]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "proxmark3.h" | |
40 | #include "apps.h" | |
41 | #include "util.h" | |
42 | #include "string.h" | |
43 | #include "common.h" | |
44 | #include "cmd.h" | |
45 | // Needed for CRC in emulation mode; | |
46 | // same construction as in ISO 14443; | |
47 | // different initial value (CRC_ICLASS) | |
48 | #include "iso14443crc.h" | |
49 | #include "iso15693tools.h" | |
50 | #include "protocols.h" | |
51 | #include "optimized_cipher.h" | |
52 | ||
53 | static int timeout = 4096; | |
54 | ||
55 | ||
56 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); | |
57 | ||
58 | //----------------------------------------------------------------------------- | |
59 | // The software UART that receives commands from the reader, and its state | |
60 | // variables. | |
61 | //----------------------------------------------------------------------------- | |
62 | static struct { | |
63 | enum { | |
64 | STATE_UNSYNCD, | |
65 | STATE_START_OF_COMMUNICATION, | |
66 | STATE_RECEIVING | |
67 | } state; | |
68 | uint16_t shiftReg; | |
69 | int bitCnt; | |
70 | int byteCnt; | |
71 | int byteCntMax; | |
72 | int posCnt; | |
73 | int nOutOfCnt; | |
74 | int OutOfCnt; | |
75 | int syncBit; | |
76 | int samples; | |
77 | int highCnt; | |
78 | int swapper; | |
79 | int counter; | |
80 | int bitBuffer; | |
81 | int dropPosition; | |
82 | uint8_t *output; | |
83 | } Uart; | |
84 | ||
85 | static RAMFUNC int OutOfNDecoding(int bit) | |
86 | { | |
87 | //int error = 0; | |
88 | int bitright; | |
89 | ||
90 | if(!Uart.bitBuffer) { | |
91 | Uart.bitBuffer = bit ^ 0xFF0; | |
92 | return FALSE; | |
93 | } | |
94 | else { | |
95 | Uart.bitBuffer <<= 4; | |
96 | Uart.bitBuffer ^= bit; | |
97 | } | |
98 | ||
99 | /*if(Uart.swapper) { | |
100 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
101 | Uart.byteCnt++; | |
102 | Uart.swapper = 0; | |
103 | if(Uart.byteCnt > 15) { return TRUE; } | |
104 | } | |
105 | else { | |
106 | Uart.swapper = 1; | |
107 | }*/ | |
108 | ||
109 | if(Uart.state != STATE_UNSYNCD) { | |
110 | Uart.posCnt++; | |
111 | ||
112 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
113 | bit = 0x00; | |
114 | } | |
115 | else { | |
116 | bit = 0x01; | |
117 | } | |
118 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
119 | bitright = 0x00; | |
120 | } | |
121 | else { | |
122 | bitright = 0x01; | |
123 | } | |
124 | if(bit != bitright) { bit = bitright; } | |
125 | ||
126 | ||
127 | // So, now we only have to deal with *bit*, lets see... | |
128 | if(Uart.posCnt == 1) { | |
129 | // measurement first half bitperiod | |
130 | if(!bit) { | |
131 | // Drop in first half means that we are either seeing | |
132 | // an SOF or an EOF. | |
133 | ||
134 | if(Uart.nOutOfCnt == 1) { | |
135 | // End of Communication | |
136 | Uart.state = STATE_UNSYNCD; | |
137 | Uart.highCnt = 0; | |
138 | if(Uart.byteCnt == 0) { | |
139 | // Its not straightforward to show single EOFs | |
140 | // So just leave it and do not return TRUE | |
141 | Uart.output[0] = 0xf0; | |
142 | Uart.byteCnt++; | |
143 | } | |
144 | else { | |
145 | return TRUE; | |
146 | } | |
147 | } | |
148 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { | |
149 | // When not part of SOF or EOF, it is an error | |
150 | Uart.state = STATE_UNSYNCD; | |
151 | Uart.highCnt = 0; | |
152 | //error = 4; | |
153 | } | |
154 | } | |
155 | } | |
156 | else { | |
157 | // measurement second half bitperiod | |
158 | // Count the bitslot we are in... (ISO 15693) | |
159 | Uart.nOutOfCnt++; | |
160 | ||
161 | if(!bit) { | |
162 | if(Uart.dropPosition) { | |
163 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
164 | //error = 1; | |
165 | } | |
166 | else { | |
167 | //error = 7; | |
168 | } | |
169 | // It is an error if we already have seen a drop in current frame | |
170 | Uart.state = STATE_UNSYNCD; | |
171 | Uart.highCnt = 0; | |
172 | } | |
173 | else { | |
174 | Uart.dropPosition = Uart.nOutOfCnt; | |
175 | } | |
176 | } | |
177 | ||
178 | Uart.posCnt = 0; | |
179 | ||
180 | ||
181 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
182 | Uart.nOutOfCnt = 0; | |
183 | ||
184 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
185 | if(Uart.dropPosition == 4) { | |
186 | Uart.state = STATE_RECEIVING; | |
187 | Uart.OutOfCnt = 256; | |
188 | } | |
189 | else if(Uart.dropPosition == 3) { | |
190 | Uart.state = STATE_RECEIVING; | |
191 | Uart.OutOfCnt = 4; | |
192 | //Uart.output[Uart.byteCnt] = 0xdd; | |
193 | //Uart.byteCnt++; | |
194 | } | |
195 | else { | |
196 | Uart.state = STATE_UNSYNCD; | |
197 | Uart.highCnt = 0; | |
198 | } | |
199 | Uart.dropPosition = 0; | |
200 | } | |
201 | else { | |
202 | // RECEIVING DATA | |
203 | // 1 out of 4 | |
204 | if(!Uart.dropPosition) { | |
205 | Uart.state = STATE_UNSYNCD; | |
206 | Uart.highCnt = 0; | |
207 | //error = 9; | |
208 | } | |
209 | else { | |
210 | Uart.shiftReg >>= 2; | |
211 | ||
212 | // Swap bit order | |
213 | Uart.dropPosition--; | |
214 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
215 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
216 | ||
217 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
218 | Uart.bitCnt += 2; | |
219 | Uart.dropPosition = 0; | |
220 | ||
221 | if(Uart.bitCnt == 8) { | |
222 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
223 | Uart.byteCnt++; | |
224 | Uart.bitCnt = 0; | |
225 | Uart.shiftReg = 0; | |
226 | } | |
227 | } | |
228 | } | |
229 | } | |
230 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { | |
231 | // RECEIVING DATA | |
232 | // 1 out of 256 | |
233 | if(!Uart.dropPosition) { | |
234 | Uart.state = STATE_UNSYNCD; | |
235 | Uart.highCnt = 0; | |
236 | //error = 3; | |
237 | } | |
238 | else { | |
239 | Uart.dropPosition--; | |
240 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
241 | Uart.byteCnt++; | |
242 | Uart.bitCnt = 0; | |
243 | Uart.shiftReg = 0; | |
244 | Uart.nOutOfCnt = 0; | |
245 | Uart.dropPosition = 0; | |
246 | } | |
247 | } | |
248 | ||
249 | /*if(error) { | |
250 | Uart.output[Uart.byteCnt] = 0xAA; | |
251 | Uart.byteCnt++; | |
252 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
253 | Uart.byteCnt++; | |
254 | Uart.output[Uart.byteCnt] = 0xAA; | |
255 | Uart.byteCnt++; | |
256 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
257 | Uart.byteCnt++; | |
258 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
259 | Uart.byteCnt++; | |
260 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
261 | Uart.byteCnt++; | |
262 | Uart.output[Uart.byteCnt] = 0xAA; | |
263 | Uart.byteCnt++; | |
264 | return TRUE; | |
265 | }*/ | |
266 | } | |
267 | ||
268 | } | |
269 | else { | |
270 | bit = Uart.bitBuffer & 0xf0; | |
271 | bit >>= 4; | |
272 | bit ^= 0x0F; // drops become 1s ;-) | |
273 | if(bit) { | |
274 | // should have been high or at least (4 * 128) / fc | |
275 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
276 | if(Uart.highCnt == 8) { | |
277 | // we went low, so this could be start of communication | |
278 | // it turns out to be safer to choose a less significant | |
279 | // syncbit... so we check whether the neighbour also represents the drop | |
280 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
281 | Uart.syncBit = bit & 8; | |
282 | Uart.samples = 3; | |
283 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
284 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
285 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
286 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
287 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
288 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
289 | Uart.syncBit = 8; | |
290 | ||
291 | // the first half bit period is expected in next sample | |
292 | Uart.posCnt = 0; | |
293 | Uart.samples = 3; | |
294 | } | |
295 | } | |
296 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
297 | ||
298 | Uart.syncBit <<= 4; | |
299 | Uart.state = STATE_START_OF_COMMUNICATION; | |
300 | Uart.bitCnt = 0; | |
301 | Uart.byteCnt = 0; | |
302 | Uart.nOutOfCnt = 0; | |
303 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
304 | Uart.dropPosition = 0; | |
305 | Uart.shiftReg = 0; | |
306 | //error = 0; | |
307 | } | |
308 | else { | |
309 | Uart.highCnt = 0; | |
310 | } | |
311 | } | |
312 | else { | |
313 | if(Uart.highCnt < 8) { | |
314 | Uart.highCnt++; | |
315 | } | |
316 | } | |
317 | } | |
318 | ||
319 | return FALSE; | |
320 | } | |
321 | ||
322 | //============================================================================= | |
