| 1 | /* crypto1.c |
| 2 | |
| 3 | This program is free software; you can redistribute it and/or |
| 4 | modify it under the terms of the GNU General Public License |
| 5 | as published by the Free Software Foundation; either version 2 |
| 6 | of the License, or (at your option) any later version. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, |
| 16 | MA 02110-1301, US |
| 17 | |
| 18 | Copyright (C) 2008-2008 bla <blapost@gmail.com> |
| 19 | */ |
| 20 | #include "crapto1.h" |
| 21 | #include <stdlib.h> |
| 22 | |
| 23 | void crypto1_create(struct Crypto1State *s, uint64_t key) |
| 24 | { |
| 25 | // struct Crypto1State *s = malloc(sizeof(*s)); |
| 26 | int i; |
| 27 | |
| 28 | for(i = 47;s && i > 0; i -= 2) { |
| 29 | s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); |
| 30 | s->even = s->even << 1 | BIT(key, i ^ 7); |
| 31 | } |
| 32 | } |
| 33 | void crypto1_destroy(struct Crypto1State *state) |
| 34 | { |
| 35 | // free(state); |
| 36 | state->odd = 0; |
| 37 | state->even = 0; |
| 38 | } |
| 39 | void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) |
| 40 | { |
| 41 | int i; |
| 42 | for(*lfsr = 0, i = 23; i >= 0; --i) { |
| 43 | *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); |
| 44 | *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); |
| 45 | } |
| 46 | } |
| 47 | uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) |
| 48 | { |
| 49 | uint32_t feedin; |
| 50 | uint32_t tmp; |
| 51 | uint8_t ret = filter(s->odd); |
| 52 | |
| 53 | feedin = ret & !!is_encrypted; |
| 54 | feedin ^= !!in; |
| 55 | feedin ^= LF_POLY_ODD & s->odd; |
| 56 | feedin ^= LF_POLY_EVEN & s->even; |
| 57 | s->even = s->even << 1 | parity(feedin); |
| 58 | |
| 59 | tmp = s->odd; |
| 60 | s->odd = s->even; |
| 61 | s->even = tmp; |
| 62 | |
| 63 | return ret; |
| 64 | } |
| 65 | uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) |
| 66 | { |
| 67 | /* |
| 68 | uint8_t i, ret = 0; |
| 69 | |
| 70 | for (i = 0; i < 8; ++i) |
| 71 | ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; |
| 72 | */ |
| 73 | // unfold loop 20161012 |
| 74 | uint8_t ret = 0; |
| 75 | ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; |
| 76 | ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; |
| 77 | ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; |
| 78 | ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; |
| 79 | ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; |
| 80 | ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; |
| 81 | ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; |
| 82 | ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; |
| 83 | return ret; |
| 84 | } |
| 85 | uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) |
| 86 | { |
| 87 | /* |
| 88 | uint32_t i, ret = 0; |
| 89 | |
| 90 | for (i = 0; i < 32; ++i) |
| 91 | ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); |
| 92 | */ |
| 93 | //unfold loop 2016012 |
| 94 | uint32_t ret = 0; |
| 95 | ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); |
| 96 | ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); |
| 97 | ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); |
| 98 | ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); |
| 99 | ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); |
| 100 | ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); |
| 101 | ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); |
| 102 | ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); |
| 103 | |
| 104 | ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); |
| 105 | ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); |
| 106 | ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); |
| 107 | ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); |
| 108 | ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); |
| 109 | ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); |
| 110 | ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); |
| 111 | ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); |
| 112 | |
| 113 | ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); |
| 114 | ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); |
| 115 | ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); |
| 116 | ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); |
| 117 | ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); |
| 118 | ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); |
| 119 | ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); |
| 120 | ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); |
| 121 | |
| 122 | ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); |
| 123 | ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); |
| 124 | ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); |
| 125 | ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); |
| 126 | ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); |
| 127 | ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); |
| 128 | ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); |
| 129 | ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); |
| 130 | return ret; |
| 131 | } |
| 132 | |
| 133 | /* prng_successor |
| 134 | * helper used to obscure the keystream during authentication |
| 135 | */ |
| 136 | uint32_t prng_successor(uint32_t x, uint32_t n) |
| 137 | { |
| 138 | SWAPENDIAN(x); |
| 139 | while(n--) |
| 140 | x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; |
| 141 | |
| 142 | return SWAPENDIAN(x); |
| 143 | } |
| 144 | |
| 145 | uint32_t prng_successor_one(uint32_t x) |
| 146 | { |
| 147 | SWAPENDIAN(x); |
| 148 | |
| 149 | x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; |
| 150 | |
| 151 | return SWAPENDIAN(x); |
| 152 | } |
| 153 | |