]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
19 | #include "protocols.h" | |
20 | #include "usb_cdc.h" // for usb_poll_validate_length | |
21 | ||
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1 | |
26 | * @param useHighFreg | |
27 | * @param command | |
28 | */ | |
29 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command) | |
30 | { | |
31 | /* Make sure the tag is reset */ | |
32 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
33 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
34 | SpinDelay(200); | |
35 | ||
36 | uint16_t period_0 = periods >> 16; | |
37 | uint16_t period_1 = periods & 0xFFFF; | |
38 | ||
39 | // 95 == 125 KHz 88 == 124.8 KHz | |
40 | int divisor_used = (useHighFreq) ? 88 : 95; | |
41 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
42 | setSamplingConfig(&sc); | |
43 | ||
44 | //clear read buffer | |
45 | BigBuf_Clear_keep_EM(); | |
46 | ||
47 | LFSetupFPGAForADC(sc.divisor, 1); | |
48 | ||
49 | // And a little more time for the tag to fully power up | |
50 | SpinDelay(50); | |
51 | ||
52 | // now modulate the reader field | |
53 | while(*command != '\0' && *command != ' ') { | |
54 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
55 | LED_D_OFF(); | |
56 | SpinDelayUs(delay_off); | |
57 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
58 | ||
59 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
60 | LED_D_ON(); | |
61 | if(*(command++) == '0') | |
62 | SpinDelayUs(period_0); | |
63 | else | |
64 | SpinDelayUs(period_1); | |
65 | } | |
66 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
67 | LED_D_OFF(); | |
68 | SpinDelayUs(delay_off); | |
69 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
70 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
71 | ||
72 | // now do the read | |
73 | DoAcquisition_config(false); | |
74 | } | |
75 | ||
76 | /* blank r/w tag data stream | |
77 | ...0000000000000000 01111111 | |
78 | 1010101010101010101010101010101010101010101010101010101010101010 | |
79 | 0011010010100001 | |
80 | 01111111 | |
81 | 101010101010101[0]000... | |
82 | ||
83 | [5555fe852c5555555555555555fe0000] | |
84 | */ | |
85 | void ReadTItag(void) | |
86 | { | |
87 | // some hardcoded initial params | |
88 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
89 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
90 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
91 | #define FSAMPLE 2000000 | |
92 | #define FREQLO 123200 | |
93 | #define FREQHI 134200 | |
94 | ||
95 | signed char *dest = (signed char *)BigBuf_get_addr(); | |
96 | uint16_t n = BigBuf_max_traceLen(); | |
97 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
98 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
99 | ||
100 | int i, cycles=0, samples=0; | |
101 | // how many sample points fit in 16 cycles of each frequency | |
102 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
103 | // when to tell if we're close enough to one freq or another | |
104 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
105 | ||
106 | // TI tags charge at 134.2Khz | |
107 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
108 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
109 | ||
110 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
111 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
112 | // whether we're modulating the antenna (high) | |
113 | // or listening to the antenna (low) | |
114 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
115 | ||
116 | // get TI tag data into the buffer | |
117 | AcquireTiType(); | |
118 | ||
119 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
120 | ||
121 | for (i=0; i<n-1; i++) { | |
122 | // count cycles by looking for lo to hi zero crossings | |
123 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
124 | cycles++; | |
125 | // after 16 cycles, measure the frequency | |
126 | if (cycles>15) { | |
127 | cycles=0; | |