323 | // Manchester | |
324 | //============================================================================= | |
325 | ||
326 | static struct { | |
327 | enum { | |
328 | DEMOD_UNSYNCD, | |
329 | DEMOD_START_OF_COMMUNICATION, | |
330 | DEMOD_START_OF_COMMUNICATION2, | |
331 | DEMOD_START_OF_COMMUNICATION3, | |
332 | DEMOD_SOF_COMPLETE, | |
333 | DEMOD_MANCHESTER_D, | |
334 | DEMOD_MANCHESTER_E, | |
335 | DEMOD_END_OF_COMMUNICATION, | |
336 | DEMOD_END_OF_COMMUNICATION2, | |
337 | DEMOD_MANCHESTER_F, | |
338 | DEMOD_ERROR_WAIT | |
339 | } state; | |
340 | int bitCount; | |
341 | int posCount; | |
342 | int syncBit; | |
343 | uint16_t shiftReg; | |
344 | int buffer; | |
345 | int buffer2; | |
346 | int buffer3; | |
347 | int buff; | |
348 | int samples; | |
349 | int len; | |
350 | enum { | |
351 | SUB_NONE, | |
352 | SUB_FIRST_HALF, | |
353 | SUB_SECOND_HALF, | |
354 | SUB_BOTH | |
355 | } sub; | |
356 | uint8_t *output; | |
357 | } Demod; | |
358 | ||
359 | static RAMFUNC int ManchesterDecoding(int v) | |
360 | { | |
361 | int bit; | |
362 | int modulation; | |
363 | int error = 0; | |
364 | ||
365 | bit = Demod.buffer; | |
366 | Demod.buffer = Demod.buffer2; | |
367 | Demod.buffer2 = Demod.buffer3; | |
368 | Demod.buffer3 = v; | |
369 | ||
370 | if(Demod.buff < 3) { | |
371 | Demod.buff++; | |
372 | return FALSE; | |
373 | } | |
374 | ||
375 | if(Demod.state==DEMOD_UNSYNCD) { | |
376 | Demod.output[Demod.len] = 0xfa; | |
377 | Demod.syncBit = 0; | |
378 | //Demod.samples = 0; | |
379 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
380 | ||
381 | if(bit & 0x08) { | |
382 | Demod.syncBit = 0x08; | |
383 | } | |
384 | ||
385 | if(bit & 0x04) { | |
386 | if(Demod.syncBit) { | |
387 | bit <<= 4; | |
388 | } | |
389 | Demod.syncBit = 0x04; | |
390 | } | |
391 | ||
392 | if(bit & 0x02) { | |
393 | if(Demod.syncBit) { | |
394 | bit <<= 2; | |
395 | } | |
396 | Demod.syncBit = 0x02; | |
397 | } | |
398 | ||
399 | if(bit & 0x01 && Demod.syncBit) { | |
400 | Demod.syncBit = 0x01; | |
401 | } | |
402 | ||
403 | if(Demod.syncBit) { | |
404 | Demod.len = 0; | |
405 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
406 | Demod.sub = SUB_FIRST_HALF; | |
407 | Demod.bitCount = 0; | |
408 | Demod.shiftReg = 0; | |
409 | Demod.samples = 0; | |
410 | if(Demod.posCount) { | |
411 | //if(trigger) LED_A_OFF(); // Not useful in this case... | |
412 | switch(Demod.syncBit) { | |
413 | case 0x08: Demod.samples = 3; break; | |
414 | case 0x04: Demod.samples = 2; break; | |
415 | case 0x02: Demod.samples = 1; break; | |
416 | case 0x01: Demod.samples = 0; break; | |
417 | } | |
418 | // SOF must be long burst... otherwise stay unsynced!!! | |
419 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
420 | Demod.state = DEMOD_UNSYNCD; | |
421 | } | |
422 | } | |
423 | else { | |
424 | // SOF must be long burst... otherwise stay unsynced!!! | |
425 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
426 | Demod.state = DEMOD_UNSYNCD; | |
427 | error = 0x88; | |
428 | } | |
429 | ||
430 | // TODO: use this error value to print? Ask Holiman. | |
431 | // 2016-01-08 iceman | |
432 | } | |
433 | error = 0; | |
434 | } | |
435 | } | |
436 | else { | |
437 | modulation = bit & Demod.syncBit; | |
438 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
439 | ||
440 | Demod.samples += 4; | |
441 | ||
442 | if(Demod.posCount==0) { | |
443 | Demod.posCount = 1; | |
444 | if(modulation) { | |
445 | Demod.sub = SUB_FIRST_HALF; | |
446 | } | |
447 | else { | |
448 | Demod.sub = SUB_NONE; | |
449 | } | |
450 | } | |
451 | else { | |
452 | Demod.posCount = 0; | |
453 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
454 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
455 | Demod.state = DEMOD_ERROR_WAIT; | |
456 | Demod.output[Demod.len] = 0xaa; | |
457 | error = 0x01; | |
458 | } | |
459 | }*/ | |
460 | //else if(modulation) { | |
461 | if(modulation) { | |
462 | if(Demod.sub == SUB_FIRST_HALF) { | |
463 | Demod.sub = SUB_BOTH; | |
464 | } | |
465 | else { | |
466 | Demod.sub = SUB_SECOND_HALF; | |
467 | } | |
468 | } | |
469 | else if(Demod.sub == SUB_NONE) { | |
470 | if(Demod.state == DEMOD_SOF_COMPLETE) { | |
471 | Demod.output[Demod.len] = 0x0f; | |
472 | Demod.len++; | |
473 | Demod.state = DEMOD_UNSYNCD; | |
474 | // error = 0x0f; | |
475 | return TRUE; | |
476 | } | |
477 | else { | |
478 | Demod.state = DEMOD_ERROR_WAIT; | |
479 | error = 0x33; | |
480 | } | |
481 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { | |
482 | Demod.state = DEMOD_ERROR_WAIT; | |
483 | Demod.output[Demod.len] = 0xaa; | |
484 | error = 0x01; | |
485 | }*/ | |
486 | } | |
487 | ||
488 | switch(Demod.state) { | |
489 | case DEMOD_START_OF_COMMUNICATION: | |
490 | if(Demod.sub == SUB_BOTH) { | |
491 | //Demod.state = DEMOD_MANCHESTER_D; | |
492 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
493 | Demod.posCount = 1; | |
494 | Demod.sub = SUB_NONE; | |
495 | } | |
496 | else { | |
497 | Demod.output[Demod.len] = 0xab; | |
498 | Demod.state = DEMOD_ERROR_WAIT; | |
499 | error = 0xd2; | |
500 | } | |
501 | break; | |
502 | case DEMOD_START_OF_COMMUNICATION2: | |
503 | if(Demod.sub == SUB_SECOND_HALF) { | |
504 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
505 | } | |
506 | else { | |
507 | Demod.output[Demod.len] = 0xab; | |
508 | Demod.state = DEMOD_ERROR_WAIT; | |
509 | error = 0xd3; | |
510 | } | |
511 | break; | |
512 | case DEMOD_START_OF_COMMUNICATION3: | |
513 | if(Demod.sub == SUB_SECOND_HALF) { | |
514 | // Demod.state = DEMOD_MANCHESTER_D; | |
515 | Demod.state = DEMOD_SOF_COMPLETE; | |
516 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
517 | //Demod.len++; | |
518 | } | |
519 | else { | |
520 | Demod.output[Demod.len] = 0xab; | |
521 | Demod.state = DEMOD_ERROR_WAIT; | |
522 | error = 0xd4; | |
523 | } | |
524 | break; | |
525 | case DEMOD_SOF_COMPLETE: | |
526 | case DEMOD_MANCHESTER_D: | |
527 | case DEMOD_MANCHESTER_E: | |
528 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
529 | // 00001111 = 1 (0 in 14443) | |
530 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
531 | Demod.bitCount++; | |
532 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
533 | Demod.state = DEMOD_MANCHESTER_D; | |
534 | } | |
535 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
536 | Demod.bitCount++; | |
537 | Demod.shiftReg >>= 1; | |
538 | Demod.state = DEMOD_MANCHESTER_E; | |
539 | } | |
540 | else if(Demod.sub == SUB_BOTH) { | |
541 | Demod.state = DEMOD_MANCHESTER_F; | |
542 | } | |
543 | else { | |
544 | Demod.state = DEMOD_ERROR_WAIT; | |
545 | error = 0x55; | |
546 | } | |
547 | break; | |
548 | ||
549 | case DEMOD_MANCHESTER_F: | |
550 | // Tag response does not need to be a complete byte! | |
551 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
552 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
553 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align data | |
554 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
555 | Demod.len++; | |
556 | } | |
557 | ||
558 | Demod.state = DEMOD_UNSYNCD; | |
559 | return TRUE; | |
560 | } | |
561 | else { | |
562 | Demod.output[Demod.len] = 0xad; | |
563 | Demod.state = DEMOD_ERROR_WAIT; | |
564 | error = 0x03; | |
565 | } | |
566 | break; | |
567 | ||
568 | case DEMOD_ERROR_WAIT: | |
569 | Demod.state = DEMOD_UNSYNCD; | |
570 | break; | |
571 | ||
572 | default: | |
573 | Demod.output[Demod.len] = 0xdd; | |
574 | Demod.state = DEMOD_UNSYNCD; | |
575 | break; | |
576 | } | |
577 | ||
578 | /*if(Demod.bitCount>=9) { | |
579 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
580 | Demod.len++; | |
581 | ||
582 | Demod.parityBits <<= 1; | |
583 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
584 | ||
585 | Demod.bitCount = 0; | |
586 | Demod.shiftReg = 0; | |
587 | }*/ | |
588 | if(Demod.bitCount>=8) { | |
589 | Demod.shiftReg >>= 1; | |
590 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
591 | Demod.len++; | |
592 | Demod.bitCount = 0; | |
593 | Demod.shiftReg = 0; | |
594 | } | |
595 | ||
596 | if(error) { | |
597 | Demod.output[Demod.len] = 0xBB; | |
598 | Demod.len++; | |
599 | Demod.output[Demod.len] = error & 0xFF; | |
600 | Demod.len++; | |
601 | Demod.output[Demod.len] = 0xBB; | |
602 | Demod.len++; | |
603 | Demod.output[Demod.len] = bit & 0xFF; | |
604 | Demod.len++; | |
605 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
606 | Demod.len++; | |
607 | // Look harder ;-) | |
608 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
