]>
Commit | Line | Data |
---|---|---|
1 | // Merlok, 2011, 2012 | |
2 | // people from mifare@nethemba.com, 2010 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // mifare commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "mifarehost.h" | |
12 | ||
13 | #include <stdio.h> | |
14 | #include <stdlib.h> | |
15 | #include <string.h> | |
16 | #include <pthread.h> | |
17 | ||
18 | #include "crapto1/crapto1.h" | |
19 | #include "comms.h" | |
20 | #include "usb_cmd.h" | |
21 | #include "cmdmain.h" | |
22 | #include "ui.h" | |
23 | #include "parity.h" | |
24 | #include "util.h" | |
25 | #include "iso14443crc.h" | |
26 | ||
27 | #include "mifare.h" | |
28 | #include "mifare4.h" | |
29 | ||
30 | // mifare tracer flags used in mfTraceDecode() | |
31 | #define TRACE_IDLE 0x00 | |
32 | #define TRACE_AUTH1 0x01 | |
33 | #define TRACE_AUTH2 0x02 | |
34 | #define TRACE_AUTH_OK 0x03 | |
35 | #define TRACE_READ_DATA 0x04 | |
36 | #define TRACE_WRITE_OK 0x05 | |
37 | #define TRACE_WRITE_DATA 0x06 | |
38 | #define TRACE_ERROR 0xFF | |
39 | ||
40 | ||
41 | static int compare_uint64(const void *a, const void *b) { | |
42 | // didn't work: (the result is truncated to 32 bits) | |
43 | //return (*(int64_t*)b - *(int64_t*)a); | |
44 | ||
45 | // better: | |
46 | if (*(uint64_t*)b == *(uint64_t*)a) return 0; | |
47 | else if (*(uint64_t*)b < *(uint64_t*)a) return 1; | |
48 | else return -1; | |
49 | } | |
50 | ||
51 | ||
52 | // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned. | |
53 | static uint32_t intersection(uint64_t *list1, uint64_t *list2) | |
54 | { | |
55 | if (list1 == NULL || list2 == NULL) { | |
56 | return 0; | |
57 | } | |
58 | uint64_t *p1, *p2, *p3; | |
59 | p1 = p3 = list1; | |
60 | p2 = list2; | |
61 | ||
62 | while ( *p1 != -1 && *p2 != -1 ) { | |
63 | if (compare_uint64(p1, p2) == 0) { | |
64 | *p3++ = *p1++; | |
65 | p2++; | |
66 | } | |
67 | else { | |
68 | while (compare_uint64(p1, p2) < 0) ++p1; | |
69 | while (compare_uint64(p1, p2) > 0) ++p2; | |
70 | } | |
71 | } | |
72 | *p3 = -1; | |
73 | return p3 - list1; | |
74 | } | |
75 | ||
76 | ||
77 | // Darkside attack (hf mf mifare) | |
78 | static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) { | |
79 | struct Crypto1State *states; | |
80 | uint32_t i, pos; | |
81 | uint8_t bt, ks3x[8], par[8][8]; | |
82 | uint64_t key_recovered; | |
83 | uint64_t *keylist; | |
84 | ||
85 | // Reset the last three significant bits of the reader nonce | |
86 | nr &= 0xffffff1f; | |
87 | ||
88 | for (pos=0; pos<8; pos++) { | |
89 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; | |
90 | bt = (par_info >> (pos*8)) & 0xff; | |
91 | for (i=0; i<8; i++) { | |
92 | par[7-pos][i] = (bt >> i) & 0x01; | |
93 | } | |
94 | } | |
95 | ||
96 | states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0)); | |
97 | ||
98 | if (states == NULL) { | |
99 | *keys = NULL; | |
100 | return 0; | |
101 | } | |
102 | ||
103 | keylist = (uint64_t*)states; | |
104 | ||
105 | for (i = 0; keylist[i]; i++) { | |
106 | lfsr_rollback_word(states+i, uid^nt, 0); | |
107 | crypto1_get_lfsr(states+i, &key_recovered); | |
108 | keylist[i] = key_recovered; | |
109 | } | |
110 | keylist[i] = -1; | |
111 | ||
112 | *keys = keylist; | |
113 | return i; | |
114 | } | |
115 | ||
116 | ||
117 | int mfDarkside(uint64_t *key) | |
118 | { | |
119 | uint32_t uid = 0; | |
120 | uint32_t nt = 0, nr = 0, ar = 0; | |
121 | uint64_t par_list = 0, ks_list = 0; | |
122 | uint64_t *keylist = NULL, *last_keylist = NULL; | |
123 | uint32_t keycount = 0; | |
124 | int16_t isOK = 0; | |
125 | ||
126 | UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}}; | |
127 | ||
128 | // message | |
129 | printf("-------------------------------------------------------------------------\n"); | |
130 | printf("Executing command. Expected execution time: 25sec on average\n"); | |
131 | printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n"); | |
132 | printf("-------------------------------------------------------------------------\n"); | |
133 | ||
134 | ||
135 | while (true) { | |
136 | clearCommandBuffer(); | |
137 | SendCommand(&c); | |
138 | ||
139 | //flush queue | |
140 | while (ukbhit()) { | |
141 | int c = getchar(); (void) c; | |
142 | } | |
143 | ||
144 | // wait cycle | |
145 | while (true) { | |
146 | printf("."); | |
147 | fflush(stdout); | |
148 | if (ukbhit()) { | |
149 | return -5; | |
150 | break; | |
151 | } | |
152 | ||
153 | UsbCommand resp; | |
