODD_STATE && state == test_state_odd)
1057 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1058 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1059 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1060 // }
1061 }
1062 p++;
1063 }
1064 } else {
1065 // if ((odd_even == ODD_STATE && state == test_state_odd)
1066 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1067 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1068 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1069 // }
1070 }
1071 }
1072 }
1073 }
1074
1075 if (!found_match) {
1076 // if ((odd_even == ODD_STATE && state == test_state_odd)
1077 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1078 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1079 // }
1080 return false;
1081 }
1082 }
1083
1084 return true;
1085}
1086
1087static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1088{
1089 for (uint16_t i = 0; i < 256; i++) {
1090 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
1091 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1092 uint_fast8_t j = common_bits(bytes_diff);
1093 uint32_t mask = 0xfffffff0;
1094 if (odd_even == ODD_STATE) {
1095 mask >>= j/2;
1096 } else {
1097 mask >>= (j+1)/2;
1098 }
1099 mask &= 0x000fffff;
1100 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1101 bool found_match = false;
1102 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1103 if (p != NULL) {
1104 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
1105 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
1106 found_match = true;
1107 // if ((odd_even == ODD_STATE && state == test_state_odd)
1108 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1109 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1110 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1111 // }
1112 break;
1113 } else {
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1117 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1118 // }
1119 }
1120 p++;
1121 }
1122 } else {
1123 // if ((odd_even == ODD_STATE && state == test_state_odd)
1124 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1125 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1126 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1127 // }
1128 }
1129 if (!found_match) {
1130 // if ((odd_even == ODD_STATE && state == test_state_odd)
1131 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1132 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1133 // }
1134 return false;
1135 }
1136 }
1137
1138 }
1139
1140 return true;
1141}
1142
1143static struct sl_cache_entry {
1144 uint32_t *sl;
1145 uint32_t len;
1146 } sl_cache[17][17][2];
1147
1148static void init_statelist_cache(void)
1149{
1150 for (uint16_t i = 0; i < 17; i+=2) {
1151 for (uint16_t j = 0; j < 17; j+=2) {
1152 for (uint16_t k = 0; k < 2; k++) {
1153 sl_cache[i][j][k].sl = NULL;
1154 sl_cache[i][j][k].len = 0;
1155 }
1156 }
1157 }
1158}
1159
1160static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1161{
1162 uint32_t worstcase_size = 1<<20;
1163
1164 // check cache for existing results
1165 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1166 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1167 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1168 return 0;
1169 }
1170
1171 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1172 if (candidates->states[odd_even] == NULL) {
1173 PrintAndLog("Out of memory error.\n");
1174 return 4;
1175 }
1176 uint32_t *add_p = candidates->states[odd_even];
1177 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
1178 uint32_t search_mask = 0x000ffff0;
1179 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1180 if (p2 != NULL) {
1181 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
1182 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1183 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
1184 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
1185 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
1186 *add_p++ = (*p1 << 4) | *p2;
1187 }
1188 }
1189 }
1190 p2++;
1191 }
1192 }
1193 }
1194
1195 // set end of list marker and len
1196 *add_p = END_OF_LIST_MARKER;
1197 candidates->len[odd_even] = add_p - candidates->states[odd_even];
1198
1199 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1200
1201 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1202 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1203
1204 return 0;
1205}
1206
1207static statelist_t *add_more_candidates(statelist_t *current_candidates)
1208{
1209 statelist_t *new_candidates = NULL;
1210 if (current_candidates == NULL) {
1211 if (candidates == NULL) {
1212 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1213 }