609 | Demod.len++; | |
610 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
611 | Demod.len++; | |
612 | Demod.output[Demod.len] = 0xBB; | |
613 | Demod.len++; | |
614 | return TRUE; | |
615 | } | |
616 | ||
617 | } | |
618 | ||
619 | } // end (state != UNSYNCED) | |
620 | ||
621 | return FALSE; | |
622 | } | |
623 | ||
624 | //============================================================================= | |
625 | // Finally, a `sniffer' for iClass communication | |
626 | // Both sides of communication! | |
627 | //============================================================================= | |
628 | ||
629 | //----------------------------------------------------------------------------- | |
630 | // Record the sequence of commands sent by the reader to the tag, with | |
631 | // triggering so that we start recording at the point that the tag is moved | |
632 | // near the reader. | |
633 | //----------------------------------------------------------------------------- | |
634 | void RAMFUNC SnoopIClass(void) | |
635 | { | |
636 | // We won't start recording the frames that we acquire until we trigger; | |
637 | // a good trigger condition to get started is probably when we see a | |
638 | // response from the tag. | |
639 | //int triggered = FALSE; // FALSE to wait first for card | |
640 | ||
641 | // The command (reader -> tag) that we're receiving. | |
642 | // The length of a received command will in most cases be no more than 18 bytes. | |
643 | // So 32 should be enough! | |
644 | #define ICLASS_BUFFER_SIZE 32 | |
645 | uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; | |
646 | // The response (tag -> reader) that we're receiving. | |
647 | uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; | |
648 | ||
649 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
650 | ||
651 | // free all BigBuf memory | |
652 | BigBuf_free(); | |
653 | // The DMA buffer, used to stream samples from the FPGA | |
654 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
655 | ||
656 | clear_trace(); | |
657 | set_tracing(TRUE); | |
658 | ||
659 | iso14a_set_trigger(FALSE); | |
660 | ||
661 | int lastRxCounter; | |
662 | uint8_t *upTo; | |
663 | int smpl; | |
664 | int maxBehindBy = 0; | |
665 | ||
666 | // Count of samples received so far, so that we can include timing | |
667 | // information in the trace buffer. | |
668 | int samples = 0; | |
669 | rsamples = 0; | |
670 | ||
671 | // Set up the demodulator for tag -> reader responses. | |
672 | Demod.output = tagToReaderResponse; | |
673 | Demod.len = 0; | |
674 | Demod.state = DEMOD_UNSYNCD; | |
675 | ||
676 | // Setup for the DMA. | |
677 | FpgaSetupSsc(); | |
678 | upTo = dmaBuf; | |
679 | lastRxCounter = DMA_BUFFER_SIZE; | |
680 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
681 | ||
682 | // And the reader -> tag commands | |
683 | memset(&Uart, 0, sizeof(Uart)); | |
684 | Uart.output = readerToTagCmd; | |
685 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
686 | Uart.state = STATE_UNSYNCD; | |
687 | ||
688 | // And put the FPGA in the appropriate mode | |
689 | // Signal field is off with the appropriate LED | |
690 | LED_D_OFF(); | |
691 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
692 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
693 | ||
694 | uint32_t time_0 = GetCountSspClk(); | |
695 | uint32_t time_start = 0; | |
696 | uint32_t time_stop = 0; | |
697 | ||
698 | int div = 0; | |
699 | //int div2 = 0; | |
700 | int decbyte = 0; | |
701 | int decbyter = 0; | |
702 | ||
703 | // And now we loop, receiving samples. | |
704 | for(;;) { | |
705 | LED_A_ON(); | |
706 | WDT_HIT(); | |
707 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); | |
708 | ||
709 | if ( behindBy > maxBehindBy) { | |
710 | maxBehindBy = behindBy; | |
711 | if ( behindBy > (9 * DMA_BUFFER_SIZE / 10)) { | |
712 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
713 | goto done; | |
714 | } | |
715 | } | |
716 | if( behindBy < 1) continue; | |
717 | ||
718 | LED_A_OFF(); | |
719 | smpl = upTo[0]; | |
720 | upTo++; | |
721 | lastRxCounter -= 1; | |
722 | if (upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
723 | upTo -= DMA_BUFFER_SIZE; | |
724 | lastRxCounter += DMA_BUFFER_SIZE; | |
725 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
726 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
727 | } | |
728 | ||
729 | //samples += 4; | |
730 | samples += 1; | |
731 | ||
732 | if(smpl & 0xF) | |
733 | decbyte ^= (1 << (3 - div)); | |
734 | ||
735 | ||
736 | // FOR READER SIDE COMMUMICATION... | |
737 | ||
738 | decbyter <<= 2; | |
739 | decbyter ^= (smpl & 0x30); | |
740 | ||
741 | ++div; | |
742 | ||
743 | if (( div + 1) % 2 == 0) { | |
744 | smpl = decbyter; | |
745 | if ( OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
746 | rsamples = samples - Uart.samples; | |
747 | time_stop = (GetCountSspClk()-time_0) << 4; | |
748 | LED_C_ON(); | |
749 | ||
750 | //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; | |
751 | //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; | |
752 | if(tracing) { | |
753 | uint8_t parity[MAX_PARITY_SIZE]; | |
754 | GetParity(Uart.output, Uart.byteCnt, parity); | |
755 | LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); | |
756 | } | |
757 | ||
758 | /* And ready to receive another command. */ | |
759 | Uart.state = STATE_UNSYNCD; | |
760 | /* And also reset the demod code, which might have been */ | |
761 | /* false-triggered by the commands from the reader. */ | |
762 | Demod.state = DEMOD_UNSYNCD; | |
763 | LED_B_OFF(); | |
764 | Uart.byteCnt = 0; | |
765 | } else { | |
766 | time_start = (GetCountSspClk()-time_0) << 4; | |
767 | } | |
768 | decbyter = 0; | |
769 | } | |
770 | ||
771 | if(div > 3) { | |
772 | smpl = decbyte; | |
773 | if(ManchesterDecoding(smpl & 0x0F)) { | |
774 | time_stop = (GetCountSspClk()-time_0) << 4; | |
775 | ||
776 | rsamples = samples - Demod.samples; | |
777 | LED_B_ON(); | |
778 | ||
779 | if(tracing) { | |
780 | uint8_t parity[MAX_PARITY_SIZE]; | |
781 | GetParity(Demod.output, Demod.len, parity); | |
782 | LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); | |
783 | } | |
784 | ||
785 | // And ready to receive another response. | |
786 | memset(&Demod, 0, sizeof(Demod)); | |
787 | Demod.output = tagToReaderResponse; | |
788 | Demod.state = DEMOD_UNSYNCD; | |
789 | LED_C_OFF(); | |
790 | } else { | |
791 | time_start = (GetCountSspClk()-time_0) << 4; | |
792 | } | |
793 | ||
794 | div = 0; | |
795 | decbyte = 0x00; | |
796 | } | |
797 | ||
798 | if (BUTTON_PRESS()) { | |
799 | DbpString("cancelled_a"); | |
800 | goto done; | |
801 | } | |
802 | } | |
803 | ||
804 | DbpString("COMMAND FINISHED"); | |
805 | ||
806 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
807 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
808 | ||
809 | done: | |
810 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
811 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
812 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
813 | LEDsoff(); | |
814 | set_tracing(FALSE); | |
815 | } | |
816 | ||
817 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
818 | int i; | |
819 | for(i = 0; i < 8; i++) | |
820 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
821 | } | |
822 | ||
823 | //----------------------------------------------------------------------------- | |
824 | // Wait for commands from reader | |
825 | // Stop when button is pressed | |
826 | // Or return TRUE when command is captured | |
827 | //----------------------------------------------------------------------------- | |
828 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) | |
829 | { | |
830 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
831 | // only, since we are receiving, not transmitting). | |
832 | // Signal field is off with the appropriate LED | |
833 | LED_D_OFF(); | |
834 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
835 | ||
836 | // Now run a `software UART' on the stream of incoming samples. | |
837 | Uart.output = received; | |
838 | Uart.byteCntMax = maxLen; | |
839 | Uart.state = STATE_UNSYNCD; | |
840 | ||
841 | for(;;) { | |
842 | WDT_HIT(); | |
843 | ||
844 | if(BUTTON_PRESS()) return FALSE; | |
845 | ||
846 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
847 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
848 | } | |
849 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
850 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
851 | ||