154 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) { | |
155 | isOK = resp.arg[0]; | |
156 | if (isOK < 0) { | |
157 | return isOK; | |
158 | } | |
159 | uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); | |
160 | nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); | |
161 | par_list = bytes_to_num(resp.d.asBytes + 8, 8); | |
162 | ks_list = bytes_to_num(resp.d.asBytes + 16, 8); | |
163 | nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4); | |
164 | ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4); | |
165 | break; | |
166 | } | |
167 | } | |
168 | ||
169 | if (par_list == 0 && c.arg[0] == true) { | |
170 | PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication."); | |
171 | } | |
172 | c.arg[0] = false; | |
173 | ||
174 | keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist); | |
175 | ||
176 | if (keycount == 0) { | |
177 | PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt); | |
178 | PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); | |
179 | continue; | |
180 | } | |
181 | ||
182 | if (par_list == 0) { | |
183 | qsort(keylist, keycount, sizeof(*keylist), compare_uint64); | |
184 | keycount = intersection(last_keylist, keylist); | |
185 | if (keycount == 0) { | |
186 | free(last_keylist); | |
187 | last_keylist = keylist; | |
188 | continue; | |
189 | } | |
190 | } | |
191 | ||
192 | if (keycount > 1) { | |
193 | PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount); | |
194 | } else { | |
195 | PrintAndLog("Found a possible key. Trying to authenticate...\n"); | |
196 | } | |
197 | ||
198 | *key = -1; | |
199 | uint8_t keyBlock[USB_CMD_DATA_SIZE]; | |
200 | int max_keys = USB_CMD_DATA_SIZE/6; | |
201 | for (int i = 0; i < keycount; i += max_keys) { | |
202 | int size = keycount - i > max_keys ? max_keys : keycount - i; | |
203 | for (int j = 0; j < size; j++) { | |
204 | if (par_list == 0) { | |
205 | num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock+(j*6)); | |
206 | } else { | |
207 | num_to_bytes(keylist[i*max_keys + j], 6, keyBlock+(j*6)); | |
208 | } | |
209 | } | |
210 | if (!mfCheckKeys(0, 0, false, size, keyBlock, key)) { | |
211 | break; | |
212 | } | |
213 | } | |
214 | ||
215 | if (*key != -1) { | |
216 | free(last_keylist); | |
217 | free(keylist); | |
218 | break; | |
219 | } else { | |
220 | PrintAndLog("Authentication failed. Trying again..."); | |
221 | free(last_keylist); | |
222 | last_keylist = keylist; | |
223 | } | |
224 | } | |
225 | ||
226 | return 0; | |
227 | } | |
228 | ||
229 | ||
230 | int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){ | |
231 | ||
232 | *key = -1; | |
233 | ||
234 | UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), clear_trace, keycnt}}; | |
235 | memcpy(c.d.asBytes, keyBlock, 6 * keycnt); | |
236 | SendCommand(&c); | |
237 | ||
238 | UsbCommand resp; | |
239 | if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1; | |
240 | if ((resp.arg[0] & 0xff) != 0x01) return 2; | |
241 | *key = bytes_to_num(resp.d.asBytes, 6); | |
242 | return 0; | |
243 | } | |
244 | ||
245 | int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint8_t timeout14a, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector){ | |
246 | ||
247 | uint8_t keyPtr = 0; | |
248 | ||
249 | if (e_sector == NULL) | |
250 | return -1; | |
251 | ||
252 | UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), (clear_trace | 0x02)|((timeout14a & 0xff) << 8), keycnt}}; | |
253 | memcpy(c.d.asBytes, keyBlock, 6 * keycnt); | |
254 | SendCommand(&c); | |
255 | ||
256 | UsbCommand resp; | |
257 | if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth | |
258 | if ((resp.arg[0] & 0xff) != 0x01) return 2; | |
259 | ||
260 | bool foundAKey = false; | |
261 | for(int sec = 0; sec < sectorCnt; sec++){ | |
262 | for(int keyAB = 0; keyAB < 2; keyAB++){ | |
263 | keyPtr = *(resp.d.asBytes + keyAB * 40 + sec); | |
264 | if (keyPtr){ | |
265 | e_sector[sec].foundKey[keyAB] = true; | |
266 | e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6); | |
267 | foundAKey = true; | |
268 | } | |
269 | } | |
270 | } | |
271 | return foundAKey ? 0 : 3; | |
272 | } | |
273 | ||
274 | // Compare 16 Bits out of cryptostate | |
275 | int Compare16Bits(const void * a, const void * b) { | |
276 | if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0; | |
277 | else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1; | |
278 | else return -1; | |
279 | } | |
280 | ||
281 | typedef | |
282 | struct { | |
283 | union { | |
