]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
Merge pull request #508 from pwpiwi/fix_AVX512
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30{
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false, 0);
76}
77
78/* blank r/w tag data stream
79...0000000000000000 01111111
801010101010101010101010101010101010101010101010101010101010101010
810011010010100001
8201111111
83101010101010101[0]000...
84
85[5555fe852c5555555555555555fe0000]
86*/
87void ReadTItag(void)
88{
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215}
216
217void WriteTIbyte(uint8_t b)
218{
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240}
241
242void AcquireTiType(void)
243{
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311}
312
313// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314// if crc provided, it will be written with the data verbatim (even if bogus)
315// if not provided a valid crc will be computed from the data and written.
316void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317{
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use `lf ti read` to check");
383}
384
385void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386{
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
391 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
393
394 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
395
396 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
397 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
398
399 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
400 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
401
402 i = 0;
403 for(;;) {
404 //wait until SSC_CLK goes HIGH
405 int ii = 0;
406 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
407 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
408 if ( ii == 1000 ) {
409 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
410 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
411 DbpString("Stopped");
412 return;
413 }
414 ii=0;
415 }
416 WDT_HIT();
417 ii++;
418 }
419 if (ledcontrol)
420 LED_D_ON();
421
422 if(tab[i])
423 OPEN_COIL();
424 else
425 SHORT_COIL();
426
427 if (ledcontrol)
428 LED_D_OFF();
429 ii=0;
430 //wait until SSC_CLK goes LOW
431 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
432 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
433 if ( ii == 1000 ) {
434 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
435 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
436 DbpString("Stopped");
437 return;
438 }
439 ii=0;
440 }
441 WDT_HIT();
442 ii++;
443 }
444
445 i++;
446 if(i == period) {
447
448 i = 0;
449 if (gap) {
450 SHORT_COIL();
451 SpinDelayUs(gap);
452 }
453 }
454
455 }
456}
457
458#define DEBUG_FRAME_CONTENTS 1
459void SimulateTagLowFrequencyBidir(int divisor, int t0)
460{
461}
462
463// compose fc/8 fc/10 waveform (FSK2)
464static void fc(int c, int *n)
465{
466 uint8_t *dest = BigBuf_get_addr();
467 int idx;
468
469 // for when we want an fc8 pattern every 4 logical bits
470 if(c==0) {
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=1;
473 dest[((*n)++)]=1;
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=0;
476 dest[((*n)++)]=0;
477 dest[((*n)++)]=0;
478 dest[((*n)++)]=0;
479 }
480
481 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
482 if(c==8) {
483 for (idx=0; idx<6; idx++) {
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=1;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 }
493 }
494
495 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
496 if(c==10) {
497 for (idx=0; idx<5; idx++) {
498 dest[((*n)++)]=1;
499 dest[((*n)++)]=1;
500 dest[((*n)++)]=1;
501 dest[((*n)++)]=1;
502 dest[((*n)++)]=1;
503 dest[((*n)++)]=0;
504 dest[((*n)++)]=0;
505 dest[((*n)++)]=0;
506 dest[((*n)++)]=0;
507 dest[((*n)++)]=0;
508 }
509 }
510}
511// compose fc/X fc/Y waveform (FSKx)
512static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
513{
514 uint8_t *dest = BigBuf_get_addr();
515 uint8_t halfFC = fc/2;
516 uint8_t wavesPerClock = clock/fc;
517 uint8_t mod = clock % fc; //modifier
518 uint8_t modAdj = fc/mod; //how often to apply modifier
519 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
520 // loop through clock - step field clock
521 for (uint8_t idx=0; idx < wavesPerClock; idx++){
522 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
523 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
524 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
525 *n += fc;
526 }
527 if (mod>0) (*modCnt)++;
528 if ((mod>0) && modAdjOk){ //fsk2
529 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
530 memset(dest+(*n), 0, fc-halfFC);
531 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
532 *n += fc;
533 }
534 }
535 if (mod>0 && !modAdjOk){ //fsk1
536 memset(dest+(*n), 0, mod-(mod/2));
537 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
538 *n += mod;
539 }
540}
541
542// prepare a waveform pattern in the buffer based on the ID given then
543// simulate a HID tag until the button is pressed
544void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
545{
546 int n=0, i=0;
547 /*
548 HID tag bitstream format
549 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
550 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
551 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
552 A fc8 is inserted before every 4 bits
553 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
554 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
555 */
556
557 if (hi>0xFFF) {
558 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
559 return;
560 }
561 // set LF so we don't kill the bigbuf we are setting with simulation data.