1214 new_candidates = candidates;
1215 } else {
1216 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1217 }
1218 new_candidates->next = NULL;
1219 new_candidates->len[ODD_STATE] = 0;
1220 new_candidates->len[EVEN_STATE] = 0;
1221 new_candidates->states[ODD_STATE] = NULL;
1222 new_candidates->states[EVEN_STATE] = NULL;
1223 return new_candidates;
1224}
1225
1226static bool TestIfKeyExists(uint64_t key)
1227{
1228 struct Crypto1State *pcs;
1229 pcs = crypto1_create(key);
1230 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1231
1232 uint32_t state_odd = pcs->odd & 0x00ffffff;
1233 uint32_t state_even = pcs->even & 0x00ffffff;
1234 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1235
1236 uint64_t count = 0;
1237 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1238 bool found_odd = false;
1239 bool found_even = false;
1240 uint32_t *p_odd = p->states[ODD_STATE];
1241 uint32_t *p_even = p->states[EVEN_STATE];
1242 while (*p_odd != END_OF_LIST_MARKER) {
1243 if ((*p_odd & 0x00ffffff) == state_odd) {
1244 found_odd = true;
1245 break;
1246 }
1247 p_odd++;
1248 }
1249 while (*p_even != END_OF_LIST_MARKER) {
1250 if ((*p_even & 0x00ffffff) == state_even) {
1251 found_even = true;
1252 }
1253 p_even++;
1254 }
1255 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1256 if (found_odd && found_even) {
1257 PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1258 count,
1259 log(count)/log(2),
1260 maximum_states,
1261 log(maximum_states)/log(2)
1262 );
1263 if (write_stats) {
1264 fprintf(fstats, "1\n");
1265 }
1266 crypto1_destroy(pcs);
1267 return true;
1268 }
1269 }
1270
1271 printf("Key NOT found!\n");
1272 if (write_stats) {
1273 fprintf(fstats, "0\n");
1274 }
1275 crypto1_destroy(pcs);
1276
1277 return false;
1278}
1279
1280static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
1281{
1282 printf("Generating crypto1 state candidates... \n");
1283
1284 statelist_t *current_candidates = NULL;
1285 // estimate maximum candidate states
1286 maximum_states = 0;
1287 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1288 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1289 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1290 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1291 }
1292 }
1293 }
1294
1295 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1296
1297 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
1298
1299 init_statelist_cache();
1300
1301 for (uint16_t p = 0; p <= 16; p += 2) {
1302 for (uint16_t q = 0; q <= 16; q += 2) {
1303 if (p*(16-q) + (16-p)*q == sum_a0) {
1304 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1305 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1306 for (uint16_t r = 0; r <= 16; r += 2) {
1307 for (uint16_t s = 0; s <= 16; s += 2) {
1308 if (r*(16-s) + (16-r)*s == sum_a8) {
1309 current_candidates = add_more_candidates(current_candidates);
1310 if (current_candidates) {
1311 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1312 // and eliminate the need to calculate the other part
1313 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1314 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
1315 add_matching_states(current_candidates, p, r, ODD_STATE);
1316 if(current_candidates->len[ODD_STATE]) {
1317 add_matching_states(current_candidates, q, s, EVEN_STATE);
1318 } else {
1319 current_candidates->len[EVEN_STATE] = 0;
1320 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
1321 *p = END_OF_LIST_MARKER;
1322 }
1323 } else {
1324 add_matching_states(current_candidates, q, s, EVEN_STATE);
1325 if(current_candidates->len[EVEN_STATE]) {
1326 add_matching_states(current_candidates, p, r, ODD_STATE);
1327 } else {
1328 current_candidates->len[ODD_STATE] = 0;
1329 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
1330 *p = END_OF_LIST_MARKER;
1331 }
1332 }
1333 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1334 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1335 }
1336 }
1337 }
1338 }
1339 }
1340 }
1341 }
1342
1343 maximum_states = 0;
1344 unsigned int n = 0;
1345 for (statelist_t *sl = candidates; sl != NULL && n < 128; sl = sl->next, n++) {
1346 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1347 }
1348
1349 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1350
1351 float kcalc = log(maximum_states)/log(2);
1352 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
1353 if (write_stats) {
1354 if (maximum_states != 0) {
1355 fprintf(fstats, "%1.1f;", kcalc);
1356 } else {
1357 fprintf(fstats, "%1.1f;", 0.0);
1358 }
1359 }
1360 if (kcalc < CRACKING_THRESHOLD) return true;
1361
1362 return false;
1363}
1364
1365static void free_candidates_memory(statelist_t *sl)
1366{
1367 if (sl == NULL) {
1368 return;