852 | if(OutOfNDecoding(b & 0x0f)) { | |
853 | *len = Uart.byteCnt; | |
854 | return TRUE; | |
855 | } | |
856 | } | |
857 | } | |
858 | } | |
859 | ||
860 | static uint8_t encode4Bits(const uint8_t b) | |
861 | { | |
862 | uint8_t c = b & 0xF; | |
863 | // OTA, the least significant bits first | |
864 | // The columns are | |
865 | // 1 - Bit value to send | |
866 | // 2 - Reversed (big-endian) | |
867 | // 3 - Encoded | |
868 | // 4 - Hex values | |
869 | ||
870 | switch(c){ | |
871 | // 1 2 3 4 | |
872 | case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 | |
873 | case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 | |
874 | case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 | |
875 | case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 | |
876 | case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 | |
877 | case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 | |
878 | case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 | |
879 | case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 | |
880 | case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 | |
881 | case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 | |
882 | case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 | |
883 | case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 | |
884 | case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a | |
885 | case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a | |
886 | case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a | |
887 | default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa | |
888 | ||
889 | } | |
890 | } | |
891 | ||
892 | //----------------------------------------------------------------------------- | |
893 | // Prepare tag messages | |
894 | //----------------------------------------------------------------------------- | |
895 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) | |
896 | { | |
897 | ||
898 | /* | |
899 | * SOF comprises 3 parts; | |
900 | * * An unmodulated time of 56.64 us | |
901 | * * 24 pulses of 423.75 KHz (fc/32) | |
902 | * * A logic 1, which starts with an unmodulated time of 18.88us | |
903 | * followed by 8 pulses of 423.75kHz (fc/32) | |
904 | * | |
905 | * | |
906 | * EOF comprises 3 parts: | |
907 | * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated | |
908 | * time of 18.88us. | |
909 | * - 24 pulses of fc/32 | |
910 | * - An unmodulated time of 56.64 us | |
911 | * | |
912 | * | |
913 | * A logic 0 starts with 8 pulses of fc/32 | |
914 | * followed by an unmodulated time of 256/fc (~18,88us). | |
915 | * | |
916 | * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by | |
917 | * 8 pulses of fc/32 (also 18.88us) | |
918 | * | |
919 | * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, | |
920 | * works like this. | |
921 | * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). | |
922 | * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us | |
923 | * | |
924 | * In this mode the SOF can be written as 00011101 = 0x1D | |
925 | * The EOF can be written as 10111000 = 0xb8 | |
926 | * A logic 1 is 01 | |
927 | * A logic 0 is 10 | |
928 | * | |
929 | * */ | |
930 | ||
931 | int i; | |
932 | ||
933 | ToSendReset(); | |
934 | ||
935 | // Send SOF | |
936 | ToSend[++ToSendMax] = 0x1D; | |
937 | ||
938 | for(i = 0; i < len; i++) { | |
939 | uint8_t b = cmd[i]; | |
940 | ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half | |
941 | ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half | |
942 | } | |
943 | ||
944 | // Send EOF | |
945 | ToSend[++ToSendMax] = 0xB8; | |
946 | //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end | |
947 | // Convert from last byte pos to length | |
948 | ToSendMax++; | |
949 | } | |
950 | ||
951 | // Only SOF | |
952 | static void CodeIClassTagSOF() | |
953 | { | |
954 | //So far a dummy implementation, not used | |
955 | //int lastProxToAirDuration =0; | |
956 | ||
957 | ToSendReset(); | |
958 | // Send SOF | |
959 | ToSend[++ToSendMax] = 0x1D; | |
960 | // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning | |
961 | ||
962 | // Convert from last byte pos to length | |
963 | ToSendMax++; | |
964 | } | |
965 | #define MODE_SIM_CSN 0 | |
966 | #define MODE_EXIT_AFTER_MAC 1 | |
967 | #define MODE_FULLSIM 2 | |
968 | ||
969 | int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); | |
970 | /** | |
971 | * @brief SimulateIClass simulates an iClass card. | |
972 | * @param arg0 type of simulation | |
973 | * - 0 uses the first 8 bytes in usb data as CSN | |
974 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified | |
975 | * in the usb data. This mode collects MAC from the reader, in order to do an offline | |
976 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. | |
977 | * - Other : Uses the default CSN (031fec8af7ff12e0) | |
978 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) | |
979 | * @param arg2 | |
980 | * @param datain | |
981 | */ | |
982 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) | |
983 | { | |
984 | uint32_t simType = arg0; | |
985 | uint32_t numberOfCSNS = arg1; | |
986 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
987 | ||
988 | // Enable and clear the trace | |
989 | clear_trace(); | |
990 | set_tracing(TRUE); | |
991 | ||
992 | //Use the emulator memory for SIM | |
993 | uint8_t *emulator = BigBuf_get_EM_addr(); | |
994 | ||
995 | if(simType == 0) { | |
996 | // Use the CSN from commandline | |
997 | memcpy(emulator, datain, 8); | |
998 | doIClassSimulation(MODE_SIM_CSN,NULL); | |
999 | }else if(simType == 1) | |
1000 | { | |
1001 | //Default CSN | |
1002 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
1003 | // Use the CSN from commandline | |
1004 | memcpy(emulator, csn_crc, 8); | |
1005 | doIClassSimulation(MODE_SIM_CSN,NULL); | |
1006 | } | |
1007 | else if(simType == 2) | |
1008 | { | |
1009 | ||
1010 | uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; | |
1011 | Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); | |
1012 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time | |
1013 | // in order to collect MAC's from the reader. This can later be used in an offlne-attack | |
1014 | // in order to obtain the keys, as in the "dismantling iclass"-paper. | |
1015 | int i = 0; | |
1016 | for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) | |
1017 | { | |
1018 | // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. | |
1019 | ||
1020 | memcpy(emulator, datain+(i*8), 8); | |
1021 | if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) | |
1022 | { | |
1023 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); | |
1024 | return; // Button pressed | |
1025 | } | |
1026 | } | |
1027 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); | |
1028 | ||
1029 | }else if(simType == 3){ | |
1030 | //This is 'full sim' mode, where we use the emulator storage for data. | |
1031 | doIClassSimulation(MODE_FULLSIM, NULL); | |
1032 | } | |
1033 | else{ | |
1034 | // We may want a mode here where we hardcode the csns to use (from proxclone). | |
1035 | // That will speed things up a little, but not required just yet. | |
1036 | Dbprintf("The mode is not implemented, reserved for future use"); | |
1037 | } | |
1038 | Dbprintf("Done..."); | |
1039 | set_tracing(FALSE); | |
1040 | } | |
1041 | void AppendCrc(uint8_t* data, int len) | |
1042 | { | |
1043 | ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1); | |
1044 | } | |
1045 | ||
1046 | /** | |
1047 | * @brief Does the actual simulation | |
1048 | * @param csn - csn to use | |
1049 | * @param breakAfterMacReceived if true, returns after reader MAC has been received. | |
1050 | */ | |
1051 | int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) | |
1052 | { | |
1053 | // free eventually allocated BigBuf memory | |
1054 | BigBuf_free_keep_EM(); | |
1055 | ||
1056 | State cipher_state; | |
1057 | // State cipher_state_reserve; | |
1058 | uint8_t *csn = BigBuf_get_EM_addr(); | |
1059 | uint8_t *emulator = csn; | |
1060 | uint8_t sof_data[] = { 0x0F} ; | |
1061 | // CSN followed by two CRC bytes | |
1062 | uint8_t anticoll_data[10] = { 0 }; | |
1063 | uint8_t csn_data[10] = { 0 }; | |
1064 | memcpy(csn_data,csn,sizeof(csn_data)); | |
1065 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1066 | ||
1067 | // Construct anticollision-CSN | |
1068 | rotateCSN(csn_data,anticoll_data); | |
1069 | ||
1070 | // Compute CRC on both CSNs | |
1071 | ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); | |
