]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $ | |
3 | ** Opcodes for Lua virtual machine | |
4 | ** See Copyright Notice in lua.h | |
5 | */ | |
6 | ||
7 | #ifndef lopcodes_h | |
8 | #define lopcodes_h | |
9 | ||
10 | #include "llimits.h" | |
11 | ||
12 | ||
13 | /*=========================================================================== | |
14 | We assume that instructions are unsigned numbers. | |
15 | All instructions have an opcode in the first 6 bits. | |
16 | Instructions can have the following fields: | |
17 | `A' : 8 bits | |
18 | `B' : 9 bits | |
19 | `C' : 9 bits | |
20 | 'Ax' : 26 bits ('A', 'B', and 'C' together) | |
21 | `Bx' : 18 bits (`B' and `C' together) | |
22 | `sBx' : signed Bx | |
23 | ||
24 | A signed argument is represented in excess K; that is, the number | |
25 | value is the unsigned value minus K. K is exactly the maximum value | |
26 | for that argument (so that -max is represented by 0, and +max is | |
27 | represented by 2*max), which is half the maximum for the corresponding | |
28 | unsigned argument. | |
29 | ===========================================================================*/ | |
30 | ||
31 | ||
32 | enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ | |
33 | ||
34 | ||
35 | /* | |
36 | ** size and position of opcode arguments. | |
37 | */ | |
38 | #define SIZE_C 9 | |
39 | #define SIZE_B 9 | |
40 | #define SIZE_Bx (SIZE_C + SIZE_B) | |
41 | #define SIZE_A 8 | |
42 | #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) | |
43 | ||
44 | #define SIZE_OP 6 | |
45 | ||
46 | #define POS_OP 0 | |
47 | #define POS_A (POS_OP + SIZE_OP) | |
48 | #define POS_C (POS_A + SIZE_A) | |
49 | #define POS_B (POS_C + SIZE_C) | |
50 | #define POS_Bx POS_C | |
51 | #define POS_Ax POS_A | |
52 | ||
53 | ||
54 | /* | |
55 | ** limits for opcode arguments. | |
56 | ** we use (signed) int to manipulate most arguments, | |
57 | ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | |
58 | */ | |
59 | #if SIZE_Bx < LUAI_BITSINT-1 | |
60 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) | |
61 | #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | |
62 | #else | |
63 | #define MAXARG_Bx MAX_INT | |
64 | #define MAXARG_sBx MAX_INT | |
65 | #endif | |
66 | ||
67 | #if SIZE_Ax < LUAI_BITSINT-1 | |
68 | #define MAXARG_Ax ((1<<SIZE_Ax)-1) | |
69 | #else | |
70 | #define MAXARG_Ax MAX_INT | |
71 | #endif | |
72 | ||
73 | ||
74 | #define MAXARG_A ((1<<SIZE_A)-1) | |
75 | #define MAXARG_B ((1<<SIZE_B)-1) | |
76 | #define MAXARG_C ((1<<SIZE_C)-1) | |
77 | ||
78 | ||
79 | /* creates a mask with `n' 1 bits at position `p' */ | |
80 | #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) | |
81 | ||
82 | /* creates a mask with `n' 0 bits at position `p' */ | |
83 | #define MASK0(n,p) (~MASK1(n,p)) | |
84 | ||
85 | /* | |
86 | ** the following macros help to manipulate instructions | |
87 | */ | |
88 | ||
89 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | |
90 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | |
91 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | |
92 | ||
93 | #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) | |
94 | #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ | |
95 | ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) | |
96 | ||
97 | #define GETARG_A(i) getarg(i, POS_A, SIZE_A) | |
98 | #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) | |
99 | ||
100 | #define GETARG_B(i) getarg(i, POS_B, SIZE_B) | |
101 | #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) | |
102 | ||
103 | #define GETARG_C(i) getarg(i, POS_C, SIZE_C) | |
104 | #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) | |
105 | ||
106 | #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) | |
107 | #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) | |
108 | ||
109 | #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) | |
110 | #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) | |
111 | ||
112 | #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | |
113 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | |
114 | ||
115 | ||
116 | #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | |
117 | | (cast(Instruction, a)<<POS_A) \ | |
118 | | (cast(Instruction, b)<<POS_B) \ | |
119 | | (cast(Instruction, c)<<POS_C)) | |
120 | ||
121 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | |
122 | | (cast(Instruction, a)<<POS_A) \ | |
123 | | (cast(Instruction, bc)<<POS_Bx)) | |
124 | ||
125 | #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | |
126 | | (cast(Instruction, a)<<POS_Ax)) | |
127 | ||
128 | ||
129 | /* | |
130 | ** Macros to operate RK indices | |
131 | */ | |
132 | ||
133 | /* this bit 1 means constant (0 means register) */ | |
134 | #define BITRK (1 << (SIZE_B - 1)) | |
135 | ||
136 | /* test whether value is a constant */ | |
137 | #define ISK(x) ((x) & BITRK) | |
138 | ||
139 | /* gets the index of the constant */ | |
140 | #define INDEXK(r) ((int)(r) & ~BITRK) | |
141 | ||
142 | #define MAXINDEXRK (BITRK - 1) | |
143 | ||
144 | /* code a constant index as a RK value */ | |
145 | #define RKASK(x) ((x) | BITRK) | |
146 | ||
147 | ||
148 | /* | |
149 | ** invalid register that fits in 8 bits | |
150 | */ | |
151 | #define NO_REG MAXARG_A | |
152 | ||
153 | ||
154 | /* | |
155 | ** R(x) - register | |
156 | ** Kst(x) - constant (in constant table) | |