562 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
563
564 fc(0,&n);
565 // special start of frame marker containing invalid bit sequences
566 fc(8, &n); fc(8, &n); // invalid
567 fc(8, &n); fc(10, &n); // logical 0
568 fc(10, &n); fc(10, &n); // invalid
569 fc(8, &n); fc(10, &n); // logical 0
570
571 WDT_HIT();
572 // manchester encode bits 43 to 32
573 for (i=11; i>=0; i--) {
574 if ((i%4)==3) fc(0,&n);
575 if ((hi>>i)&1) {
576 fc(10, &n); fc(8, &n); // low-high transition
577 } else {
578 fc(8, &n); fc(10, &n); // high-low transition
579 }
580 }
581
582 WDT_HIT();
583 // manchester encode bits 31 to 0
584 for (i=31; i>=0; i--) {
585 if ((i%4)==3) fc(0,&n);
586 if ((lo>>i)&1) {
587 fc(10, &n); fc(8, &n); // low-high transition
588 } else {
589 fc(8, &n); fc(10, &n); // high-low transition
590 }
591 }
592
593 if (ledcontrol)
594 LED_A_ON();
595 SimulateTagLowFrequency(n, 0, ledcontrol);
596
597 if (ledcontrol)
598 LED_A_OFF();
599}
600
601// prepare a waveform pattern in the buffer based on the ID given then
602// simulate a FSK tag until the button is pressed
603// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
604void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
605{
606 int ledcontrol=1;
607 int n=0, i=0;
608 uint8_t fcHigh = arg1 >> 8;
609 uint8_t fcLow = arg1 & 0xFF;
610 uint16_t modCnt = 0;
611 uint8_t clk = arg2 & 0xFF;
612 uint8_t invert = (arg2 >> 8) & 1;
613
614 // set LF so we don't kill the bigbuf we are setting with simulation data.
615 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
616
617 for (i=0; i<size; i++){
618 if (BitStream[i] == invert){
619 fcAll(fcLow, &n, clk, &modCnt);
620 } else {
621 fcAll(fcHigh, &n, clk, &modCnt);
622 }
623 }
624 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
625 /*Dbprintf("DEBUG: First 32:");
626 uint8_t *dest = BigBuf_get_addr();
627 i=0;
628 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
629 i+=16;
630 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
631 */
632 if (ledcontrol)
633 LED_A_ON();
634
635 SimulateTagLowFrequency(n, 0, ledcontrol);
636
637 if (ledcontrol)
638 LED_A_OFF();
639}
640
641// compose ask waveform for one bit(ASK)
642static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
643{
644 uint8_t *dest = BigBuf_get_addr();
645 uint8_t halfClk = clock/2;
646 // c = current bit 1 or 0
647 if (manchester==1){
648 memset(dest+(*n), c, halfClk);
649 memset(dest+(*n) + halfClk, c^1, halfClk);
650 } else {
651 memset(dest+(*n), c, clock);
652 }
653 *n += clock;
654}
655
656static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
657{
658 uint8_t *dest = BigBuf_get_addr();
659 uint8_t halfClk = clock/2;
660 if (c){
661 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
662 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
663 } else {
664 memset(dest+(*n), c ^ *phase, clock);
665 *phase ^= 1;
666 }
667 *n += clock;
668}
669
670static void stAskSimBit(int *n, uint8_t clock) {
671 uint8_t *dest = BigBuf_get_addr();
672 uint8_t halfClk = clock/2;
673 //ST = .5 high .5 low 1.5 high .5 low 1 high
674 memset(dest+(*n), 1, halfClk);
675 memset(dest+(*n) + halfClk, 0, halfClk);
676 memset(dest+(*n) + clock, 1, clock + halfClk);
677 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
678 memset(dest+(*n) + clock*3, 1, clock);
679 *n += clock*4;
680}
681
682// args clock, ask/man or askraw, invert, transmission separator
683void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
684{
685 int ledcontrol = 1;
686 int n=0, i=0;
687 uint8_t clk = (arg1 >> 8) & 0xFF;
688 uint8_t encoding = arg1 & 0xFF;
689 uint8_t separator = arg2 & 1;
690 uint8_t invert = (arg2 >> 8) & 1;
691
692 // set LF so we don't kill the bigbuf we are setting with simulation data.
693 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
694
695 if (encoding==2){ //biphase
696 uint8_t phase=0;
697 for (i=0; i<size; i++){
698 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
699 }
700 if (phase==1) { //run a second set inverted to keep phase in check
701 for (i=0; i<size; i++){
702 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
703 }
704 }
705 } else { // ask/manchester || ask/raw
706 for (i=0; i<size; i++){
707 askSimBit(BitStream[i]^invert, &n, clk, encoding);
708 }
709 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
710 for (i=0; i<size; i++){
711 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
712 }
713 }
714 }
715 if (separator==1 && encoding == 1)
716 stAskSimBit(&n, clk);
717 else if (separator==1)
718 Dbprintf("sorry but separator option not yet available");
719
720 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
721 //DEBUG
722 //Dbprintf("First 32:");
723 //uint8_t *dest = BigBuf_get_addr();
724 //i=0;
725 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
726 //i+=16;
727 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
728
729 if (ledcontrol) LED_A_ON();
730 SimulateTagLowFrequency(n, 0, ledcontrol);
731 if (ledcontrol) LED_A_OFF();
732}
733
734//carrier can be 2,4 or 8
735static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
736{
737 uint8_t *dest = BigBuf_get_addr();
738 uint8_t halfWave = waveLen/2;
739 //uint8_t idx;
740 int i = 0;
741 if (phaseChg){
742 // write phase change
743 memset(dest+(*n), *curPhase^1, halfWave);
744 memset(dest+(*n) + halfWave, *curPhase, halfWave);
745 *n += waveLen;
746 *curPhase ^= 1;
747 i += waveLen;
748 }
749 //write each normal clock wave for the clock duration
750 for (; i < clk; i+=waveLen){
751 memset(dest+(*n), *curPhase, halfWave);
752 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
753 *n += waveLen;
754 }
755}
756
757// args clock, carrier, invert,
758void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
759{
760 int ledcontrol=1;
761 int n=0, i=0;
762 uint8_t clk = arg1 >> 8;
763 uint8_t carrier = arg1 & 0xFF;
764 uint8_t invert = arg2 & 0xFF;
765 uint8_t curPhase = 0;
766 // set LF so we don't kill the bigbuf we are setting with simulation data.