1072 | ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); | |
1073 | ||
1074 | uint8_t diversified_key[8] = { 0 }; | |
1075 | // e-Purse | |
1076 | uint8_t card_challenge_data[8] = { 0x00 }; | |
1077 | if(simulationMode == MODE_FULLSIM) | |
1078 | { | |
1079 | //The diversified key should be stored on block 3 | |
1080 | //Get the diversified key from emulator memory | |
1081 | memcpy(diversified_key, emulator+(8*3),8); | |
1082 | ||
1083 | //Card challenge, a.k.a e-purse is on block 2 | |
1084 | memcpy(card_challenge_data,emulator + (8 * 2) , 8); | |
1085 | //Precalculate the cipher state, feeding it the CC | |
1086 | cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key); | |
1087 | ||
1088 | } | |
1089 | ||
1090 | int exitLoop = 0; | |
1091 | // Reader 0a | |
1092 | // Tag 0f | |
1093 | // Reader 0c | |
1094 | // Tag anticoll. CSN | |
1095 | // Reader 81 anticoll. CSN | |
1096 | // Tag CSN | |
1097 | ||
1098 | uint8_t *modulated_response; | |
1099 | int modulated_response_size = 0; | |
1100 | uint8_t* trace_data = NULL; | |
1101 | int trace_data_size = 0; | |
1102 | ||
1103 | ||
1104 | // Respond SOF -- takes 1 bytes | |
1105 | uint8_t *resp_sof = BigBuf_malloc(2); | |
1106 | int resp_sof_Len; | |
1107 | ||
1108 | // Anticollision CSN (rotated CSN) | |
1109 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
1110 | uint8_t *resp_anticoll = BigBuf_malloc(28); | |
1111 | int resp_anticoll_len; | |
1112 | ||
1113 | // CSN | |
1114 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
1115 | uint8_t *resp_csn = BigBuf_malloc(30); | |
1116 | int resp_csn_len; | |
1117 | ||
1118 | // e-Purse | |
1119 | // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) | |
1120 | uint8_t *resp_cc = BigBuf_malloc(20); | |
1121 | int resp_cc_len; | |
1122 | ||
1123 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
1124 | int len; | |
1125 | ||
1126 | // Prepare card messages | |
1127 | ToSendMax = 0; | |
1128 | ||
1129 | // First card answer: SOF | |
1130 | CodeIClassTagSOF(); | |
1131 | memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; | |
1132 | ||
1133 | // Anticollision CSN | |
1134 | CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); | |
1135 | memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; | |
1136 | ||
1137 | // CSN | |
1138 | CodeIClassTagAnswer(csn_data, sizeof(csn_data)); | |
1139 | memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; | |
1140 | ||
1141 | // e-Purse | |
1142 | CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); | |
1143 | memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; | |
1144 | ||
1145 | //This is used for responding to READ-block commands or other data which is dynamically generated | |
1146 | //First the 'trace'-data, not encoded for FPGA | |
1147 | uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer | |
1148 | //Then storage for the modulated data | |
1149 | //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) | |
1150 | uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); | |
1151 | ||
1152 | // Start from off (no field generated) | |
1153 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1154 | //SpinDelay(200); | |
1155 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1156 | SpinDelay(100); | |
1157 | StartCountSspClk(); | |
1158 | // We need to listen to the high-frequency, peak-detected path. | |
1159 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1160 | FpgaSetupSsc(); | |
1161 | ||
1162 | // To control where we are in the protocol | |
1163 | int cmdsRecvd = 0; | |
1164 | uint32_t time_0 = GetCountSspClk(); | |
1165 | uint32_t t2r_time =0; | |
1166 | uint32_t r2t_time =0; | |
1167 | ||
1168 | LED_A_ON(); | |
1169 | bool buttonPressed = false; | |
1170 | uint8_t response_delay = 1; | |
1171 | while(!exitLoop) { | |
1172 | response_delay = 1; | |
1173 | LED_B_OFF(); | |
1174 | //Signal tracer | |
1175 | // Can be used to get a trigger for an oscilloscope.. | |
1176 | LED_C_OFF(); | |
1177 | ||
1178 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { | |
1179 | buttonPressed = true; | |
1180 | break; | |
1181 | } | |
1182 | r2t_time = GetCountSspClk(); | |
1183 | //Signal tracer | |
1184 | LED_C_ON(); | |
1185 | ||
1186 | // Okay, look at the command now. | |
1187 | if(receivedCmd[0] == ICLASS_CMD_ACTALL ) { | |
1188 | // Reader in anticollission phase | |
1189 | modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; | |
1190 | trace_data = sof_data; | |
1191 | trace_data_size = sizeof(sof_data); | |
1192 | } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { | |
1193 | // Reader asks for anticollission CSN | |
1194 | modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; | |
1195 | trace_data = anticoll_data; | |
1196 | trace_data_size = sizeof(anticoll_data); | |
1197 | //DbpString("Reader requests anticollission CSN:"); | |
1198 | } else if(receivedCmd[0] == ICLASS_CMD_SELECT) { | |
1199 | // Reader selects anticollission CSN. | |
1200 | // Tag sends the corresponding real CSN | |
1201 | modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; | |
1202 | trace_data = csn_data; | |
1203 | trace_data_size = sizeof(csn_data); | |
1204 | //DbpString("Reader selects anticollission CSN:"); | |
1205 | } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { | |
1206 | // Read e-purse (88 02) | |
1207 | modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; | |
1208 | trace_data = card_challenge_data; | |
1209 | trace_data_size = sizeof(card_challenge_data); | |
1210 | LED_B_ON(); | |
1211 | } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { | |
1212 | // Reader random and reader MAC!!! | |
1213 | if(simulationMode == MODE_FULLSIM) | |
1214 | { | |
1215 | //NR, from reader, is in receivedCmd +1 | |
1216 | opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); | |
1217 | ||
1218 | trace_data = data_generic_trace; | |
1219 | trace_data_size = 4; | |
1220 | CodeIClassTagAnswer(trace_data , trace_data_size); | |
1221 | memcpy(data_response, ToSend, ToSendMax); | |
1222 | modulated_response = data_response; | |
1223 | modulated_response_size = ToSendMax; | |
1224 | response_delay = 0;//We need to hurry here... | |
1225 | //exitLoop = true; | |
1226 | }else | |
1227 | { //Not fullsim, we don't respond | |
1228 | // We do not know what to answer, so lets keep quiet | |
1229 | modulated_response = resp_sof; modulated_response_size = 0; | |
1230 | trace_data = NULL; | |
1231 | trace_data_size = 0; | |
1232 | if (simulationMode == MODE_EXIT_AFTER_MAC){ | |
1233 | // dbprintf:ing ... | |
1234 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" | |
1235 | ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1236 | Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, | |
1237 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1238 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1239 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1240 | if (reader_mac_buf != NULL) | |
1241 | { | |
1242 | memcpy(reader_mac_buf,receivedCmd+1,8); | |
1243 | } | |
1244 | exitLoop = true; | |
1245 | } | |
1246 | } | |
1247 | ||
1248 | } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { | |
1249 | // Reader ends the session | |
1250 | modulated_response = resp_sof; modulated_response_size = 0; //order = 0; | |
1251 | trace_data = NULL; | |
1252 | trace_data_size = 0; | |
1253 | } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ | |
1254 | //Read block | |
1255 | uint16_t blk = receivedCmd[1]; | |
1256 | //Take the data... | |
1257 | memcpy(data_generic_trace, emulator+(blk << 3),8); | |
1258 | //Add crc | |
1259 | AppendCrc(data_generic_trace, 8); | |
1260 | trace_data = data_generic_trace; | |
1261 | trace_data_size = 10; | |
1262 | CodeIClassTagAnswer(trace_data , trace_data_size); | |
1263 | memcpy(data_response, ToSend, ToSendMax); | |
1264 | modulated_response = data_response; | |
1265 | modulated_response_size = ToSendMax; | |
1266 | }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) | |
1267 | {//Probably the reader wants to update the nonce. Let's just ignore that for now. | |
1268 | // OBS! If this is implemented, don't forget to regenerate the cipher_state | |
1269 | //We're expected to respond with the data+crc, exactly what's already in the receivedcmd | |
1270 | //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| | |
1271 | ||
1272 | //Take the data... | |
1273 | memcpy(data_generic_trace, receivedCmd+2,8); | |
1274 | //Add crc | |
1275 | AppendCrc(data_generic_trace, 8); | |
1276 | trace_data = data_generic_trace; | |