157 | ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | |
158 | */ | |
159 | ||
160 | ||
161 | /* | |
162 | ** grep "ORDER OP" if you change these enums | |
163 | */ | |
164 | ||
165 | typedef enum { | |
166 | /*---------------------------------------------------------------------- | |
167 | name args description | |
168 | ------------------------------------------------------------------------*/ | |
169 | OP_MOVE,/* A B R(A) := R(B) */ | |
170 | OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | |
171 | OP_LOADKX,/* A R(A) := Kst(extra arg) */ | |
172 | OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | |
173 | OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ | |
174 | OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | |
175 | ||
176 | OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ | |
177 | OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | |
178 | ||
179 | OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ | |
180 | OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | |
181 | OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | |
182 | ||
183 | OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | |
184 | ||
185 | OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | |
186 | ||
187 | OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | |
188 | OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | |
189 | OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | |
190 | OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | |
191 | OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | |
192 | OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | |
193 | OP_UNM,/* A B R(A) := -R(B) */ | |
194 | OP_NOT,/* A B R(A) := not R(B) */ | |
195 | OP_LEN,/* A B R(A) := length of R(B) */ | |
196 | ||
197 | OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | |
198 | ||
199 | OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */ | |
200 | OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | |
201 | OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | |
202 | OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | |
203 | ||
204 | OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | |
205 | OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | |
206 | ||
207 | OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | |
208 | OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | |
209 | OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | |
210 | ||
211 | OP_FORLOOP,/* A sBx R(A)+=R(A+2); | |
212 | if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | |
213 | OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | |
214 | ||
215 | OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ | |
216 | OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ | |
217 | ||
218 | OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | |
219 | ||
220 | OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ | |
221 | ||
222 | OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ | |
223 | ||
224 | OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ | |
225 | } OpCode; | |
226 | ||
227 | ||
228 | #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) | |
229 | ||
230 | ||
231 | ||
232 | /*=========================================================================== | |
233 | Notes: | |
234 | (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is | |
235 | set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, | |
236 | OP_SETLIST) may use `top'. | |
237 | ||
238 | (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | |
239 | set top (like in OP_CALL with C == 0). | |
240 | ||
241 | (*) In OP_RETURN, if (B == 0) then return up to `top'. | |
242 | ||
243 | (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next | |
244 | 'instruction' is EXTRAARG(real C). | |
245 | ||
246 | (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. | |
247 | ||
248 | (*) For comparisons, A specifies what condition the test should accept | |
249 | (true or false). | |
250 | ||
251 | (*) All `skips' (pc++) assume that next instruction is a jump. | |
252 | ||
253 | ===========================================================================*/ | |
254 | ||
255 | ||
256 | /* | |
257 | ** masks for instruction properties. The format is: | |
258 | ** bits 0-1: op mode | |
259 | ** bits 2-3: C arg mode | |
260 | ** bits 4-5: B arg mode | |
261 | ** bit 6: instruction set register A | |
262 | ** bit 7: operator is a test (next instruction must be a jump) | |
263 | */ | |
264 | ||
265 | enum OpArgMask { | |
266 | OpArgN, /* argument is not used */ | |
267 | OpArgU, /* argument is used */ | |
268 | OpArgR, /* argument is a register or a jump offset */ | |
269 | OpArgK /* argument is a constant or register/constant */ | |
270 | }; | |
271 | ||
272 | LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; | |
273 | ||
274 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | |
275 | #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | |
276 | #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | |
277 | #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | |
278 | #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | |
279 | ||
280 | ||
281 | LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | |
282 | ||
283 | ||
284 | /* number of list items to accumulate before a SETLIST instruction */ | |
285 | #define LFIELDS_PER_FLUSH 50 | |
286 | ||
287 | ||
288 | #endif |