284 | struct Crypto1State *slhead; | |
285 | uint64_t *keyhead; | |
286 | } head; | |
287 | union { | |
288 | struct Crypto1State *sltail; | |
289 | uint64_t *keytail; | |
290 | } tail; | |
291 | uint32_t len; | |
292 | uint32_t uid; | |
293 | uint32_t blockNo; | |
294 | uint32_t keyType; | |
295 | uint32_t nt; | |
296 | uint32_t ks1; | |
297 | } StateList_t; | |
298 | ||
299 | ||
300 | // wrapper function for multi-threaded lfsr_recovery32 | |
301 | void | |
302 | #ifdef __has_attribute | |
303 | #if __has_attribute(force_align_arg_pointer) | |
304 | __attribute__((force_align_arg_pointer)) | |
305 | #endif | |
306 | #endif | |
307 | *nested_worker_thread(void *arg) | |
308 | { | |
309 | struct Crypto1State *p1; | |
310 | StateList_t *statelist = arg; | |
311 | ||
312 | statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); | |
313 | for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++); | |
314 | statelist->len = p1 - statelist->head.slhead; | |
315 | statelist->tail.sltail = --p1; | |
316 | qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits); | |
317 | ||
318 | return statelist->head.slhead; | |
319 | } | |
320 | ||
321 | ||
322 | int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) | |
323 | { | |
324 | uint16_t i; | |
325 | uint32_t uid; | |
326 | UsbCommand resp; | |
327 | ||
328 | StateList_t statelists[2]; | |
329 | struct Crypto1State *p1, *p2, *p3, *p4; | |
330 | ||
331 | // flush queue | |
332 | (void)WaitForResponseTimeout(CMD_ACK,NULL,100); | |
333 | ||
334 | UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; | |
335 | memcpy(c.d.asBytes, key, 6); | |
336 | SendCommand(&c); | |
337 | ||
338 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
339 | return -1; | |
340 | } | |
341 | ||
342 | if (resp.arg[0]) { | |
343 | return resp.arg[0]; // error during nested | |
344 | } | |
345 | ||
346 | memcpy(&uid, resp.d.asBytes, 4); | |
347 | PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); | |
348 | ||
349 | for (i = 0; i < 2; i++) { | |
350 | statelists[i].blockNo = resp.arg[2] & 0xff; | |
351 | statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; | |
352 | statelists[i].uid = uid; | |
353 | memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); | |
354 | memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); | |
355 | } | |
356 | ||
357 | // calc keys | |
358 | ||
359 | pthread_t thread_id[2]; | |
360 | ||
361 | // create and run worker threads | |
362 | for (i = 0; i < 2; i++) { | |
363 | pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); | |
364 | } | |
365 | ||
366 | // wait for threads to terminate: | |
367 | for (i = 0; i < 2; i++) { | |
368 | pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); | |
369 | } | |
370 | ||
371 | ||
372 | // the first 16 Bits of the cryptostate already contain part of our key. | |
373 | // Create the intersection of the two lists based on these 16 Bits and | |
374 | // roll back the cryptostate | |
375 | p1 = p3 = statelists[0].head.slhead; | |
376 | p2 = p4 = statelists[1].head.slhead; | |
377 | while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { | |
378 | if (Compare16Bits(p1, p2) == 0) { | |
379 | struct Crypto1State savestate, *savep = &savestate; | |
380 | savestate = *p1; | |
381 | while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { | |
382 | *p3 = *p1; | |
383 | lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); | |
384 | p3++; | |
385 | p1++; | |
386 | } | |
387 | savestate = *p2; | |
388 | while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { | |
389 | *p4 = *p2; | |
390 | lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); | |
391 | p4++; | |
392 | p2++; | |
393 | } | |
394 | } | |
395 | else { | |
396 | while (Compare16Bits(p1, p2) == -1) p1++; | |
397 | while (Compare16Bits(p1, p2) == 1) p2++; | |
398 | } | |
399 | } | |
400 | *(uint64_t*)p3 = -1; | |
401 | *(uint64_t*)p4 = -1; | |
402 | statelists[0].len = p3 - statelists[0].head.slhead; | |
403 | statelists[1].len = p4 - statelists[1].head.slhead; | |
404 | statelists[0].tail.sltail=--p3; | |
405 | statelists[1].tail.sltail=--p4; | |
406 | ||
407 | // the statelists now contain possible keys. The key we are searching for must be in the | |
408 | // intersection of both lists. Create the intersection: | |
409 | qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64); | |
410 | qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); | |
411 | statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); | |
412 | ||