767 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
768
769 for (i=0; i<size; i++){
770 if (BitStream[i] == curPhase){
771 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
772 } else {
773 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
774 }
775 }
776 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
777 //Dbprintf("DEBUG: First 32:");
778 //uint8_t *dest = BigBuf_get_addr();
779 //i=0;
780 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
781 //i+=16;
782 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
783
784 if (ledcontrol) LED_A_ON();
785 SimulateTagLowFrequency(n, 0, ledcontrol);
786 if (ledcontrol) LED_A_OFF();
787}
788
789// loop to get raw HID waveform then FSK demodulate the TAG ID from it
790void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
791{
792 uint8_t *dest = BigBuf_get_addr();
793 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
794 size_t size;
795 uint32_t hi2=0, hi=0, lo=0;
796 int idx=0;
797 int dummyIdx = 0;
798 // Configure to go in 125Khz listen mode
799 LFSetupFPGAForADC(95, true);
800
801 //clear read buffer
802 BigBuf_Clear_keep_EM();
803
804 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
805
806 WDT_HIT();
807 if (ledcontrol) LED_A_ON();
808
809 DoAcquisition_default(-1,true);
810 // FSK demodulator
811 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
812 size = 50*128*2; //big enough to catch 2 sequences of largest format
813 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
814
815 if (idx>0 && lo>0 && (size==96 || size==192)){
816 // go over previously decoded manchester data and decode into usable tag ID
817 if (hi2 != 0){ //extra large HID tags 88/192 bits
818 Dbprintf("TAG ID: %x%08x%08x (%d)",
819 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
820 }else { //standard HID tags 44/96 bits
821 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
822 uint8_t bitlen = 0;
823 uint32_t fc = 0;
824 uint32_t cardnum = 0;
825 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
826 uint32_t lo2=0;
827 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
828 uint8_t idx3 = 1;
829 while(lo2 > 1){ //find last bit set to 1 (format len bit)
830 lo2=lo2 >> 1;
831 idx3++;
832 }
833 bitlen = idx3+19;
834 fc =0;
835 cardnum=0;
836 if(bitlen == 26){
837 cardnum = (lo>>1)&0xFFFF;
838 fc = (lo>>17)&0xFF;
839 }
840 if(bitlen == 37){
841 cardnum = (lo>>1)&0x7FFFF;
842 fc = ((hi&0xF)<<12)|(lo>>20);
843 }
844 if(bitlen == 34){
845 cardnum = (lo>>1)&0xFFFF;
846 fc= ((hi&1)<<15)|(lo>>17);
847 }
848 if(bitlen == 35){
849 cardnum = (lo>>1)&0xFFFFF;
850 fc = ((hi&1)<<11)|(lo>>21);
851 }
852 }
853 else { //if bit 38 is not set then 37 bit format is used
854 bitlen= 37;
855 fc =0;
856 cardnum=0;
857 if(bitlen==37){
858 cardnum = (lo>>1)&0x7FFFF;
859 fc = ((hi&0xF)<<12)|(lo>>20);
860 }
861 }
862 //Dbprintf("TAG ID: %x%08x (%d)",
863 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
864 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
865 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
866 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
867 }
868 if (findone){
869 if (ledcontrol) LED_A_OFF();
870 *high = hi;
871 *low = lo;
872 break;
873 }
874 // reset
875 }
876 hi2 = hi = lo = idx = 0;
877 WDT_HIT();
878 }
879
880 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
881 DbpString("Stopped");
882 if (ledcontrol) LED_A_OFF();
883}
884
885// loop to get raw HID waveform then FSK demodulate the TAG ID from it
886void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
887{
888 uint8_t *dest = BigBuf_get_addr();
889 size_t size;
890 int idx=0, dummyIdx=0;
891 //clear read buffer
892 BigBuf_Clear_keep_EM();
893 // Configure to go in 125Khz listen mode
894 LFSetupFPGAForADC(95, true);
895
896 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
897
898 WDT_HIT();
899 if (ledcontrol) LED_A_ON();
900
901 DoAcquisition_default(-1,true);
902 // FSK demodulator
903 size = 50*128*2; //big enough to catch 2 sequences of largest format
904 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
905
906 if (idx<=0 || size!=96) continue;
907 // Index map
908 // 0 10 20 30 40 50 60
909 // | | | | | | |
910 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
911 // -----------------------------------------------------------------------------
912 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
913 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
914 // |---26 bit---| |-----117----||-------------142-------------|
915 // b = format bit len, o = odd parity of last 3 bits
916 // f = facility code, c = card number
917 // w = wiegand parity
918 // (26 bit format shown)
919
920 //get raw ID before removing parities
921 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
922 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
923 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
924
925 size = removeParity(dest, idx+8, 4, 1, 88);
926 if (size != 66) continue;
927 // ok valid card found!