128 | samples=i-samples; // number of samples in these 16 cycles | |
129 | ||
130 | // TI bits are coming to us lsb first so shift them | |
131 | // right through our 128 bit right shift register | |
132 | shift0 = (shift0>>1) | (shift1 << 31); | |
133 | shift1 = (shift1>>1) | (shift2 << 31); | |
134 | shift2 = (shift2>>1) | (shift3 << 31); | |
135 | shift3 >>= 1; | |
136 | ||
137 | // check if the cycles fall close to the number | |
138 | // expected for either the low or high frequency | |
139 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
140 | // low frequency represents a 1 | |
141 | shift3 |= (1<<31); | |
142 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
143 | // high frequency represents a 0 | |
144 | } else { | |
145 | // probably detected a gay waveform or noise | |
146 | // use this as gaydar or discard shift register and start again | |
147 | shift3 = shift2 = shift1 = shift0 = 0; | |
148 | } | |
149 | samples = i; | |
150 | ||
151 | // for each bit we receive, test if we've detected a valid tag | |
152 | ||
153 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
154 | // remember the bits are backwards | |
155 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
156 | // if start and end bytes match, we have a tag so break out of the loop | |
157 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
158 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
159 | break; | |
160 | } | |
161 | } | |
162 | } | |
163 | } | |
164 | } | |
165 | ||
166 | // if flag is set we have a tag | |
167 | if (cycles!=0xF0B) { | |
168 | DbpString("Info: No valid tag detected."); | |
169 | } else { | |
170 | // put 64 bit data into shift1 and shift0 | |
171 | shift0 = (shift0>>24) | (shift1 << 8); | |
172 | shift1 = (shift1>>24) | (shift2 << 8); | |
173 | ||
174 | // align 16 bit crc into lower half of shift2 | |
175 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
176 | ||
177 | // if r/w tag, check ident match | |
178 | if (shift3 & (1<<15) ) { | |
179 | DbpString("Info: TI tag is rewriteable"); | |
180 | // only 15 bits compare, last bit of ident is not valid | |
181 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { | |
182 | DbpString("Error: Ident mismatch!"); | |
183 | } else { | |
184 | DbpString("Info: TI tag ident is valid"); | |
185 | } | |
186 | } else { | |
187 | DbpString("Info: TI tag is readonly"); | |
188 | } | |
189 | ||
190 | // WARNING the order of the bytes in which we calc crc below needs checking | |
191 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
192 | // bytes in reverse or something | |
193 | // calculate CRC | |
194 | uint32_t crc=0; | |
195 | ||
196 | crc = update_crc16(crc, (shift0)&0xff); | |
197 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
198 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
200 | crc = update_crc16(crc, (shift1)&0xff); | |
201 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
202 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
204 | ||
205 | Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
206 | if (crc != (shift2&0xffff)) { | |
207 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
208 | } else { | |
209 | DbpString("Info: CRC is good"); | |
210 | } | |
211 | } | |
212 | } | |
213 | ||
214 | void WriteTIbyte(uint8_t b) | |
215 | { | |
216 | int i = 0; | |
217 | ||
218 | // modulate 8 bits out to the antenna | |
219 | for (i=0; i<8; i++) | |
220 | { | |
221 | if (b&(1<<i)) { | |
222 | // stop modulating antenna | |
223 | LOW(GPIO_SSC_DOUT); | |
224 | SpinDelayUs(1000); | |
225 | // modulate antenna | |
226 | HIGH(GPIO_SSC_DOUT); | |
227 | SpinDelayUs(1000); | |
228 | } else { | |
229 | // stop modulating antenna | |
230 | LOW(GPIO_SSC_DOUT); | |
231 | SpinDelayUs(300); | |
232 | // modulate antenna | |
233 | HIGH(GPIO_SSC_DOUT); | |
234 | SpinDelayUs(1700); | |
235 | } | |
236 | } | |
237 | } | |
238 | ||
239 | void AcquireTiType(void) | |