1277 | trace_data_size = 10; | |
1278 | CodeIClassTagAnswer(trace_data , trace_data_size); | |
1279 | memcpy(data_response, ToSend, ToSendMax); | |
1280 | modulated_response = data_response; | |
1281 | modulated_response_size = ToSendMax; | |
1282 | } | |
1283 | else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) | |
1284 | {//Pagesel | |
1285 | //Pagesel enables to select a page in the selected chip memory and return its configuration block | |
1286 | //Chips with a single page will not answer to this command | |
1287 | // It appears we're fine ignoring this. | |
1288 | //Otherwise, we should answer 8bytes (block) + 2bytes CRC | |
1289 | } | |
1290 | else { | |
1291 | //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 | |
1292 | // Never seen this command before | |
1293 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1294 | len, | |
1295 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1296 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1297 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1298 | // Do not respond | |
1299 | modulated_response = resp_sof; modulated_response_size = 0; //order = 0; | |
1300 | trace_data = NULL; | |
1301 | trace_data_size = 0; | |
1302 | } | |
1303 | ||
1304 | if(cmdsRecvd > 100) { | |
1305 | //DbpString("100 commands later..."); | |
1306 | //break; | |
1307 | } | |
1308 | else { | |
1309 | cmdsRecvd++; | |
1310 | } | |
1311 | /** | |
1312 | A legit tag has about 380us delay between reader EOT and tag SOF. | |
1313 | **/ | |
1314 | if(modulated_response_size > 0) { | |
1315 | SendIClassAnswer(modulated_response, modulated_response_size, response_delay); | |
1316 | t2r_time = GetCountSspClk(); | |
1317 | } | |
1318 | ||
1319 | if (tracing) { | |
1320 | uint8_t parity[MAX_PARITY_SIZE]; | |
1321 | GetParity(receivedCmd, len, parity); | |
1322 | LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); | |
1323 | ||
1324 | if (trace_data != NULL) { | |
1325 | GetParity(trace_data, trace_data_size, parity); | |
1326 | LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); | |
1327 | } | |
1328 | if(!tracing) | |
1329 | DbpString("Trace full"); | |
1330 | ||
1331 | } | |
1332 | } | |
1333 | ||
1334 | LEDsoff(); | |
1335 | ||
1336 | if(buttonPressed) | |
1337 | DbpString("Button pressed"); | |
1338 | ||
1339 | return buttonPressed; | |
1340 | } | |
1341 | ||
1342 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) | |
1343 | { | |
1344 | int i = 0, d=0;//, u = 0, d = 0; | |
1345 | uint8_t b = 0; | |
1346 | ||
1347 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); | |
1348 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); | |
1349 | ||
1350 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1351 | FpgaSetupSsc(); | |
1352 | while(!BUTTON_PRESS()) { | |
1353 | if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ | |
1354 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1355 | } | |
1356 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ | |
1357 | b = 0x00; | |
1358 | if(d < delay) { | |
1359 | d++; | |
1360 | } | |
1361 | else { | |
1362 | if( i < respLen){ | |
1363 | b = resp[i]; | |
1364 | //Hack | |
1365 | //b = 0xAC; | |
1366 | } | |
1367 | i++; | |
1368 | } | |
1369 | AT91C_BASE_SSC->SSC_THR = b; | |
1370 | } | |
1371 | ||
1372 | // if (i > respLen +4) break; | |
1373 | if (i > respLen +1) break; | |
1374 | } | |
1375 | ||
1376 | return 0; | |
1377 | } | |
1378 | ||
1379 | /// THE READER CODE | |
1380 | ||
1381 | //----------------------------------------------------------------------------- | |
1382 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1383 | //----------------------------------------------------------------------------- | |
1384 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) | |
1385 | { | |
1386 | int c; | |
1387 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1388 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1389 | FpgaSetupSsc(); | |
1390 | ||
1391 | if (wait) { | |
1392 | if(*wait < 10) *wait = 10; | |
1393 | ||
1394 | for(c = 0; c < *wait;) { | |
1395 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1396 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1397 | c++; | |
1398 | } | |
1399 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1400 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1401 | (void)r; | |
1402 | } | |
1403 | WDT_HIT(); | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | ||
1408 | uint8_t sendbyte; | |
1409 | bool firstpart = TRUE; | |
1410 | c = 0; | |
1411 | for(;;) { | |
1412 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1413 | ||
1414 | // DOUBLE THE SAMPLES! | |
1415 | if(firstpart) { | |
1416 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1417 | } | |
1418 | else { | |
1419 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1420 | c++; | |
1421 | } | |
1422 | if(sendbyte == 0xff) { | |
1423 | sendbyte = 0xfe; | |
1424 | } | |
1425 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1426 | firstpart = !firstpart; | |
1427 | ||
1428 | if(c >= len) { | |
1429 | break; | |
1430 | } | |
1431 | } | |
1432 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1433 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1434 | (void)r; | |
1435 | } | |
1436 | WDT_HIT(); | |
1437 | } | |
1438 | if (samples && wait) *samples = (c + *wait) << 3; | |
1439 | } | |
1440 | ||
1441 | ||
1442 | //----------------------------------------------------------------------------- | |
1443 | // Prepare iClass reader command to send to FPGA | |
1444 | //----------------------------------------------------------------------------- | |
1445 | void CodeIClassCommand(const uint8_t * cmd, int len) | |
1446 | { | |
1447 | int i, j, k; | |
1448 | uint8_t b; | |
1449 | ||
1450 | ToSendReset(); | |
1451 | ||
1452 | // Start of Communication: 1 out of 4 | |
1453 | ToSend[++ToSendMax] = 0xf0; | |
1454 | ToSend[++ToSendMax] = 0x00; | |
1455 | ToSend[++ToSendMax] = 0x0f; | |
1456 | ToSend[++ToSendMax] = 0x00; | |
1457 | ||
1458 | // Modulate the bytes | |
1459 | for (i = 0; i < len; i++) { | |
1460 | b = cmd[i]; | |
1461 | for(j = 0; j < 4; j++) { | |
1462 | for(k = 0; k < 4; k++) { | |
1463 | if(k == (b & 3)) { | |
1464 | ToSend[++ToSendMax] = 0x0f; | |
1465 | } | |
1466 | else { | |
1467 | ToSend[++ToSendMax] = 0x00; | |
1468 | } | |
1469 | } | |
1470 | b >>= 2; | |
1471 | } | |
1472 | } | |
1473 | ||
1474 | // End of Communication | |
1475 | ToSend[++ToSendMax] = 0x00; | |
1476 | ToSend[++ToSendMax] = 0x00; | |
1477 | ToSend[++ToSendMax] = 0xf0; | |
1478 | ToSend[++ToSendMax] = 0x00; | |
1479 | ||
1480 | // Convert from last character reference to length | |
1481 | ToSendMax++; | |
1482 | } | |
1483 | ||
1484 | void ReaderTransmitIClass(uint8_t* frame, int len) | |
1485 | { | |
1486 | int wait = 0; | |
1487 | int samples = 0; | |
1488 | ||
1489 | // This is tied to other size changes | |
1490 | CodeIClassCommand(frame,len); | |
1491 | ||
1492 | // Select the card | |
1493 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1494 | if(trigger) | |
1495 | LED_A_ON(); | |
1496 | ||
1497 | // Store reader command in buffer | |
1498 | if (tracing) { | |
1499 | uint8_t par[MAX_PARITY_SIZE]; | |
1500 | GetParity(frame, len, par); | |
1501 | LogTrace(frame, len, rsamples, rsamples, par, TRUE); | |
1502 | } | |
1503 | } | |
1504 | ||
1505 | //----------------------------------------------------------------------------- | |
1506 | // Wait a certain time for tag response | |
1507 | // If a response is captured return TRUE | |
1508 | // If it takes too long return FALSE | |
1509 | //----------------------------------------------------------------------------- | |
1510 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1511 | { | |
1512 | // buffer needs to be 512 bytes | |
1513 | int c; | |
1514 | ||
1515 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1516 | // only, since we are receiving, not transmitting). | |
1517 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1518 | ||
1519 | // Now get the answer from the card | |
1520 | Demod.output = receivedResponse; | |
1521 | Demod.len = 0; | |
1522 | Demod.state = DEMOD_UNSYNCD; | |
1523 | ||
1524 | uint8_t b; | |
1525 | if (elapsed) *elapsed = 0; | |
1526 | ||
1527 | bool skip = FALSE; | |
1528 | ||
1529 | c = 0; | |
1530 | for(;;) { | |
1531 | WDT_HIT(); | |
1532 | ||
1533 | if(BUTTON_PRESS()) return FALSE; | |
1534 | ||
1535 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1536 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1537 | if (elapsed) (*elapsed)++; | |