928
929 // Index map
930 // 0 10 20 30 40 50 60
931 // | | | | | | |
932 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
933 // -----------------------------------------------------------------------------
934 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
935 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
936 // |26 bit| |-117--| |-----142------|
937 // b = format bit len, o = odd parity of last 3 bits
938 // f = facility code, c = card number
939 // w = wiegand parity
940 // (26 bit format shown)
941
942 uint32_t fc = 0;
943 uint32_t cardnum = 0;
944 uint32_t code1 = 0;
945 uint32_t code2 = 0;
946 uint8_t fmtLen = bytebits_to_byte(dest,8);
947 if (fmtLen==26){
948 fc = bytebits_to_byte(dest+9, 8);
949 cardnum = bytebits_to_byte(dest+17, 16);
950 code1 = bytebits_to_byte(dest+8,fmtLen);
951 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
952 } else {
953 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
954 if (fmtLen>32){
955 code1 = bytebits_to_byte(dest+8,fmtLen-32);
956 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
957 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
958 } else{
959 code1 = bytebits_to_byte(dest+8,fmtLen);
960 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
961 }
962 }
963 if (findone){
964 if (ledcontrol) LED_A_OFF();
965 break;
966 }
967 // reset
968 idx = 0;
969 WDT_HIT();
970 }
971 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
972 DbpString("Stopped");
973 if (ledcontrol) LED_A_OFF();
974}
975
976void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
977{
978 uint8_t *dest = BigBuf_get_addr();
979
980 size_t size=0, idx=0;
981 int clk=0, invert=0, errCnt=0, maxErr=20;
982 uint32_t hi=0;
983 uint64_t lo=0;
984 //clear read buffer
985 BigBuf_Clear_keep_EM();
986 // Configure to go in 125Khz listen mode
987 LFSetupFPGAForADC(95, true);
988
989 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
990
991 WDT_HIT();
992 if (ledcontrol) LED_A_ON();
993
994 DoAcquisition_default(-1,true);
995 size = BigBuf_max_traceLen();
996 //askdemod and manchester decode
997 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
998 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
999 WDT_HIT();
1000
1001 if (errCnt<0) continue;
1002
1003 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1004 if (errCnt){
1005 if (size>64){
1006 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1007 hi,
1008 (uint32_t)(lo>>32),
1009 (uint32_t)lo,
1010 (uint32_t)(lo&0xFFFF),
1011 (uint32_t)((lo>>16LL) & 0xFF),
1012 (uint32_t)(lo & 0xFFFFFF));
1013 } else {
1014 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1015 (uint32_t)(lo>>32),
1016 (uint32_t)lo,
1017 (uint32_t)(lo&0xFFFF),
1018 (uint32_t)((lo>>16LL) & 0xFF),
1019 (uint32_t)(lo & 0xFFFFFF));
1020 }
1021
1022 if (findone){
1023 if (ledcontrol) LED_A_OFF();
1024 *high=lo>>32;
1025 *low=lo & 0xFFFFFFFF;
1026 break;
1027 }
1028 }
1029 WDT_HIT();
1030 hi = lo = size = idx = 0;
1031 clk = invert = errCnt = 0;
1032 }
1033 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1034 DbpString("Stopped");
1035 if (ledcontrol) LED_A_OFF();
1036}
1037
1038void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1039{
1040 uint8_t *dest = BigBuf_get_addr();
1041 int idx=0;
1042 uint32_t code=0, code2=0;
1043 uint8_t version=0;
1044 uint8_t facilitycode=0;
1045 uint16_t number=0;
1046 int dummyIdx=0;
1047 //clear read buffer
1048 BigBuf_Clear_keep_EM();
1049 // Configure to go in 125Khz listen mode
1050 LFSetupFPGAForADC(95, true);
1051
1052 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1053 WDT_HIT();
1054 if (ledcontrol) LED_A_ON();
1055 DoAcquisition_default(-1,true);
1056 //fskdemod and get start index
1057 WDT_HIT();
1058 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1059 if (idx<0) continue;
1060 //valid tag found
1061
1062 //Index map
1063 //0 10 20 30 40 50 60
1064 //| | | | | | |
1065 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1066 //-----------------------------------------------------------------------------
1067 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1068 //
1069 //XSF(version)facility:codeone+codetwo
1070 //Handle the data
1071 if(findone){ //only print binary if we are doing one
1072 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1073 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1074 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1075 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1076 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1077 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1078 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1079 }
1080 code = bytebits_to_byte(dest+idx,32);
1081 code2 = bytebits_to_byte(dest+idx+32,32);
1082 version = bytebits_to_byte(dest+idx+27,8); //14,4
1083 facilitycode = bytebits_to_byte(dest+idx+18,8);
1084 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1085
1086 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1087 // if we're only looking for one tag
1088 if (findone){
1089 if (ledcontrol) LED_A_OFF();
1090 //LED_A_OFF();
1091 *high=code;
1092 *low=code2;
1093 break;
1094 }
1095 code=code2=0;
1096 version=facilitycode=0;
1097 number=0;
1098 idx=0;
1099
1100 WDT_HIT();
1101 }
1102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1103 DbpString("Stopped");
1104 if (ledcontrol) LED_A_OFF();
1105}
1106
1107/*------------------------------
1108 * T5555/T5557/T5567/T5577 routines
1109 *------------------------------
1110 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1111 *
1112 * Relevant communication times in microsecond
1113 * To compensate antenna falling times shorten the write times
1114 * and enlarge the gap ones.