1369 } else {
1370 free_candidates_memory(sl->next);
1371 free(sl);
1372 }
1373}
1374
1375static void free_statelist_cache(void)
1376{
1377 for (uint16_t i = 0; i < 17; i+=2) {
1378 for (uint16_t j = 0; j < 17; j+=2) {
1379 for (uint16_t k = 0; k < 2; k++) {
1380 free(sl_cache[i][j][k].sl);
1381 }
1382 }
1383 }
1384}
1385
1386#define MAX_BUCKETS 128
1387uint64_t foundkey = 0;
1388size_t keys_found = 0;
1389size_t bucket_count = 0;
1390statelist_t* buckets[MAX_BUCKETS];
1391size_t total_states_tested = 0;
1392size_t thread_count = 4;
1393
1394// these bitsliced states will hold identical states in all slices
1395bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1396
1397// arrays of bitsliced states with identical values in all slices
1398bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1399bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1400
1401#define EXACT_COUNT
1402
1403static const uint64_t crack_states_bitsliced(statelist_t *p){
1404 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1405 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1406 uint64_t key = -1;
1407 uint8_t bSize = sizeof(bitslice_t);
1408
1409#ifdef EXACT_COUNT
1410 size_t bucket_states_tested = 0;
1411 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1412#else
1413 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1414#endif
1415
1416 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1417 size_t bitsliced_blocks = 0;
1418 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1419
1420 // bitslice all the even states
1421 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1422
1423#ifdef __WIN32
1424 #ifdef __MINGW32__
1425 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1426 #else
1427 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1428 #endif
1429#else
1430 #ifdef __APPLE__
1431 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1432 #else
1433 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
1434 #endif
1435#endif
1436
1437 if ( !lstate_p ) {
1438 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1439 return key;
1440 }
1441
1442 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1443
1444 // bitslice even half-states
1445 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1446#ifdef EXACT_COUNT
1447 bucket_size[bitsliced_blocks] = max_slices;
1448#endif
1449 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1450 uint32_t e = *(p_even+slice_idx);
1451 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1452 // set even bits
1453 if(e&1){
1454 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1455 }
1456 }
1457 }
1458 // compute the rollback bits
1459 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1460 // inlined crypto1_bs_lfsr_rollback
1461 const bitslice_value_t feedout = lstate_p[0].value;
1462 ++lstate_p;
1463 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1464 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1465 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1466 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1467 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1468 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1469 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1470 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1471 }
1472 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1473 }
1474
1475 // bitslice every odd state to every block of even half-states with half-finished rollback
1476 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1477 // early abort
1478 if(keys_found){
1479 goto out;
1480 }
1481
1482 // set the odd bits and compute rollback
1483 uint64_t o = (uint64_t) *p_odd;
1484 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1485 // pre-compute part of the odd feedback bits (minus rollback)
1486 bool odd_feedback_bit = parity(o&0x9ce5c);
1487
1488 crypto1_bs_rewind_a0();
1489 // set odd bits
1490 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1491 if(o & 1){
1492 state_p[state_idx] = bs_ones;
1493 } else {
1494 state_p[state_idx] = bs_zeroes;
1495 }
1496 }
1497 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1498
1499 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1500 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
1501 size_t state_idx;
1502 // set even bits
1503 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1504 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1505 }
1506 // set rollback bits
1507 uint64_t lo = o;
1508 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1509 // set the odd bits and take in the odd rollback bits from the even states
1510 if(lo & 1){
1511 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1512 } else {