413 | memset(resultKey, 0, 6); | |
414 | // The list may still contain several key candidates. Test each of them with mfCheckKeys | |
415 | for (i = 0; i < statelists[0].len; i++) { | |
416 | uint8_t keyBlock[6]; | |
417 | uint64_t key64; | |
418 | crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); | |
419 | num_to_bytes(key64, 6, keyBlock); | |
420 | key64 = 0; | |
421 | if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) { | |
422 | num_to_bytes(key64, 6, resultKey); | |
423 | break; | |
424 | } | |
425 | } | |
426 | ||
427 | free(statelists[0].head.slhead); | |
428 | free(statelists[1].head.slhead); | |
429 | ||
430 | return 0; | |
431 | } | |
432 | ||
433 | // MIFARE | |
434 | int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) { | |
435 | ||
436 | UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; | |
437 | memcpy(c.d.asBytes, key, 6); | |
438 | clearCommandBuffer(); | |
439 | SendCommand(&c); | |
440 | ||
441 | UsbCommand resp; | |
442 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
443 | uint8_t isOK = resp.arg[0] & 0xff; | |
444 | ||
445 | if (isOK) { | |
446 | memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16); | |
447 | return 0; | |
448 | } else { | |
449 | return 1; | |
450 | } | |
451 | } else { | |
452 | PrintAndLogEx(ERR, "Command execute timeout"); | |
453 | return 2; | |
454 | } | |
455 | ||
456 | return 0; | |
457 | } | |
458 | ||
459 | // EMULATOR | |
460 | ||
461 | int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { | |
462 | UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; | |
463 | SendCommand(&c); | |
464 | ||
465 | UsbCommand resp; | |
466 | if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1; | |
467 | memcpy(data, resp.d.asBytes, blocksCount * 16); | |
468 | return 0; | |
469 | } | |
470 | ||
471 | int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { | |
472 | UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; | |
473 | memcpy(c.d.asBytes, data, blocksCount * 16); | |
474 | SendCommand(&c); | |
475 | return 0; | |
476 | } | |
477 | ||
478 | // "MAGIC" CARD | |
479 | ||
480 | int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { | |
481 | uint8_t isOK = 0; | |
482 | ||
483 | UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; | |
484 | SendCommand(&c); | |
485 | ||
486 | UsbCommand resp; | |
487 | if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { | |
488 | isOK = resp.arg[0] & 0xff; | |
489 | memcpy(data, resp.d.asBytes, 16); | |
490 | if (!isOK) return 2; | |
491 | } else { | |
492 | PrintAndLog("Command execute timeout"); | |
493 | return 1; | |
494 | } | |
495 | return 0; | |
496 | } | |
497 | ||
498 | int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) { | |
499 | ||
500 | uint8_t isOK = 0; | |
501 | UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; | |
502 | memcpy(c.d.asBytes, data, 16); | |
503 | SendCommand(&c); | |
504 | ||
505 | UsbCommand resp; | |
506 | if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { | |
507 | isOK = resp.arg[0] & 0xff; | |
508 | if (uid != NULL) | |
509 | memcpy(uid, resp.d.asBytes, 4); | |
510 | if (!isOK) | |
511 | return 2; | |
512 | } else { | |
513 | PrintAndLog("Command execute timeout"); | |
514 | return 1; | |
515 | } | |
516 | ||
517 | return 0; | |
518 | } | |
519 | ||
520 | int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) { | |
521 | uint8_t isOK = 0; | |
522 | uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04; | |
523 | UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}}; | |
524 | SendCommand(&c); | |
525 | ||
526 | UsbCommand resp; | |
527 | WaitForResponse(CMD_ACK,&resp); | |
528 | isOK = resp.arg[0] & 0xff; | |
529 | ||
530 | return isOK; | |
531 | } | |
532 | ||
533 | int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) { | |
534 | uint8_t oldblock0[16] = {0x00}; | |
535 | uint8_t block0[16] = {0x00}; | |
536 | int gen = 0, res; | |
537 | ||
538 | gen = mfCIdentify(); | |
539 | ||
540 | /* generation 1a magic card by default */ | |
541 | uint8_t cmdParams = CSETBLOCK_SINGLE_OPER; | |
542 | if (gen == 2) { | |
543 | /* generation 1b magic card */ | |
544 | cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B; | |
545 | } | |
546 | ||
547 | res = mfCGetBlock(0, oldblock0, cmdParams); | |
548 | ||
549 | if (res == 0) { | |
550 | memcpy(block0, oldblock0, 16); | |
551 | PrintAndLog("old block 0: %s", sprint_hex(block0,16)); | |
552 | } else { | |
553 | PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0."); | |