1115 * Q5 tags seems to have issues when these values changes.
1116 */
1117#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1118#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1119#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1120#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1121#define READ_GAP 15*8
1122
1123void TurnReadLFOn(int delay) {
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1125 // Give it a bit of time for the resonant antenna to settle.
1126 WaitUS(delay); //155*8 //50*8
1127}
1128
1129// Write one bit to card
1130void T55xxWriteBit(int bit) {
1131 if (!bit)
1132 TurnReadLFOn(WRITE_0);
1133 else
1134 TurnReadLFOn(WRITE_1);
1135 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1136 WaitUS(WRITE_GAP);
1137}
1138
1139// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1140void T55xxResetRead(void) {
1141 LED_A_ON();
1142 //clear buffer now so it does not interfere with timing later
1143 BigBuf_Clear_keep_EM();
1144
1145 // Set up FPGA, 125kHz
1146 LFSetupFPGAForADC(95, true);
1147 StartTicks();
1148 // make sure tag is fully powered up...
1149 WaitMS(5);
1150
1151 // Trigger T55x7 in mode.
1152 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1153 WaitUS(START_GAP);
1154
1155 // reset tag - op code 00
1156 T55xxWriteBit(0);
1157 T55xxWriteBit(0);
1158
1159 TurnReadLFOn(READ_GAP);
1160
1161 // Acquisition
1162 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1163
1164 // Turn the field off
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1166 cmd_send(CMD_ACK,0,0,0,0,0);
1167 LED_A_OFF();
1168}
1169
1170// Write one card block in page 0, no lock
1171void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1172 LED_A_ON();
1173 bool PwdMode = arg & 0x1;
1174 uint8_t Page = (arg & 0x2)>>1;
1175 bool testMode = arg & 0x4;
1176 uint32_t i = 0;
1177
1178 // Set up FPGA, 125kHz
1179 LFSetupFPGAForADC(95, true);
1180 StartTicks();
1181 // make sure tag is fully powered up...
1182 WaitMS(5);
1183 // Trigger T55x7 in mode.
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1185 WaitUS(START_GAP);
1186
1187 if (testMode) Dbprintf("TestMODE");
1188 // Std Opcode 10
1189 T55xxWriteBit(testMode ? 0 : 1);
1190 T55xxWriteBit(testMode ? 1 : Page); //Page 0
1191
1192 if (PwdMode) {
1193 // Send Pwd
1194 for (i = 0x80000000; i != 0; i >>= 1)
1195 T55xxWriteBit(Pwd & i);
1196 }
1197 // Send Lock bit
1198 T55xxWriteBit(0);
1199
1200 // Send Data
1201 for (i = 0x80000000; i != 0; i >>= 1)
1202 T55xxWriteBit(Data & i);
1203
1204 // Send Block number
1205 for (i = 0x04; i != 0; i >>= 1)
1206 T55xxWriteBit(Block & i);
1207
1208 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1209 // so wait a little more)
1210
1211 // "there is a clock delay before programming"
1212 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1213 // so we should wait 1 clock + 5.6ms then read response?
1214 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1215 if (testMode) {
1216 //TESTMODE TIMING TESTS:
1217 // <566us does nothing
1218 // 566-568 switches between wiping to 0s and doing nothing
1219 // 5184 wipes and allows 1 block to be programmed.
1220 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1221 TurnReadLFOn(5184);
1222
1223 } else {
1224 TurnReadLFOn(20 * 1000);
1225 //could attempt to do a read to confirm write took
1226 // as the tag should repeat back the new block
1227 // until it is reset, but to confirm it we would
1228 // need to know the current block 0 config mode for
1229 // modulation clock an other details to demod the response...
1230 // response should be (for t55x7) a 0 bit then (ST if on)
1231 // block data written in on repeat until reset.
1232
1233 //DoPartialAcquisition(20, true, 12000);
1234 }
1235
1236 // turn field off
1237 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1238 LED_A_OFF();
1239}
1240
1241// Write one card block in page 0, no lock
1242void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1243 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1244 cmd_send(CMD_ACK,0,0,0,0,0);
1245}
1246
1247// Read one card block in page [page]
1248void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1249 LED_A_ON();
1250 bool PwdMode = arg0 & 0x1;
1251 uint8_t Page = (arg0 & 0x2) >> 1;
1252 uint32_t i = 0;
1253 bool RegReadMode = (Block == 0xFF);//regular read mode
1254
1255 //clear buffer now so it does not interfere with timing later
1256 BigBuf_Clear_ext(false);
1257
1258 //make sure block is at max 7
1259 Block &= 0x7;
1260
1261 // Set up FPGA, 125kHz to power up the tag
1262 LFSetupFPGAForADC(95, true);
1263 StartTicks();
1264 // make sure tag is fully powered up...