240 | { | |
241 | int i, j, n; | |
242 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
243 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
244 | #define TIBUFLEN 1250 | |
245 | ||
246 | // clear buffer | |
247 | uint32_t *buf = (uint32_t *)BigBuf_get_addr(); | |
248 | ||
249 | //clear buffer now so it does not interfere with timing later | |
250 | BigBuf_Clear_ext(false); | |
251 | ||
252 | // Set up the synchronous serial port | |
253 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
254 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
255 | ||
256 | // steal this pin from the SSP and use it to control the modulation | |
257 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
258 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
259 | ||
260 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
262 | ||
263 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
264 | // 48/2 = 24 MHz clock must be divided by 12 | |
265 | AT91C_BASE_SSC->SSC_CMR = 12; | |
266 | ||
267 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
268 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
269 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
270 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
271 | // iceman, FpgaSetupSsc() ?? the code above? can it be replaced? | |
272 | LED_D_ON(); | |
273 | ||
274 | // modulate antenna | |
275 | HIGH(GPIO_SSC_DOUT); | |
276 | ||
277 | // Charge TI tag for 50ms. | |
278 | SpinDelay(50); | |
279 | ||
280 | // stop modulating antenna and listen | |
281 | LOW(GPIO_SSC_DOUT); | |
282 | ||
283 | LED_D_OFF(); | |
284 | ||
285 | i = 0; | |
286 | for(;;) { | |
287 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
288 | buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
289 | i++; if(i >= TIBUFLEN) break; | |
290 | } | |
291 | WDT_HIT(); | |
292 | } | |
293 | ||
294 | // return stolen pin to SSP | |
295 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
296 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
297 | ||
298 | char *dest = (char *)BigBuf_get_addr(); | |
299 | n = TIBUFLEN * 32; | |
300 | ||
301 | // unpack buffer | |
302 | for (i = TIBUFLEN-1; i >= 0; i--) { | |
303 | for (j = 0; j < 32; j++) { | |
304 | if(buf[i] & (1 << j)) { | |
305 | dest[--n] = 1; | |
306 | } else { | |
307 | dest[--n] = -1; | |
308 | } | |
309 | } | |
310 | } | |
311 | } | |
312 | ||
313 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
314 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
315 | // if not provided a valid crc will be computed from the data and written. | |
316 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
317 | { | |
318 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
319 | if(crc == 0) { | |
320 | crc = update_crc16(crc, (idlo)&0xff); | |
321 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
324 | crc = update_crc16(crc, (idhi)&0xff); | |
325 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
328 | } | |
329 | Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); | |
330 | ||
331 | // TI tags charge at 134.2Khz | |
332 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
333 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
334 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
335 | // whether we're modulating the antenna (high) | |
336 | // or listening to the antenna (low) | |
337 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
338 | LED_A_ON(); | |
339 | ||
340 | // steal this pin from the SSP and use it to control the modulation | |
341 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
342 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
343 | ||
344 | // writing algorithm: | |
345 | // a high bit consists of a field off for 1ms and field on for 1ms | |
346 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
347 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
348 | // start by writing 0xBB (keyword) and 0xEB (password) | |