1513 state_p[state_idx] = bitsliced_even_state[state_idx];
1514 }
1515
1516 // set the even bits and take in the even rollback bits from the odd states
1517 if((lo >> 32) & 1){
1518 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1519 } else {
1520 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1521 }
1522 }
1523
1524#ifdef EXACT_COUNT
1525 bucket_states_tested += bucket_size[block_idx];
1526#endif
1527 // pre-compute first keystream and feedback bit vectors
1528 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1529 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1530 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1531 state_p[47-24].value ^ state_p[47-42].value);
1532
1533 // vector to contain test results (1 = passed, 0 = failed)
1534 bitslice_t results = bs_ones;
1535
1536 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1537 size_t parity_bit_idx = 0;
1538 bitslice_value_t fb_bits = fbb;
1539 bitslice_value_t ks_bits = ksb;
1540 state_p = &states[KEYSTREAM_SIZE-1];
1541 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1542
1543 // highest bit is transmitted/received first
1544 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1545 // decrypt nonce bits
1546 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1547 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1548
1549 // compute real parity bits on the fly
1550 parity_bit_vector ^= decrypted_nonce_bit_vector;
1551
1552 // update state
1553 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1554
1555 // compute next keystream bit
1556 ks_bits = crypto1_bs_f20(state_p);
1557
1558 // for each byte:
1559 if((ks_idx&7) == 0){
1560 // get encrypted parity bits
1561 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1562
1563 // decrypt parity bits
1564 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1565
1566 // compare actual parity bits with decrypted parity bits and take count in results vector
1567 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1568
1569 // make sure we still have a match in our set
1570 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1571
1572 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1573 // the short-circuiting also helps
1574 if(results.bytes64[0] == 0
1575#if MAX_BITSLICES > 64
1576 && results.bytes64[1] == 0
1577#endif
1578#if MAX_BITSLICES > 128
1579 && results.bytes64[2] == 0
1580 && results.bytes64[3] == 0
1581#endif
1582 ){
1583 goto stop_tests;
1584 }
1585 // this is about as fast but less portable (requires -std=gnu99)
1586 // asm goto ("ptest %1, %0\n\t"
1587 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1588 parity_bit_vector = bs_zeroes.value;
1589 }
1590 // compute next feedback bit vector
1591 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1592 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1593 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1594 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1595 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1596 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1597 }
1598 }
1599 // all nonce tests were successful: we've found the key in this block!
1600 state_t keys[MAX_BITSLICES];
1601 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1602 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1603 if(get_vector_bit(results_idx, results)){
1604 key = keys[results_idx].value;
1605 goto out;
1606 }
1607 }
1608stop_tests:
1609 // prepare to set new states
1610 crypto1_bs_rewind_a0();
1611 continue;
1612 }
1613 }
1614
1615out:
1616 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1617
1618#ifdef __WIN32
1619 #ifdef __MINGW32__
1620 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1621 #else
1622 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1623 #endif
1624#else
1625 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1626#endif
1627
1628 }
1629 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1630 return key;
1631}
1632
1633static void* crack_states_thread(void* x){
1634 const size_t thread_id = (size_t)x;
1635 size_t current_bucket = thread_id;
1636 while(current_bucket < bucket_count){
1637 statelist_t * bucket = buckets[current_bucket];
1638 if(bucket){
1639 const uint64_t key = crack_states_bitsliced(bucket);
1640 if(key != -1){
1641 __sync_fetch_and_add(&keys_found, 1);
1642 __sync_fetch_and_add(&foundkey, key);
1643 break;
1644 } else if(keys_found){
1645 break;
1646 } else {
1647 printf(".");
1648 fflush(stdout);
1649 }
1650 }
1651 current_bucket += thread_count;
1652 }
1653 return NULL;
1654}
1655
1656static bool brute_force(void)
1657{
1658 bool ret = false;
1659 if (known_target_key != -1) {
1660 PrintAndLog("Looking for known target key in remaining key space...");