1538 | } | |
1539 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1540 | if(c < timeout) { c++; } else { return FALSE; } | |
1541 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1542 | skip = !skip; | |
1543 | if(skip) continue; | |
1544 | ||
1545 | if(ManchesterDecoding(b & 0x0f)) { | |
1546 | *samples = c << 3; | |
1547 | return TRUE; | |
1548 | } | |
1549 | } | |
1550 | } | |
1551 | } | |
1552 | ||
1553 | int ReaderReceiveIClass(uint8_t* receivedAnswer) | |
1554 | { | |
1555 | int samples = 0; | |
1556 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; | |
1557 | rsamples += samples; | |
1558 | if (tracing) { | |
1559 | uint8_t parity[MAX_PARITY_SIZE]; | |
1560 | GetParity(receivedAnswer, Demod.len, parity); | |
1561 | LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); | |
1562 | } | |
1563 | if(samples == 0) return FALSE; | |
1564 | return Demod.len; | |
1565 | } | |
1566 | ||
1567 | void setupIclassReader() | |
1568 | { | |
1569 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1570 | // Reset trace buffer | |
1571 | clear_trace(); | |
1572 | set_tracing(TRUE); | |
1573 | ||
1574 | // Setup SSC | |
1575 | FpgaSetupSsc(); | |
1576 | // Start from off (no field generated) | |
1577 | // Signal field is off with the appropriate LED | |
1578 | LED_D_OFF(); | |
1579 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1580 | SpinDelay(200); | |
1581 | ||
1582 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1583 | ||
1584 | // Now give it time to spin up. | |
1585 | // Signal field is on with the appropriate LED | |
1586 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1587 | SpinDelay(200); | |
1588 | LED_A_ON(); | |
1589 | ||
1590 | } | |
1591 | ||
1592 | bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) | |
1593 | { | |
1594 | while(retries-- > 0) | |
1595 | { | |
1596 | ReaderTransmitIClass(command, cmdsize); | |
1597 | if(expected_size == ReaderReceiveIClass(resp)){ | |
1598 | return true; | |
1599 | } | |
1600 | } | |
1601 | return false;//Error | |
1602 | } | |
1603 | ||
1604 | /** | |
1605 | * @brief Talks to an iclass tag, sends the commands to get CSN and CC. | |
1606 | * @param card_data where the CSN and CC are stored for return | |
1607 | * @return 0 = fail | |
1608 | * 1 = Got CSN | |
1609 | * 2 = Got CSN and CC | |
1610 | */ | |
1611 | uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) | |
1612 | { | |
1613 | static uint8_t act_all[] = { 0x0a }; | |
1614 | //static uint8_t identify[] = { 0x0c }; | |
1615 | static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; | |
1616 | static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1617 | static uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1618 | if (use_credit_key) | |
1619 | readcheck_cc[0] = 0x18; | |
1620 | else | |
1621 | readcheck_cc[0] = 0x88; | |
1622 | ||
1623 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1624 | ||
1625 | uint8_t read_status = 0; | |
1626 | ||
1627 | // Send act_all | |
1628 | ReaderTransmitIClass(act_all, 1); | |
1629 | // Card present? | |
1630 | if(!ReaderReceiveIClass(resp)) return read_status;//Fail | |
1631 | //Send Identify | |
1632 | ReaderTransmitIClass(identify, 1); | |
1633 | //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC | |
1634 | uint8_t len = ReaderReceiveIClass(resp); | |
1635 | if(len != 10) return read_status;//Fail | |
1636 | ||
1637 | //Copy the Anti-collision CSN to our select-packet | |
1638 | memcpy(&select[1],resp,8); | |
1639 | //Select the card | |
1640 | ReaderTransmitIClass(select, sizeof(select)); | |
1641 | //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC | |
1642 | len = ReaderReceiveIClass(resp); | |
1643 | if(len != 10) return read_status;//Fail | |
1644 | ||
1645 | //Success - level 1, we got CSN | |
1646 | //Save CSN in response data | |
1647 | memcpy(card_data,resp,8); | |
1648 | ||
1649 | //Flag that we got to at least stage 1, read CSN | |
1650 | read_status = 1; | |
1651 | ||
1652 | // Card selected, now read e-purse (cc) | |
1653 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1654 | if(ReaderReceiveIClass(resp) == 8) { | |
1655 | //Save CC (e-purse) in response data | |
1656 | memcpy(card_data+8,resp,8); | |
1657 | read_status++; | |
1658 | } | |
1659 | ||
1660 | return read_status; | |
1661 | } | |
1662 | uint8_t handshakeIclassTag(uint8_t *card_data){ | |
1663 | return handshakeIclassTag_ext(card_data, false); | |
1664 | } | |
1665 | ||
1666 | ||
1667 | // Reader iClass Anticollission | |
1668 | void ReaderIClass(uint8_t arg0) { | |
1669 | ||
1670 | uint8_t card_data[6 * 8]={0}; | |
1671 | memset(card_data, 0xFF, sizeof(card_data)); | |
1672 | uint8_t last_csn[8]={0}; | |
1673 | ||
1674 | //Read conf block CRC(0x01) => 0xfa 0x22 | |
1675 | uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22}; | |
1676 | //Read conf block CRC(0x05) => 0xde 0x64 | |
1677 | uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64}; | |
1678 | ||
1679 | ||
1680 | int read_status= 0; | |
1681 | uint8_t result_status = 0; | |
1682 | bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; | |
1683 | bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; | |
1684 | bool use_credit_key = false; | |
1685 | if (arg0 & FLAG_ICLASS_READER_CEDITKEY) | |
1686 | use_credit_key = true; | |
1687 | set_tracing(TRUE); | |
1688 | setupIclassReader(); | |
1689 | ||
1690 | uint16_t tryCnt=0; | |
1691 | while(!BUTTON_PRESS()) | |
1692 | { | |
1693 | if (try_once && tryCnt > 5) break; | |
1694 | ||
1695 | tryCnt++; | |
1696 | ||
1697 | if(!tracing) { | |
1698 | DbpString("Trace full"); | |
1699 | break; | |
1700 | } | |
1701 | WDT_HIT(); | |
1702 | ||
1703 | read_status = handshakeIclassTag_ext(card_data, use_credit_key); | |
1704 | ||
1705 | if(read_status == 0) continue; | |
1706 | if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN; | |
1707 | if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC; | |
1708 | ||
1709 | // handshakeIclass returns CSN|CC, but the actual block | |
1710 | // layout is CSN|CONFIG|CC, so here we reorder the data, | |
1711 | // moving CC forward 8 bytes | |
1712 | memcpy(card_data+16,card_data+8, 8); | |
1713 | //Read block 1, config | |
1714 | if(arg0 & FLAG_ICLASS_READER_CONF) | |
1715 | { | |
1716 | if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10)) | |
1717 | { | |
1718 | result_status |= FLAG_ICLASS_READER_CONF; | |
1719 | } else { | |
1720 | Dbprintf("Failed to dump config block"); | |
1721 | } | |
1722 | } | |
1723 | ||
1724 | //Read block 5, AA | |
1725 | if(arg0 & FLAG_ICLASS_READER_AA){ | |
1726 | if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10)) | |
1727 | { | |
1728 | result_status |= FLAG_ICLASS_READER_AA; | |
1729 | } else { | |
1730 | //Dbprintf("Failed to dump AA block"); | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | // 0 : CSN | |
1735 | // 1 : Configuration | |
1736 | // 2 : e-purse | |
1737 | // (3,4 write-only, kc and kd) | |
1738 | // 5 Application issuer area | |
1739 | // | |
1740 | //Then we can 'ship' back the 8 * 5 bytes of data, | |
1741 | // with 0xFF:s in block 3 and 4. | |
1742 | ||
1743 | LED_B_ON(); | |
1744 | //Send back to client, but don't bother if we already sent this | |
1745 | if(memcmp(last_csn, card_data, 8) != 0) | |
1746 | { | |
1747 | // If caller requires that we get CC, continue until we got it | |
1748 | if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC)) | |
1749 | { | |
1750 | cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data)); | |
1751 | if(abort_after_read) { | |
1752 | LED_A_OFF(); | |
1753 | set_tracing(FALSE); | |
1754 | return; | |
1755 | } | |
1756 | //Save that we already sent this.... | |
1757 | memcpy(last_csn, card_data, 8); | |
1758 | } | |
1759 | } | |
1760 | LED_B_OFF(); | |
1761 | } | |
1762 | cmd_send(CMD_ACK,0,0,0,card_data, 0); | |
1763 | LED_A_OFF(); | |
1764 | set_tracing(FALSE); | |
1765 | } | |
1766 | ||
1767 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { | |
1768 | ||
1769 | uint8_t card_data[USB_CMD_DATA_SIZE]={0}; | |
1770 | uint16_t block_crc_LUT[255] = {0}; | |
1771 | ||
1772 | {//Generate a lookup table for block crc | |
1773 | for(int block = 0; block < 255; block++){ | |
1774 | char bl = block; | |
1775 | block_crc_LUT[block] = iclass_crc16(&bl ,1); | |
1776 | } | |
1777 | } | |
1778 | //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); | |
1779 | ||
1780 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1781 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1782 | ||