554 | } | |
555 | ||
556 | // fill in the new values | |
557 | // UID | |
558 | memcpy(block0, uid, 4); | |
559 | // Mifare UID BCC | |
560 | block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3]; | |
561 | // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed) | |
562 | if (sak != NULL) | |
563 | block0[5] = sak[0]; | |
564 | if (atqa != NULL) { | |
565 | block0[6] = atqa[1]; | |
566 | block0[7] = atqa[0]; | |
567 | } | |
568 | PrintAndLog("new block 0: %s", sprint_hex(block0, 16)); | |
569 | ||
570 | res = mfCSetBlock(0, block0, oldUID, false, cmdParams); | |
571 | if (res) { | |
572 | PrintAndLog("Can't set block 0. Error: %d", res); | |
573 | return res; | |
574 | } | |
575 | ||
576 | return 0; | |
577 | } | |
578 | ||
579 | int mfCIdentify() { | |
580 | UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}}; | |
581 | SendCommand(&c); | |
582 | UsbCommand resp; | |
583 | WaitForResponse(CMD_ACK,&resp); | |
584 | ||
585 | uint8_t isGeneration = resp.arg[0] & 0xff; | |
586 | switch( isGeneration ){ | |
587 | case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break; | |
588 | case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break; | |
589 | default: PrintAndLog("No chinese magic backdoor command detected"); break; | |
590 | } | |
591 | ||
592 | return (int) isGeneration; | |
593 | } | |
594 | ||
595 | ||
596 | // SNIFFER | |
597 | ||
598 | // constants | |
599 | static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; | |
600 | ||
601 | // variables | |
602 | char logHexFileName[FILE_PATH_SIZE] = {0x00}; | |
603 | static uint8_t traceCard[4096] = {0x00}; | |
604 | static char traceFileName[FILE_PATH_SIZE] = {0x00}; | |
605 | static int traceState = TRACE_IDLE; | |
606 | static uint8_t traceCurBlock = 0; | |
607 | static uint8_t traceCurKey = 0; | |
608 | ||
609 | struct Crypto1State *traceCrypto1 = NULL; | |
610 | ||
611 | struct Crypto1State *revstate; | |
612 | uint64_t lfsr; | |
613 | uint64_t ui64Key; | |
614 | uint32_t ks2; | |
615 | uint32_t ks3; | |
616 | ||
617 | uint32_t uid; // serial number | |
618 | uint32_t nt; // tag challenge | |
619 | uint32_t nt_enc; // encrypted tag challenge | |
620 | uint8_t nt_enc_par; // encrypted tag challenge parity | |
621 | uint32_t nr_enc; // encrypted reader challenge | |
622 | uint32_t ar_enc; // encrypted reader response | |
623 | uint8_t ar_enc_par; // encrypted reader response parity | |
624 | uint32_t at_enc; // encrypted tag response | |
625 | uint8_t at_enc_par; // encrypted tag response parity | |
626 | ||
627 | int isTraceCardEmpty(void) { | |
628 | return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); | |
629 | } | |
630 | ||
631 | int isBlockEmpty(int blockN) { | |
632 | for (int i = 0; i < 16; i++) | |
633 | if (traceCard[blockN * 16 + i] != 0) return 0; | |
634 | ||
635 | return 1; | |
636 | } | |
637 | ||
638 | int isBlockTrailer(int blockN) { | |
639 | return ((blockN & 0x03) == 0x03); | |
640 | } | |
641 | ||
642 | int saveTraceCard(void) { | |
643 | FILE * f; | |
644 | ||
645 | if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; | |
646 | ||
647 | f = fopen(traceFileName, "w+"); | |
648 | if ( !f ) return 1; | |
649 | ||
650 | for (int i = 0; i < 64; i++) { // blocks | |
651 | for (int j = 0; j < 16; j++) // bytes | |
652 | fprintf(f, "%02x", *(traceCard + i * 16 + j)); | |
653 | if (i < 63) | |
654 | fprintf(f,"\n"); | |
655 | } | |
656 | fclose(f); | |
657 | return 0; | |
658 | } | |
659 | ||
660 | int loadTraceCard(uint8_t *tuid) { | |
661 | FILE * f; | |
662 | char buf[64] = {0x00}; | |
663 | uint8_t buf8[64] = {0x00}; | |
664 | int i, blockNum; | |
665 | ||
666 | if (!isTraceCardEmpty()) | |
667 | saveTraceCard(); | |
668 | ||
669 | memset(traceCard, 0x00, 4096); | |
670 | memcpy(traceCard, tuid + 3, 4); | |
671 | ||
672 | FillFileNameByUID(traceFileName, tuid, ".eml", 7); | |
673 | ||
674 | f = fopen(traceFileName, "r"); | |
675 | if (!f) return 1; | |
676 | ||
677 | blockNum = 0; | |
678 | ||
679 | while(!feof(f)){ | |
680 | ||
681 | memset(buf, 0, sizeof(buf)); | |
682 | if (fgets(buf, sizeof(buf), f) == NULL) { | |
683 | PrintAndLog("File reading error."); | |
684 | fclose(f); | |
685 | return 2; | |
686 | } | |
687 | ||
688 | if (strlen(buf) < 32){ | |
689 | if (feof(f)) break; | |
690 | PrintAndLog("File content error. Block data must include 32 HEX symbols"); | |
691 | fclose(f); | |
692 | return 2; | |
693 | } | |
694 | for (i = 0; i < 32; i += 2) | |