1661 ret = TestIfKeyExists(known_target_key);
1662 } else {
1663 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1664
1665 PrintAndLog("Brute force phase starting.");
1666
1667 clock_t time1 = clock();
1668 keys_found = 0;
1669 foundkey = 0;
1670
1671 crypto1_bs_init();
1672
1673 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1674 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
1675 // convert to 32 bit little-endian
1676 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
1677
1678 PrintAndLog("Bitslicing nonces...");
1679 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1680 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1681 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1682 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1683 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1684 // convert to 32 bit little-endian
1685 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
1686 }
1687 total_states_tested = 0;
1688
1689 // count number of states to go
1690 bucket_count = 0;
1691 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
1692 buckets[bucket_count] = p;
1693 bucket_count++;
1694 }
1695 buckets[bucket_count] = NULL;
1696
1697#ifndef __WIN32
1698 thread_count = sysconf(_SC_NPROCESSORS_CONF);
1699 if ( thread_count < 1)
1700 thread_count = 1;
1701#endif /* _WIN32 */
1702
1703 pthread_t threads[thread_count];
1704
1705 // enumerate states using all hardware threads, each thread handles one bucket
1706 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
1707
1708 for(size_t i = 0; i < thread_count; i++){
1709 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1710 }
1711 for(size_t i = 0; i < thread_count; i++){
1712 pthread_join(threads[i], 0);
1713 }
1714
1715 time1 = clock() - time1;
1716 if ( time1 < 0 ) time1 = -1;
1717
1718 if (keys_found && TestIfKeyExists(foundkey)) {
1719 PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC);
1720 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
1721 ret = true;
1722 } else {
1723 PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC);
1724 }
1725
1726 // reset this counter for the next call
1727 nonces_to_bruteforce = 0;
1728 }
1729
1730 return ret;
1731}
1732
1733int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
1734{
1735 // initialize Random number generator
1736 time_t t;
1737 srand((unsigned) time(&t));
1738
1739 if (trgkey != NULL) {
1740 known_target_key = bytes_to_num(trgkey, 6);
1741 } else {
1742 known_target_key = -1;
1743 }
1744
1745 init_partial_statelists();
1746 init_BitFlip_statelist();
1747 write_stats = false;
1748
1749 if (tests) {
1750 // set the correct locale for the stats printing
1751 setlocale(LC_ALL, "");
1752 write_stats = true;
1753 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1754 PrintAndLog("Could not create/open file hardnested_stats.txt");
1755 return 3;
1756 }
1757 for (uint32_t i = 0; i < tests; i++) {
1758 init_nonce_memory();
1759 simulate_acquire_nonces();
1760 Tests();
1761 printf("Sum(a0) = %d\n", first_byte_Sum);
1762 fprintf(fstats, "%d;", first_byte_Sum);
1763 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1764 brute_force();
1765 free_nonces_memory();
1766 free_statelist_cache();
1767 free_candidates_memory(candidates);
1768 candidates = NULL;
1769 }
1770 fclose(fstats);
1771 fstats = NULL;
1772 } else {
1773 init_nonce_memory();
1774 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1775 if (read_nonce_file() != 0) {
1776 return 3;
1777 }
1778 Check_for_FilterFlipProperties();
1779 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1780 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1781
1782 clock_t time1 = clock();
1783 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1784 time1 = clock() - time1;
1785 if (time1 > 0)
1786 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1787
1788 if (cracking || known_target_key != -1) {
1789 brute_force();
1790 }
1791
1792 } else { // acquire nonces.
1793 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1794 if (is_OK != 0) {
1795 return is_OK;
1796 }
1797 }
1798
1799 //Tests();
1800
1801 //PrintAndLog("");
1802 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1803 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1804 // best_first_bytes[0],
1805 // best_first_bytes[1],
1806 // best_first_bytes[2],
1807 // best_first_bytes[3],
1808 // best_first_bytes[4],
1809 // best_first_bytes[5],
1810 // best_first_bytes[6],
1811 // best_first_bytes[7],
1812 // best_first_bytes[8],
1813 // best_first_bytes[9] );
1814
1815 free_nonces_memory();
1816 free_statelist_cache();
1817 free_candidates_memory(candidates);
1818 candidates = NULL;
1819 }
1820 return 0;
1821}
Impressum, Datenschutz