1783 | uint16_t crc = 0; | |
1784 | uint8_t cardsize=0; | |
1785 | uint8_t mem=0; | |
1786 | ||
1787 | static struct memory_t{ | |
1788 | int k16; | |
1789 | int book; | |
1790 | int k2; | |
1791 | int lockauth; | |
1792 | int keyaccess; | |
1793 | } memory; | |
1794 | ||
1795 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1796 | ||
1797 | setupIclassReader(); | |
1798 | set_tracing(TRUE); | |
1799 | ||
1800 | while(!BUTTON_PRESS()) { | |
1801 | ||
1802 | WDT_HIT(); | |
1803 | ||
1804 | if(!tracing) { | |
1805 | DbpString("Trace full"); | |
1806 | break; | |
1807 | } | |
1808 | ||
1809 | uint8_t read_status = handshakeIclassTag(card_data); | |
1810 | if(read_status < 2) continue; | |
1811 | ||
1812 | //for now replay captured auth (as cc not updated) | |
1813 | memcpy(check+5,MAC,4); | |
1814 | ||
1815 | if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) | |
1816 | { | |
1817 | Dbprintf("Error: Authentication Fail!"); | |
1818 | continue; | |
1819 | } | |
1820 | ||
1821 | //first get configuration block (block 1) | |
1822 | crc = block_crc_LUT[1]; | |
1823 | read[1]=1; | |
1824 | read[2] = crc >> 8; | |
1825 | read[3] = crc & 0xff; | |
1826 | ||
1827 | if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) | |
1828 | { | |
1829 | Dbprintf("Dump config (block 1) failed"); | |
1830 | continue; | |
1831 | } | |
1832 | ||
1833 | mem=resp[5]; | |
1834 | memory.k16= (mem & 0x80); | |
1835 | memory.book= (mem & 0x20); | |
1836 | memory.k2= (mem & 0x8); | |
1837 | memory.lockauth= (mem & 0x2); | |
1838 | memory.keyaccess= (mem & 0x1); | |
1839 | ||
1840 | cardsize = memory.k16 ? 255 : 32; | |
1841 | WDT_HIT(); | |
1842 | //Set card_data to all zeroes, we'll fill it with data | |
1843 | memset(card_data,0x0,USB_CMD_DATA_SIZE); | |
1844 | uint8_t failedRead =0; | |
1845 | uint32_t stored_data_length =0; | |
1846 | //then loop around remaining blocks | |
1847 | for(int block=0; block < cardsize; block++){ | |
1848 | ||
1849 | read[1]= block; | |
1850 | crc = block_crc_LUT[block]; | |
1851 | read[2] = crc >> 8; | |
1852 | read[3] = crc & 0xff; | |
1853 | ||
1854 | if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) | |
1855 | { | |
1856 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1857 | block, resp[0], resp[1], resp[2], | |
1858 | resp[3], resp[4], resp[5], | |
1859 | resp[6], resp[7]); | |
1860 | ||
1861 | //Fill up the buffer | |
1862 | memcpy(card_data+stored_data_length,resp,8); | |
1863 | stored_data_length += 8; | |
1864 | if(stored_data_length +8 > USB_CMD_DATA_SIZE) | |
1865 | {//Time to send this off and start afresh | |
1866 | cmd_send(CMD_ACK, | |
1867 | stored_data_length,//data length | |
1868 | failedRead,//Failed blocks? | |
1869 | 0,//Not used ATM | |
1870 | card_data, stored_data_length); | |
1871 | //reset | |
1872 | stored_data_length = 0; | |
1873 | failedRead = 0; | |
1874 | } | |
1875 | } else { | |
1876 | failedRead = 1; | |
1877 | stored_data_length +=8;//Otherwise, data becomes misaligned | |
1878 | Dbprintf("Failed to dump block %d", block); | |
1879 | } | |
1880 | } | |
1881 | ||
1882 | //Send off any remaining data | |
1883 | if(stored_data_length > 0) | |
1884 | { | |
1885 | cmd_send(CMD_ACK, | |
1886 | stored_data_length,//data length | |
1887 | failedRead,//Failed blocks? | |
1888 | 0,//Not used ATM | |
1889 | card_data, stored_data_length); | |
1890 | } | |
1891 | //If we got here, let's break | |
1892 | break; | |
1893 | } | |
1894 | //Signal end of transmission | |
1895 | cmd_send(CMD_ACK, | |
1896 | 0,//data length | |
1897 | 0,//Failed blocks? | |
1898 | 0,//Not used ATM | |
1899 | card_data, 0); | |
1900 | ||
1901 | LED_A_OFF(); | |
1902 | set_tracing(FALSE); | |
1903 | } | |
1904 | ||
1905 | void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { | |
1906 | uint8_t readcheck[] = { keyType, blockNo }; | |
1907 | uint8_t resp[] = {0,0,0,0,0,0,0,0}; | |
1908 | size_t isOK = 0; | |
1909 | isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); | |
1910 | cmd_send(CMD_ACK,isOK,0,0,0,0); | |
1911 | } | |
1912 | ||
1913 | void iClass_Authentication(uint8_t *MAC) { | |
1914 | uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1915 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1916 | memcpy(check+5,MAC,4); | |
1917 | bool isOK; | |
1918 | isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); | |
1919 | cmd_send(CMD_ACK,isOK,0,0,0,0); | |
1920 | } | |
1921 | bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { | |
1922 | uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? | |
1923 | char bl = blockNo; | |
1924 | uint16_t rdCrc = iclass_crc16(&bl, 1); | |
1925 | readcmd[2] = rdCrc >> 8; | |
1926 | readcmd[3] = rdCrc & 0xff; | |
1927 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; | |
1928 | bool isOK = false; | |
1929 | ||
1930 | //readcmd[1] = blockNo; | |
1931 | isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); | |
1932 | memcpy(readdata, resp, sizeof(resp)); | |
1933 | ||
1934 | return isOK; | |
1935 | } | |
1936 | ||
1937 | void iClass_ReadBlk(uint8_t blockno) { | |
1938 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1939 | bool isOK = false; | |
1940 | isOK = iClass_ReadBlock(blockno, readblockdata); | |
1941 | cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); | |
1942 | } | |
1943 | ||
1944 | void iClass_Dump(uint8_t blockno, uint8_t numblks) { | |
1945 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1946 | bool isOK = false; | |
1947 | uint8_t blkCnt = 0; | |
1948 | ||
1949 | BigBuf_free(); | |
1950 | uint8_t *dataout = BigBuf_malloc(255*8); | |
1951 | if (dataout == NULL){ | |
1952 | Dbprintf("out of memory"); | |
1953 | OnError(1); | |
1954 | return; | |
1955 | } | |
1956 | memset(dataout,0xFF,255*8); | |
1957 | ||
1958 | for (;blkCnt < numblks; blkCnt++) { | |
1959 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1960 | if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again | |
1961 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1962 | if (!isOK) { | |
1963 | Dbprintf("Block %02X failed to read", blkCnt+blockno); | |
1964 | break; | |
1965 | } | |
1966 | } | |
1967 | memcpy(dataout+(blkCnt*8),readblockdata,8); | |
1968 | } | |
1969 | //return pointer to dump memory in arg3 | |
1970 | cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0); | |
1971 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1972 | LEDsoff(); | |
1973 | BigBuf_free(); | |
1974 | } | |
1975 | ||
1976 | bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { | |
1977 | uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1978 | //uint8_t readblockdata[10]; | |
1979 | //write[1] = blockNo; | |
1980 | memcpy(write+2, data, 12); // data + mac | |
1981 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; | |
1982 | bool isOK; | |
1983 | isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); | |
1984 | if (isOK) { | |
1985 | //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); | |
1986 | if (memcmp(write+2,resp,8)) { | |
1987 | //error try again | |
1988 | isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); | |
1989 | } | |
1990 | } | |
1991 | return isOK; | |
1992 | } | |
1993 | ||
1994 | void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { | |
1995 | bool isOK = iClass_WriteBlock_ext(blockNo, data); | |
1996 | if (isOK){ | |
1997 | Dbprintf("Write block [%02x] successful",blockNo); | |
1998 | }else { | |
1999 | Dbprintf("Write block [%02x] failed",blockNo); | |
2000 | } | |
2001 | cmd_send(CMD_ACK,isOK,0,0,0,0); | |
2002 | } | |
2003 | ||
2004 | void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { | |
2005 | int i; | |
2006 | int written = 0; | |
2007 | int total_block = (endblock - startblock) + 1; | |
2008 | for (i = 0; i < total_block;i++){ | |
2009 | // block number | |
2010 | if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ | |
2011 | Dbprintf("Write block [%02x] successful",i + startblock); | |
2012 | written++; | |
2013 | } else { | |
2014 | if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ | |
2015 | Dbprintf("Write block [%02x] successful",i + startblock); | |
2016 | written++; | |
2017 | } else { | |
2018 | Dbprintf("Write block [%02x] failed",i + startblock); | |
2019 | } | |
2020 | } | |
2021 | } | |
2022 | if (written == total_block) | |
2023 | Dbprintf("Clone complete"); | |
2024 | else | |
2025 | Dbprintf("Clone incomplete"); | |
2026 | ||
2027 | cmd_send(CMD_ACK,1,0,0,0,0); | |
2028 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2029 | LEDsoff(); | |
2030 | } |