695 | sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); | |
696 | ||
697 | memcpy(traceCard + blockNum * 16, buf8, 16); | |
698 | ||
699 | blockNum++; | |
700 | } | |
701 | fclose(f); | |
702 | ||
703 | return 0; | |
704 | } | |
705 | ||
706 | int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { | |
707 | ||
708 | if (traceCrypto1) | |
709 | crypto1_destroy(traceCrypto1); | |
710 | ||
711 | traceCrypto1 = NULL; | |
712 | ||
713 | if (wantSaveToEmlFile) | |
714 | loadTraceCard(tuid); | |
715 | ||
716 | traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; | |
717 | traceCard[5] = sak; | |
718 | memcpy(&traceCard[6], atqa, 2); | |
719 | traceCurBlock = 0; | |
720 | uid = bytes_to_num(tuid + 3, 4); | |
721 | ||
722 | traceState = TRACE_IDLE; | |
723 | ||
724 | return 0; | |
725 | } | |
726 | ||
727 | void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ | |
728 | uint8_t bt = 0; | |
729 | int i; | |
730 | ||
731 | if (len != 1) { | |
732 | for (i = 0; i < len; i++) | |
733 | data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; | |
734 | } else { | |
735 | bt = 0; | |
736 | for (i = 0; i < 4; i++) | |
737 | bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i; | |
738 | ||
739 | data[0] = bt; | |
740 | } | |
741 | return; | |
742 | } | |
743 | ||
744 | bool NTParityCheck(uint32_t ntx) { | |
745 | if ( | |
746 | (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) || | |
747 | (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) || | |
748 | (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01)) | |
749 | ) | |
750 | return false; | |
751 | ||
752 | uint32_t ar = prng_successor(ntx, 64); | |
753 | if ( | |
754 | (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) || | |
755 | (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) || | |
756 | (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01)) | |
757 | ) | |
758 | return false; | |
759 | ||
760 | uint32_t at = prng_successor(ntx, 96); | |
761 | if ( | |
762 | (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) || | |
763 | (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) || | |
764 | (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) || | |
765 | (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01)) | |
766 | ) | |
767 | return false; | |
768 | ||
769 | return true; | |
770 | } | |
771 | ||
772 | ||
773 | int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) { | |
774 | uint8_t data[64]; | |
775 | ||
776 | if (traceState == TRACE_ERROR) return 1; | |
777 | if (len > 64) { | |
778 | traceState = TRACE_ERROR; | |
779 | return 1; | |
780 | } | |
781 | ||
782 | memcpy(data, data_src, len); | |
783 | if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { | |
784 | mf_crypto1_decrypt(traceCrypto1, data, len, 0); | |
785 | uint8_t parity[16]; | |
786 | oddparitybuf(data, len, parity); | |
787 | PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len)); | |
788 | AddLogHex(logHexFileName, "dec> ", data, len); | |
789 | } | |
790 | ||
791 | switch (traceState) { | |
792 | case TRACE_IDLE: | |
793 | // check packet crc16! | |
794 | if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) { | |
795 | PrintAndLog("dec> CRC ERROR!!!"); | |
796 | AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!"); | |
797 | traceState = TRACE_ERROR; // do not decrypt the next commands | |
798 | return 1; | |
799 | } | |
800 | ||
801 | // AUTHENTICATION | |
802 | if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) { | |
803 | traceState = TRACE_AUTH1; | |
804 | traceCurBlock = data[1]; | |
805 | traceCurKey = data[0] == 60 ? 1:0; | |
806 | return 0; | |
807 | } | |
808 | ||
809 | // READ | |
810 | if ((len ==4) && ((data[0] == 0x30))) { | |
811 | traceState = TRACE_READ_DATA; | |
812 | traceCurBlock = data[1]; | |
813 | return 0; | |
814 | } | |
815 | ||
816 | // WRITE | |
817 | if ((len ==4) && ((data[0] == 0xA0))) { | |
818 | traceState = TRACE_WRITE_OK; | |
819 | traceCurBlock = data[1]; | |
820 | return 0; | |
821 | } | |
822 | ||
823 | // HALT | |
824 | if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) { | |
825 | traceState = TRACE_ERROR; // do not decrypt the next commands | |
826 | return 0; | |
827 | } | |
828 | ||
829 | return 0; | |
830 | break; | |
831 | ||
832 | case TRACE_READ_DATA: | |
833 | if (len == 18) { | |
834 | traceState = TRACE_IDLE; | |
835 | ||
836 | if (isBlockTrailer(traceCurBlock)) { | |
837 | memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); | |
838 | } else { | |