1265 WaitMS(5);
1266 // Trigger T55x7 Direct Access Mode with start gap
1267 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1268 WaitUS(START_GAP);
1269
1270 // Opcode 1[page]
1271 T55xxWriteBit(1);
1272 T55xxWriteBit(Page); //Page 0
1273
1274 if (PwdMode){
1275 // Send Pwd
1276 for (i = 0x80000000; i != 0; i >>= 1)
1277 T55xxWriteBit(Pwd & i);
1278 }
1279 // Send a zero bit separation
1280 T55xxWriteBit(0);
1281
1282 // Send Block number (if direct access mode)
1283 if (!RegReadMode)
1284 for (i = 0x04; i != 0; i >>= 1)
1285 T55xxWriteBit(Block & i);
1286
1287 // Turn field on to read the response
1288 // 137*8 seems to get to the start of data pretty well...
1289 // but we want to go past the start and let the repeating data settle in...
1290 TurnReadLFOn(210*8);
1291
1292 // Acquisition
1293 // Now do the acquisition
1294 DoPartialAcquisition(0, true, 12000, 0);
1295
1296 // Turn the field off
1297 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1298 cmd_send(CMD_ACK,0,0,0,0,0);
1299 LED_A_OFF();
1300}
1301
1302void T55xxWakeUp(uint32_t Pwd){
1303 LED_B_ON();
1304 uint32_t i = 0;
1305
1306 // Set up FPGA, 125kHz
1307 LFSetupFPGAForADC(95, true);
1308 StartTicks();
1309 // make sure tag is fully powered up...
1310 WaitMS(5);
1311
1312 // Trigger T55x7 Direct Access Mode
1313 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1314 WaitUS(START_GAP);
1315
1316 // Opcode 10
1317 T55xxWriteBit(1);
1318 T55xxWriteBit(0); //Page 0
1319
1320 // Send Pwd
1321 for (i = 0x80000000; i != 0; i >>= 1)
1322 T55xxWriteBit(Pwd & i);
1323
1324 // Turn and leave field on to let the begin repeating transmission
1325 TurnReadLFOn(20*1000);
1326}
1327
1328/*-------------- Cloning routines -----------*/
1329
1330void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1331 // write last block first and config block last (if included)
1332 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1333 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1334 }
1335}
1336
1337// Copy HID id to card and setup block 0 config
1338void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1339 uint32_t data[] = {0,0,0,0,0,0,0};
1340 uint8_t last_block = 0;
1341
1342 if (longFMT) {
1343 // Ensure no more than 84 bits supplied
1344 if (hi2>0xFFFFF) {
1345 DbpString("Tags can only have 84 bits.");
1346 return;
1347 }
1348 // Build the 6 data blocks for supplied 84bit ID
1349 last_block = 6;
1350 // load preamble (1D) & long format identifier (9E manchester encoded)
1351 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1352 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1353 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1354 data[3] = manchesterEncode2Bytes(hi >> 16);
1355 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1356 data[5] = manchesterEncode2Bytes(lo >> 16);
1357 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1358 } else {
1359 // Ensure no more than 44 bits supplied
1360 if (hi>0xFFF) {
1361 DbpString("Tags can only have 44 bits.");
1362 return;
1363 }
1364 // Build the 3 data blocks for supplied 44bit ID
1365 last_block = 3;
1366 // load preamble
1367 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1368 data[2] = manchesterEncode2Bytes(lo >> 16);
1369 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1370 }
1371 // load chip config block
1372 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1373
1374 //TODO add selection of chip for Q5 or T55x7
1375 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1376
1377 LED_D_ON();
1378 // Program the data blocks for supplied ID
1379 // and the block 0 for HID format
1380 WriteT55xx(data, 0, last_block+1);
1381
1382 LED_D_OFF();
1383
1384 DbpString("DONE!");
1385}
1386
1387void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1388 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1389 //TODO add selection of chip for Q5 or T55x7
1390 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1391
1392 LED_D_ON();
1393 // Program the data blocks for supplied ID
1394 // and the block 0 config
1395 WriteT55xx(data, 0, 3);
1396
1397 LED_D_OFF();
1398
1399 DbpString("DONE!");
1400}
1401
1402// Clone Indala 64-bit tag by UID to T55x7
1403void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1404 //Program the 2 data blocks for supplied 64bit UID
1405 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1406 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1407 //TODO add selection of chip for Q5 or T55x7
1408 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1409
1410 WriteT55xx(data, 0, 3);
1411 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1412 // T5567WriteBlock(0x603E1042,0);
1413 DbpString("DONE!");
1414}
1415// Clone Indala 224-bit tag by UID to T55x7
1416void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1417 //Program the 7 data blocks for supplied 224bit UID
1418 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1419 // and the block 0 for Indala224 format
1420 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1421 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1422 //TODO add selection of chip for Q5 or T55x7
1423 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1424 WriteT55xx(data, 0, 8);
1425 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1426 // T5567WriteBlock(0x603E10E2,0);
1427 DbpString("DONE!");
1428}
1429// clone viking tag to T55xx
1430void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1431 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1432 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1433 // Program the data blocks for supplied ID and the block 0 config
1434 WriteT55xx(data, 0, 3);
1435 LED_D_OFF();
1436 cmd_send(CMD_ACK,0,0,0,0,0);
1437}
1438
1439// Define 9bit header for EM410x tags
1440#define EM410X_HEADER 0x1FF
1441#define EM410X_ID_LENGTH 40
1442
1443void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1444 int i, id_bit;
1445 uint64_t id = EM410X_HEADER;
1446 uint64_t rev_id = 0; // reversed ID
1447 int c_parity[4]; // column parity
1448 int r_parity = 0; // row parity
1449 uint32_t clock = 0;
1450
1451 // Reverse ID bits given as parameter (for simpler operations)
1452 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1453 if (i < 32) {
1454 rev_id = (rev_id << 1) | (id_lo & 1);
1455 id_lo >>= 1;
1456 } else {
1457 rev_id = (rev_id << 1) | (id_hi & 1);
1458 id_hi >>= 1;
1459 }
1460 }
1461
1462 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1463 id_bit = rev_id & 1;
1464
1465 if (i % 4 == 0) {
1466 // Don't write row parity bit at start of parsing
1467 if (i)
1468 id = (id << 1) | r_parity;
1469 // Start counting parity for new row
1470 r_parity = id_bit;
1471 } else {
1472 // Count row parity
1473 r_parity ^= id_bit;
1474 }
1475
1476 // First elements in column?