349 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
350 | // finally end with 0x0300 (write frame) | |
351 | // all data is sent lsb first | |
352 | // finish with 15ms programming time | |
353 | ||
354 | // modulate antenna | |
355 | HIGH(GPIO_SSC_DOUT); | |
356 | SpinDelay(50); // charge time | |
357 | ||
358 | WriteTIbyte(0xbb); // keyword | |
359 | WriteTIbyte(0xeb); // password | |
360 | WriteTIbyte( (idlo )&0xff ); | |
361 | WriteTIbyte( (idlo>>8 )&0xff ); | |
362 | WriteTIbyte( (idlo>>16)&0xff ); | |
363 | WriteTIbyte( (idlo>>24)&0xff ); | |
364 | WriteTIbyte( (idhi )&0xff ); | |
365 | WriteTIbyte( (idhi>>8 )&0xff ); | |
366 | WriteTIbyte( (idhi>>16)&0xff ); | |
367 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
368 | WriteTIbyte( (crc )&0xff ); // crc lo | |
369 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
370 | WriteTIbyte(0x00); // write frame lo | |
371 | WriteTIbyte(0x03); // write frame hi | |
372 | HIGH(GPIO_SSC_DOUT); | |
373 | SpinDelay(50); // programming time | |
374 | ||
375 | LED_A_OFF(); | |
376 | ||
377 | // get TI tag data into the buffer | |
378 | AcquireTiType(); | |
379 | ||
380 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
381 | DbpString("Now use `lf ti read` to check"); | |
382 | } | |
383 | ||
384 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
385 | { | |
386 | int i; | |
387 | uint8_t *tab = BigBuf_get_addr(); | |
388 | ||
389 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
390 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
391 | ||
392 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
393 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
394 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
395 | ||
396 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
397 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
398 | ||
399 | i = 0; | |
400 | for(;;) { | |
401 | //wait until SSC_CLK goes HIGH | |
402 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
403 | if(BUTTON_PRESS() || usb_poll_validate_length() ) { | |
404 | DbpString("Stopped"); | |
405 | return; | |
406 | } | |
407 | WDT_HIT(); | |
408 | } | |
409 | if (ledcontrol) LED_D_ON(); | |
410 | ||
411 | if(tab[i]) | |
412 | OPEN_COIL(); | |
413 | else | |
414 | SHORT_COIL(); | |
415 | ||
416 | if (ledcontrol) LED_D_OFF(); | |
417 | ||
418 | //wait until SSC_CLK goes LOW | |
419 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
420 | if( BUTTON_PRESS() || usb_poll_validate_length() ) { | |
421 | DbpString("Stopped"); | |
422 | return; | |
423 | } | |
424 | WDT_HIT(); | |
425 | } | |
426 | ||
427 | i++; | |
428 | if(i == period) { | |
429 | ||
430 | i = 0; | |
431 | if (gap) { | |
432 | SHORT_COIL(); | |
433 | SpinDelayUs(gap); | |
434 | } | |
435 | } | |
436 | } | |
437 | } | |
438 | ||
439 | #define DEBUG_FRAME_CONTENTS 1 | |
440 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
441 | { | |
442 | } | |
443 | ||
444 | // compose fc/8 fc/10 waveform (FSK2) | |
445 | static void fc(int c, int *n) | |
446 | { | |
447 | uint8_t *dest = BigBuf_get_addr(); | |
448 | int idx; | |
449 | ||
450 | // for when we want an fc8 pattern every 4 logical bits | |
451 | if(c==0) { | |
452 | dest[((*n)++)]=1; | |
453 | dest[((*n)++)]=1; | |
454 | dest[((*n)++)]=1; | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=0; | |
457 | dest[((*n)++)]=0; | |
458 | dest[((*n)++)]=0; | |
459 | dest[((*n)++)]=0; | |
460 | } | |
461 | ||
462 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
463 | if(c==8) { | |
464 | for (idx=0; idx<6; idx++) { | |
465 | dest[((*n)++)]=1; | |
466 | dest[((*n)++)]=1; | |
467 | dest[((*n)++)]=1; | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=0; | |
470 | dest[((*n)++)]=0; | |
471 | dest[((*n)++)]=0; | |
472 | dest[((*n)++)]=0; | |
473 | } | |
474 | } | |
475 | ||
476 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
477 | if(c==10) { | |
478 | for (idx=0; idx<5; idx++) { | |