839 | memcpy(traceCard + traceCurBlock * 16, data, 16); | |
840 | } | |
841 | if (wantSaveToEmlFile) saveTraceCard(); | |
842 | return 0; | |
843 | } else { | |
844 | traceState = TRACE_ERROR; | |
845 | return 1; | |
846 | } | |
847 | break; | |
848 | ||
849 | case TRACE_WRITE_OK: | |
850 | if ((len == 1) && (data[0] == 0x0a)) { | |
851 | traceState = TRACE_WRITE_DATA; | |
852 | ||
853 | return 0; | |
854 | } else { | |
855 | traceState = TRACE_ERROR; | |
856 | return 1; | |
857 | } | |
858 | break; | |
859 | ||
860 | case TRACE_WRITE_DATA: | |
861 | if (len == 18) { | |
862 | traceState = TRACE_IDLE; | |
863 | ||
864 | memcpy(traceCard + traceCurBlock * 16, data, 16); | |
865 | if (wantSaveToEmlFile) saveTraceCard(); | |
866 | return 0; | |
867 | } else { | |
868 | traceState = TRACE_ERROR; | |
869 | return 1; | |
870 | } | |
871 | break; | |
872 | ||
873 | case TRACE_AUTH1: | |
874 | if (len == 4) { | |
875 | traceState = TRACE_AUTH2; | |
876 | if (!traceCrypto1) { | |
877 | nt = bytes_to_num(data, 4); | |
878 | } else { | |
879 | nt_enc = bytes_to_num(data, 4); | |
880 | nt_enc_par = parity; | |
881 | } | |
882 | return 0; | |
883 | } else { | |
884 | traceState = TRACE_ERROR; | |
885 | return 1; | |
886 | } | |
887 | break; | |
888 | ||
889 | case TRACE_AUTH2: | |
890 | if (len == 8) { | |
891 | traceState = TRACE_AUTH_OK; | |
892 | ||
893 | nr_enc = bytes_to_num(data, 4); | |
894 | ar_enc = bytes_to_num(data + 4, 4); | |
895 | ar_enc_par = parity << 4; | |
896 | return 0; | |
897 | } else { | |
898 | traceState = TRACE_ERROR; | |
899 | return 1; | |
900 | } | |
901 | break; | |
902 | ||
903 | case TRACE_AUTH_OK: | |
904 | if (len ==4) { | |
905 | traceState = TRACE_IDLE; | |
906 | ||
907 | at_enc = bytes_to_num(data, 4); | |
908 | at_enc_par = parity; | |
909 | if (!traceCrypto1) { | |
910 | ||
911 | // decode key here) | |
912 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
913 | ks3 = at_enc ^ prng_successor(nt, 96); | |
914 | revstate = lfsr_recovery64(ks2, ks3); | |
915 | lfsr_rollback_word(revstate, 0, 0); | |
916 | lfsr_rollback_word(revstate, 0, 0); | |
917 | lfsr_rollback_word(revstate, nr_enc, 1); | |
918 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
919 | ||
920 | crypto1_get_lfsr(revstate, &lfsr); | |
921 | crypto1_destroy(revstate); | |
922 | ui64Key = lfsr; | |
923 | printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n", | |
924 | (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), | |
925 | validate_prng_nonce(nt) ? "WEAK": "HARDEND", | |
926 | ks2, | |
927 | ks3); | |
928 | AddLogUint64(logHexFileName, "key> ", lfsr); | |
929 | } else { | |
930 | if (validate_prng_nonce(nt)) { | |
931 | struct Crypto1State *pcs; | |
932 | pcs = crypto1_create(ui64Key); | |
933 | uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc; | |
934 | uint32_t ar = prng_successor(nt1, 64); | |
935 | uint32_t at = prng_successor(nt1, 96); | |
936 | printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at); | |
937 | uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc; | |
938 | uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc; | |
939 | uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc; | |
940 | crypto1_destroy(pcs); | |
941 | printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1); | |
942 | ||
943 | if (NTParityCheck(nt1)) | |
944 | printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF)); | |
945 | else | |
946 | printf("key> the same key test. check nt parity error.\n"); | |
947 | ||
948 | uint32_t ntc = prng_successor(nt, 90); | |
949 | uint32_t ntx = 0; | |
950 | int ntcnt = 0; | |
951 | for (int i = 0; i < 16383; i++) { | |
952 | ntc = prng_successor(ntc, 1); | |
953 | if (NTParityCheck(ntc)){ | |
954 | if (!ntcnt) | |
955 | ntx = ntc; | |
956 | ntcnt++; | |
957 | } | |
958 | } | |
959 | if (ntcnt) | |
960 | printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt); | |
961 | else | |
962 | printf("key> don't have any nt candidate( \n"); | |
963 | ||
964 | nt = ntx; | |
965 | ks2 = ar_enc ^ prng_successor(ntx, 64); | |
966 | ks3 = at_enc ^ prng_successor(ntx, 96); | |
967 | ||
968 | // decode key | |
969 | revstate = lfsr_recovery64(ks2, ks3); | |
970 | lfsr_rollback_word(revstate, 0, 0); | |
971 | lfsr_rollback_word(revstate, 0, 0); | |
972 | lfsr_rollback_word(revstate, nr_enc, 1); | |
973 | lfsr_rollback_word(revstate, uid ^ nt, 0); | |
974 | ||
975 | crypto1_get_lfsr(revstate, &lfsr); | |
976 | crypto1_destroy(revstate); | |