1477 if (i < 4)
1478 // Fill out first elements
1479 c_parity[i] = id_bit;
1480 else
1481 // Count column parity
1482 c_parity[i % 4] ^= id_bit;
1483
1484 // Insert ID bit
1485 id = (id << 1) | id_bit;
1486 rev_id >>= 1;
1487 }
1488
1489 // Insert parity bit of last row
1490 id = (id << 1) | r_parity;
1491
1492 // Fill out column parity at the end of tag
1493 for (i = 0; i < 4; ++i)
1494 id = (id << 1) | c_parity[i];
1495
1496 // Add stop bit
1497 id <<= 1;
1498
1499 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1500 LED_D_ON();
1501
1502 // Write EM410x ID
1503 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1504
1505 clock = (card & 0xFF00) >> 8;
1506 clock = (clock == 0) ? 64 : clock;
1507 Dbprintf("Clock rate: %d", clock);
1508 if (card & 0xFF) { //t55x7
1509 clock = GetT55xxClockBit(clock);
1510 if (clock == 0) {
1511 Dbprintf("Invalid clock rate: %d", clock);
1512 return;
1513 }
1514 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1515 } else { //t5555 (Q5)
1516 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1517 }
1518
1519 WriteT55xx(data, 0, 3);
1520
1521 LED_D_OFF();
1522 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1523 (uint32_t)(id >> 32), (uint32_t)id);
1524}
1525
1526//-----------------------------------
1527// EM4469 / EM4305 routines
1528//-----------------------------------
1529#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1530#define FWD_CMD_WRITE 0xA
1531#define FWD_CMD_READ 0x9
1532#define FWD_CMD_DISABLE 0x5
1533
1534uint8_t forwardLink_data[64]; //array of forwarded bits
1535uint8_t * forward_ptr; //ptr for forward message preparation
1536uint8_t fwd_bit_sz; //forwardlink bit counter
1537uint8_t * fwd_write_ptr; //forwardlink bit pointer
1538
1539//====================================================================
1540// prepares command bits
1541// see EM4469 spec
1542//====================================================================
1543//--------------------------------------------------------------------
1544// VALUES TAKEN FROM EM4x function: SendForward
1545// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1546// WRITE_GAP = 128; (16*8)
1547// WRITE_1 = 256 32*8; (32*8)
1548
1549// These timings work for 4469/4269/4305 (with the 55*8 above)
1550// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1551
1552uint8_t Prepare_Cmd( uint8_t cmd ) {
1553
1554 *forward_ptr++ = 0; //start bit
1555 *forward_ptr++ = 0; //second pause for 4050 code
1556
1557 *forward_ptr++ = cmd;
1558 cmd >>= 1;
1559 *forward_ptr++ = cmd;
1560 cmd >>= 1;
1561 *forward_ptr++ = cmd;
1562 cmd >>= 1;
1563 *forward_ptr++ = cmd;
1564
1565 return 6; //return number of emited bits
1566}
1567
1568//====================================================================
1569// prepares address bits
1570// see EM4469 spec
1571//====================================================================
1572uint8_t Prepare_Addr( uint8_t addr ) {
1573
1574 register uint8_t line_parity;
1575
1576 uint8_t i;
1577 line_parity = 0;
1578 for(i=0;i<6;i++) {
1579 *forward_ptr++ = addr;
1580 line_parity ^= addr;
1581 addr >>= 1;
1582 }
1583
1584 *forward_ptr++ = (line_parity & 1);
1585
1586 return 7; //return number of emited bits
1587}
1588
1589//====================================================================
1590// prepares data bits intreleaved with parity bits
1591// see EM4469 spec
1592//====================================================================
1593uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1594
1595 register uint8_t line_parity;
1596 register uint8_t column_parity;
1597 register uint8_t i, j;
1598 register uint16_t data;
1599
1600 data = data_low;
1601 column_parity = 0;
1602
1603 for(i=0; i<4; i++) {
1604 line_parity = 0;
1605 for(j=0; j<8; j++) {
1606 line_parity ^= data;
1607 column_parity ^= (data & 1) << j;
1608 *forward_ptr++ = data;
1609 data >>= 1;
1610 }
1611 *forward_ptr++ = line_parity;
1612 if(i == 1)
1613 data = data_hi;
1614 }
1615
1616 for(j=0; j<8; j++) {
1617 *forward_ptr++ = column_parity;
1618 column_parity >>= 1;
1619 }
1620 *forward_ptr = 0;
1621
1622 return 45; //return number of emited bits
1623}
1624
1625//====================================================================
1626// Forward Link send function
1627// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1628// fwd_bit_count set with number of bits to be sent
1629//====================================================================
1630void SendForward(uint8_t fwd_bit_count) {
1631
1632 fwd_write_ptr = forwardLink_data;
1633 fwd_bit_sz = fwd_bit_count;
1634
1635 // Set up FPGA, 125kHz or 95 divisor