479 | dest[((*n)++)]=1; | |
480 | dest[((*n)++)]=1; | |
481 | dest[((*n)++)]=1; | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=0; | |
485 | dest[((*n)++)]=0; | |
486 | dest[((*n)++)]=0; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | } | |
490 | } | |
491 | } | |
492 | // compose fc/X fc/Y waveform (FSKx) | |
493 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) | |
494 | { | |
495 | uint8_t *dest = BigBuf_get_addr(); | |
496 | uint8_t halfFC = fc/2; | |
497 | uint8_t wavesPerClock = clock/fc; | |
498 | uint8_t mod = clock % fc; //modifier | |
499 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
500 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
501 | // loop through clock - step field clock | |
502 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
503 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
504 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
505 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
506 | *n += fc; | |
507 | } | |
508 | if (mod>0) (*modCnt)++; | |
509 | if ((mod>0) && modAdjOk){ //fsk2 | |
510 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
511 | memset(dest+(*n), 0, fc-halfFC); | |
512 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
513 | *n += fc; | |
514 | } | |
515 | } | |
516 | if (mod>0 && !modAdjOk){ //fsk1 | |
517 | memset(dest+(*n), 0, mod-(mod/2)); | |
518 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
519 | *n += mod; | |
520 | } | |
521 | } | |
522 | ||
523 | // prepare a waveform pattern in the buffer based on the ID given then | |
524 | // simulate a HID tag until the button is pressed | |
525 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
526 | { | |
527 | int n=0, i=0; | |
528 | /* | |
529 | HID tag bitstream format | |
530 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
531 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
532 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
533 | A fc8 is inserted before every 4 bits | |
534 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
535 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
536 | */ | |
537 | ||
538 | if (hi>0xFFF) { | |
539 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
540 | return; | |
541 | } | |
542 | fc(0,&n); | |
543 | // special start of frame marker containing invalid bit sequences | |
544 | fc(8, &n); fc(8, &n); // invalid | |
545 | fc(8, &n); fc(10, &n); // logical 0 | |
546 | fc(10, &n); fc(10, &n); // invalid | |
547 | fc(8, &n); fc(10, &n); // logical 0 | |
548 | ||
549 | WDT_HIT(); | |
550 | // manchester encode bits 43 to 32 | |
551 | for (i=11; i>=0; i--) { | |
552 | if ((i%4)==3) fc(0,&n); | |
553 | if ((hi>>i)&1) { | |
554 | fc(10, &n); fc(8, &n); // low-high transition | |
555 | } else { | |
556 | fc(8, &n); fc(10, &n); // high-low transition | |
557 | } | |
558 | } | |
559 | ||
560 | WDT_HIT(); | |
561 | // manchester encode bits 31 to 0 | |
562 | for (i=31; i>=0; i--) { | |
563 | if ((i%4)==3) fc(0,&n); | |
564 | if ((lo>>i)&1) { | |
565 | fc(10, &n); fc(8, &n); // low-high transition | |
566 | } else { | |
567 | fc(8, &n); fc(10, &n); // high-low transition | |
568 | } | |
569 | } | |
570 | ||
571 | if (ledcontrol) LED_A_ON(); | |
572 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
573 | if (ledcontrol) LED_A_OFF(); | |
574 | } | |
575 | ||
576 | // prepare a waveform pattern in the buffer based on the ID given then | |
577 | // simulate a FSK tag until the button is pressed | |
578 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
579 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
580 | { | |
581 | int ledcontrol=1; | |
582 | int n=0, i=0; | |
583 | uint8_t fcHigh = arg1 >> 8; | |
584 | uint8_t fcLow = arg1 & 0xFF; | |
585 | uint16_t modCnt = 0; | |
586 | uint8_t clk = arg2 & 0xFF; | |
587 | uint8_t invert = (arg2 >> 8) & 1; | |
588 | ||
589 | for (i=0; i<size; i++){ | |
590 | if (BitStream[i] == invert){ | |