977 | ui64Key = lfsr; | |
978 | printf("key> probable key:%x%x ks2:%08x ks3:%08x\n", | |
979 | (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), | |
980 | ks2, | |
981 | ks3); | |
982 | AddLogUint64(logHexFileName, "key> ", lfsr); | |
983 | } else { | |
984 | printf("key> hardnested not implemented!\n"); | |
985 | ||
986 | crypto1_destroy(traceCrypto1); | |
987 | ||
988 | // not implemented | |
989 | traceState = TRACE_ERROR; | |
990 | } | |
991 | } | |
992 | ||
993 | int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; | |
994 | if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); | |
995 | ||
996 | if (traceCurKey) { | |
997 | num_to_bytes(lfsr, 6, traceCard + blockShift + 10); | |
998 | } else { | |
999 | num_to_bytes(lfsr, 6, traceCard + blockShift); | |
1000 | } | |
1001 | if (wantSaveToEmlFile) saveTraceCard(); | |
1002 | ||
1003 | if (traceCrypto1) { | |
1004 | crypto1_destroy(traceCrypto1); | |
1005 | } | |
1006 | ||
1007 | // set cryptosystem state | |
1008 | traceCrypto1 = lfsr_recovery64(ks2, ks3); | |
1009 | return 0; | |
1010 | } else { | |
1011 | traceState = TRACE_ERROR; | |
1012 | return 1; | |
1013 | } | |
1014 | break; | |
1015 | ||
1016 | default: | |
1017 | traceState = TRACE_ERROR; | |
1018 | return 1; | |
1019 | } | |
1020 | ||
1021 | return 0; | |
1022 | } | |
1023 | ||
1024 | // DECODING | |
1025 | ||
1026 | int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){ | |
1027 | /* | |
1028 | uint32_t nt; // tag challenge | |
1029 | uint32_t ar_enc; // encrypted reader response | |
1030 | uint32_t at_enc; // encrypted tag response | |
1031 | */ | |
1032 | if (traceCrypto1) { | |
1033 | crypto1_destroy(traceCrypto1); | |
1034 | } | |
1035 | ks2 = ar_enc ^ prng_successor(nt, 64); | |
1036 | ks3 = at_enc ^ prng_successor(nt, 96); | |
1037 | traceCrypto1 = lfsr_recovery64(ks2, ks3); | |
1038 | ||
1039 | mf_crypto1_decrypt(traceCrypto1, data, len, 0); | |
1040 | ||
1041 | PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) ); | |
1042 | crypto1_destroy(traceCrypto1); | |
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | /** validate_prng_nonce | |
1047 | * Determine if nonce is deterministic. ie: Suspectable to Darkside attack. | |
1048 | * returns | |
1049 | * true = weak prng | |
1050 | * false = hardend prng | |
1051 | */ | |
1052 | bool validate_prng_nonce(uint32_t nonce) { | |
1053 | uint16_t *dist = 0; | |
1054 | uint16_t x, i; | |
1055 | ||
1056 | dist = malloc(2 << 16); | |
1057 | if(!dist) | |
1058 | return -1; | |
1059 | ||
1060 | // init prng table: | |
1061 | for (x = i = 1; i; ++i) { | |
1062 | dist[(x & 0xff) << 8 | x >> 8] = i; | |
1063 | x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; | |
1064 | } | |
1065 | ||
1066 | uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535; | |
1067 | ||
1068 | free(dist); | |
1069 | return (res == 16); | |
1070 | } | |
1071 | ||
1072 | /* Detect Tag Prng, | |
1073 | * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce. | |
1074 | * the tag nonce is check to see if it has a predictable PRNG. | |
1075 | * @returns | |
1076 | * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) | |
1077 | * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key) | |
1078 | */ | |
1079 | int DetectClassicPrng(void){ | |
1080 | ||
1081 | UsbCommand resp, respA; | |
1082 | uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA | |
1083 | uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS; | |
1084 | ||
1085 | UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}}; | |
1086 | memcpy(c.d.asBytes, cmd, sizeof(cmd)); | |
1087 | ||
1088 | clearCommandBuffer(); | |
1089 | SendCommand(&c); | |
1090 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { | |
1091 | PrintAndLog("PRNG UID: Reply timeout."); | |
1092 | return -1; | |
1093 | } | |
1094 | ||
1095 | // if select tag failed. | |
1096 | if (resp.arg[0] == 0) { | |
1097 | PrintAndLog("PRNG error: selecting tag failed, can't detect prng."); | |
1098 | return -1; | |
1099 | } | |
1100 | ||
1101 | if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) { | |
1102 | PrintAndLog("PRNG data: Reply timeout."); | |
1103 | return -1; | |
1104 | } | |
1105 | ||
1106 | // check respA | |
1107 | if (respA.arg[0] != 4) { | |
1108 | PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]); | |
1109 | return -1; | |
1110 | } | |
1111 | ||
1112 | uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]); | |
1113 | return validate_prng_nonce(nonce); | |
1114 | } |