1636 LFSetupFPGAForADC(95, true);
1637
1638 // force 1st mod pulse (start gap must be longer for 4305)
1639 fwd_bit_sz--; //prepare next bit modulation
1640 fwd_write_ptr++;
1641 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1642 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1643 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1644 WaitUS(18*8); //18 cycles on (8us each)
1645
1646 // now start writting
1647 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1648 if(((*fwd_write_ptr++) & 1) == 1)
1649 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1650 else {
1651 //These timings work for 4469/4269/4305 (with the 55*8 above)
1652 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1653 WaitUS(23*8); //23 cycles off (8us each)
1654 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1655 WaitUS(18*8); //18 cycles on (8us each)
1656 }
1657 }
1658}
1659
1660void EM4xLogin(uint32_t Password) {
1661
1662 uint8_t fwd_bit_count;
1663
1664 forward_ptr = forwardLink_data;
1665 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1666 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1667
1668 SendForward(fwd_bit_count);
1669
1670 //Wait for command to complete
1671 SpinDelay(20);
1672}
1673
1674void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1675
1676 uint8_t fwd_bit_count;
1677
1678 // Clear destination buffer before sending the command
1679 BigBuf_Clear_ext(false);
1680
1681 LED_A_ON();
1682 StartTicks();
1683 //If password mode do login
1684 if (PwdMode == 1) EM4xLogin(Pwd);
1685
1686 forward_ptr = forwardLink_data;
1687 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1688 fwd_bit_count += Prepare_Addr( Address );
1689
1690 SendForward(fwd_bit_count);
1691 WaitUS(400);
1692 // Now do the acquisition
1693 DoPartialAcquisition(20, true, 6000, 1000);
1694
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1696 LED_A_OFF();
1697 cmd_send(CMD_ACK,0,0,0,0,0);
1698}
1699
1700void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1701
1702 bool PwdMode = (flag & 0xF);
1703 uint8_t Address = (flag >> 8) & 0xFF;
1704 uint8_t fwd_bit_count;
1705
1706 //clear buffer now so it does not interfere with timing later
1707 BigBuf_Clear_ext(false);
1708
1709 LED_A_ON();
1710 StartTicks();
1711 //If password mode do login
1712 if (PwdMode) EM4xLogin(Pwd);
1713
1714 forward_ptr = forwardLink_data;
1715 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1716 fwd_bit_count += Prepare_Addr( Address );
1717 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1718
1719 SendForward(fwd_bit_count);
1720
1721 //Wait for write to complete
1722 //SpinDelay(10);
1723
1724 WaitUS(6500);
1725 //Capture response if one exists
1726 DoPartialAcquisition(20, true, 6000, 1000);
1727
1728 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1729 LED_A_OFF();
1730 cmd_send(CMD_ACK,0,0,0,0,0);
1731}
1732/*
1733Reading a COTAG.
1734
1735COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1736because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1737
1738READER START SEQUENCE:
1739burst 800 us, gap 2.2 msecs
1740burst 3.6 msecs gap 2.2 msecs
1741burst 800 us gap 2.2 msecs
1742pulse 3.6 msecs
1743
1744This triggers a COTAG tag to response
1745*/
1746void Cotag(uint32_t arg0) {
1747
1748#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1749#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1750
1751 uint8_t rawsignal = arg0 & 0xF;
1752
1753 LED_A_ON();
1754
1755 // Switching to LF image on FPGA. This might empty BigBuff
1756 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1757
1758 //clear buffer now so it does not interfere with timing later
1759 BigBuf_Clear_ext(false);
1760
1761 // Set up FPGA, 132kHz to power up the tag
1762 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1763 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1764
1765 // Connect the A/D to the peak-detected low-frequency path.
1766 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1767
1768 // Now set up the SSC to get the ADC samples that are now streaming at us.
1769 FpgaSetupSsc();
1770
1771 // start clock - 1.5ticks is 1us
1772 StartTicks();
1773
1774 //send COTAG start pulse
1775 ON(740) OFF
1776 ON(3330) OFF
1777 ON(740) OFF
1778 ON(1000)
1779
1780 switch(rawsignal) {
1781 case 0: doCotagAcquisition(50000); break;
1782 case 1: doCotagAcquisitionManchester(); break;
1783 case 2: DoAcquisition_config(true, 0); break;
1784 }
1785
1786 // Turn the field off
1787 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1788 cmd_send(CMD_ACK,0,0,0,0,0);
1789 LED_A_OFF();
1790}
Impressum, Datenschutz