591 | fcAll(fcLow, &n, clk, &modCnt); | |
592 | } else { | |
593 | fcAll(fcHigh, &n, clk, &modCnt); | |
594 | } | |
595 | } | |
596 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
597 | ||
598 | if (ledcontrol) LED_A_ON(); | |
599 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
600 | if (ledcontrol) LED_A_OFF(); | |
601 | } | |
602 | ||
603 | // compose ask waveform for one bit(ASK) | |
604 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) | |
605 | { | |
606 | uint8_t *dest = BigBuf_get_addr(); | |
607 | uint8_t halfClk = clock/2; | |
608 | // c = current bit 1 or 0 | |
609 | if (manchester==1){ | |
610 | memset(dest+(*n), c, halfClk); | |
611 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
612 | } else { | |
613 | memset(dest+(*n), c, clock); | |
614 | } | |
615 | *n += clock; | |
616 | } | |
617 | ||
618 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) | |
619 | { | |
620 | uint8_t *dest = BigBuf_get_addr(); | |
621 | uint8_t halfClk = clock/2; | |
622 | if (c){ | |
623 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
624 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
625 | } else { | |
626 | memset(dest+(*n), c ^ *phase, clock); | |
627 | *phase ^= 1; | |
628 | } | |
629 | *n += clock; | |
630 | } | |
631 | ||
632 | static void stAskSimBit(int *n, uint8_t clock) { | |
633 | uint8_t *dest = BigBuf_get_addr(); | |
634 | uint8_t halfClk = clock/2; | |
635 | //ST = .5 high .5 low 1.5 high .5 low 1 high | |
636 | memset(dest+(*n), 1, halfClk); | |
637 | memset(dest+(*n) + halfClk, 0, halfClk); | |
638 | memset(dest+(*n) + clock, 1, clock + halfClk); | |
639 | memset(dest+(*n) + clock*2 + halfClk, 0, halfClk); | |
640 | memset(dest+(*n) + clock*3, 1, clock); | |
641 | *n += clock*4; | |
642 | } | |
643 | ||
644 | // args clock, ask/man or askraw, invert, transmission separator | |
645 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
646 | { | |
647 | int ledcontrol = 1; | |
648 | int n=0, i=0; | |
649 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
650 | uint8_t encoding = arg1 & 0xFF; | |
651 | uint8_t separator = arg2 & 1; | |
652 | uint8_t invert = (arg2 >> 8) & 1; | |
653 | ||
654 | if (encoding==2){ //biphase | |
655 | uint8_t phase=0; | |
656 | for (i=0; i<size; i++){ | |
657 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
658 | } | |
659 | if (phase==1) { //run a second set inverted to keep phase in check | |
660 | for (i=0; i<size; i++){ | |
661 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
662 | } | |
663 | } | |
664 | } else { // ask/manchester || ask/raw | |
665 | for (i=0; i<size; i++){ | |
666 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
667 | } | |
668 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
669 | for (i=0; i<size; i++){ | |
670 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
671 | } | |
672 | } | |
673 | } | |
674 | if (separator==1 && encoding == 1) | |
675 | stAskSimBit(&n, clk); | |
676 | else if (separator==1) | |
677 | Dbprintf("sorry but separator option not yet available"); | |
678 | ||
679 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
680 | ||
681 | if (ledcontrol) LED_A_ON(); | |
682 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
683 | if (ledcontrol) LED_A_OFF(); | |
684 | } | |
685 | ||
686 | //carrier can be 2,4 or 8 | |
687 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
688 | { | |
689 | uint8_t *dest = BigBuf_get_addr(); | |
690 | uint8_t halfWave = waveLen/2; | |
691 | //uint8_t idx; | |
692 | int i = 0; | |
693 | if (phaseChg){ | |
694 | // write phase change | |
695 | memset(dest+(*n), *curPhase^1, halfWave); | |
696 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
697 | *n += waveLen; | |
698 | *curPhase ^= 1; | |
699 | i += waveLen; | |
700 | } | |
701 | //write each normal clock wave for the clock duration | |
702 | for (; i < clk; i+=waveLen){ | |
703 | memset(dest+(*n), *curPhase, halfWave); | |
704 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
705 | *n += waveLen; | |
706 | } | |
707 | } | |
708 | ||
709 | // args clock, carrier, invert, | |
710 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
711 | { | |
712 | int ledcontrol = 1; | |
713 | int n=0, i=0; | |
714 | uint8_t clk = arg1 >> 8; | |
715 | uint8_t carrier = arg1 & 0xFF; | |
716 | uint8_t invert = arg2 & 0xFF; | |
717 | uint8_t curPhase = 0; | |
718 | for (i=0; i<size; i++){ | |
719 | if (BitStream[i] == curPhase){ | |
720 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
721 | } else { | |
722 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
723 | } | |
724 | } | |
725 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
726 | ||
727 | if (ledcontrol) LED_A_ON(); | |
728 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
729 | if (ledcontrol) LED_A_OFF(); | |
730 | } | |
731 | ||
732 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
733 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
734 | { | |
735 | uint8_t *dest = BigBuf_get_addr(); | |
736 | size_t size = 0; | |
737 | uint32_t hi2=0, hi=0, lo=0; | |
738 | int idx=0; | |
739 | // Configure to go in 125Khz listen mode | |
740 | LFSetupFPGAForADC(95, true); | |
741 | ||
742 | //clear read buffer | |
743 | BigBuf_Clear_keep_EM(); | |
744 | ||
745 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
746 | ||
747 | WDT_HIT(); | |
748 | if (ledcontrol) LED_A_ON(); | |
749 | ||
750 | DoAcquisition_default(-1,true); | |
751 | // FSK demodulator | |
752 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
753 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); | |
754 | ||
755 | if (idx>0 && lo>0 && (size==96 || size==192)){ | |
756 | // go over previously decoded manchester data and decode into usable tag ID | |
757 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
758 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
759 | (unsigned int) hi2, | |
760 | (unsigned int) hi, | |
761 | (unsigned int) lo, | |
762 | (unsigned int) (lo>>1) & 0xFFFF | |
763 | ); | |
764 | } else { //standard HID tags 44/96 bits | |
765 | uint8_t bitlen = 0; | |
766 | uint32_t fc = 0; | |
767 | uint32_t cardnum = 0; | |
768 | ||
769 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used | |
770 | uint32_t lo2=0; | |
771 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
772 | uint8_t idx3 = 1; | |
773 | while(lo2 > 1){ //find last bit set to 1 (format len bit) | |
774 | lo2=lo2 >> 1; | |
775 | idx3++; | |
776 | } | |
777 | bitlen = idx3+19; | |
778 | fc =0; | |
779 | cardnum=0; | |
780 | if(bitlen == 26){ | |
781 | cardnum = (lo>>1)&0xFFFF; | |
782 | fc = (lo>>17)&0xFF; | |
783 | } | |
784 | if(bitlen == 37){ | |
785 | cardnum = (lo>>1)&0x7FFFF; | |
786 | fc = ((hi&0xF)<<12)|(lo>>20); | |
787 | } | |
788 | if(bitlen == 34){ | |
789 | cardnum = (lo>>1)&0xFFFF; | |
790 | fc= ((hi&1)<<15)|(lo>>17); | |
791 | } | |
792 | if(bitlen == 35){ | |
793 | cardnum = (lo>>1)&0xFFFFF; | |
794 | fc = ((hi&1)<<11)|(lo>>21); | |
795 | } | |
796 | } | |
797 | else { //if bit 38 is not set then 37 bit format is used | |
798 | bitlen= 37; | |
799 | fc =0; | |
800 | cardnum=0; | |
801 | if(bitlen==37){ | |
802 | cardnum = (lo>>1)&0x7FFFF; | |
803 | fc = ((hi&0xF)<<12)|(lo>>20); | |
804 | } | |
805 | } | |
806 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
807 | (unsigned int) hi, | |
808 | (unsigned int) lo, | |
809 | (unsigned int) (lo>>1) & 0xFFFF, | |
810 | (unsigned int) bitlen, | |
811 | (unsigned int) fc, | |
812 | (unsigned int) cardnum); | |
813 | } | |
814 | if (findone){ | |
815 | if (ledcontrol) LED_A_OFF(); | |
816 | *high = hi; | |
817 | *low = lo; | |
818 | return; | |
819 | } | |
820 | // reset | |
821 | } | |
822 | hi2 = hi = lo = idx = 0; | |
823 | WDT_HIT(); | |
824 | } | |
825 | DbpString("Stopped"); | |
826 | if (ledcontrol) LED_A_OFF(); | |
827 | } | |
828 | ||
829 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
830 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
831 | { | |
832 | uint8_t *dest = BigBuf_get_addr(); | |
833 | size_t size; | |
834 | int idx=0; | |
835 | //clear read buffer | |
836 | BigBuf_Clear_keep_EM(); | |
837 | // Configure to go in 125Khz listen mode | |
838 | LFSetupFPGAForADC(95, true); | |
839 | ||
840 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
841 | ||
842 | WDT_HIT(); | |
843 | if (ledcontrol) LED_A_ON(); | |
844 | ||
845 | DoAcquisition_default(-1,true); | |
846 | // FSK demodulator | |
847 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
848 | idx = AWIDdemodFSK(dest, &size); | |
849 | ||
850 | if (idx<=0 || size!=96) continue; | |
851 | // Index map | |
852 | // 0 10 20 30 40 50 60 | |
853 | // | | | | | | | | |
854 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
855 | // ----------------------------------------------------------------------------- | |
856 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
857 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
858 | // |---26 bit---| |-----117----||-------------142-------------| | |
859 | // b = format bit len, o = odd parity of last 3 bits | |
860 | // f = facility code, c = card number | |
861 | // w = wiegand parity | |
862 | // (26 bit format shown) | |
863 | ||
864 | //get raw ID before removing parities | |
865 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
866 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
867 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
868 | ||
869 | size = removeParity(dest, idx+8, 4, 1, 88); | |
870 | if (size != 66) continue; | |
871 | ||
872 | // Index map | |
873 | // 0 10 20 30 40 50 60 | |
874 | // | | | | | | | | |
875 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
876 | // ----------------------------------------------------------------------------- | |
877 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
878 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
879 | // |26 bit| |-117--| |-----142------| | |
880 | // | |
881 | // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 | |
882 | // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx | |
883 | // |50 bit| |----4000------||-----------2248975-------------| | |
884 | // | |
885 | // b = format bit len, o = odd parity of last 3 bits | |
886 | // f = facility code, c = card number | |
887 | // w = wiegand parity | |
888 | ||
889 | uint32_t fc = 0; | |
890 | uint32_t cardnum = 0; | |
891 | uint32_t code1 = 0; | |
892 | uint32_t code2 = 0; | |
893 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
894 | switch(fmtLen) { | |
895 | case 26: | |
896 | fc = bytebits_to_byte(dest + 9, 8); | |
897 | cardnum = bytebits_to_byte(dest + 17, 16); | |
898 | code1 = bytebits_to_byte(dest + 8,fmtLen); | |
899 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
900 | break; | |
901 | case 50: | |
902 | fc = bytebits_to_byte(dest + 9, 16); | |
903 | cardnum = bytebits_to_byte(dest + 25, 32); | |
904 | code1 = bytebits_to_byte(dest + 8, (fmtLen-32) ); | |
905 | code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32); | |
906 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
907 | break; | |
908 | default: | |
909 | if (fmtLen > 32 ) { | |
910 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
911 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
912 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
913 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
914 | } else { | |
915 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
916 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
917 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
918 | } | |
919 | break; | |
920 | } | |
921 | if (findone){ | |
922 | if (ledcontrol) LED_A_OFF(); | |
923 | return; | |
924 | } | |
925 | idx = 0; | |
926 | WDT_HIT(); | |
927 | } | |
928 | DbpString("Stopped"); | |
929 | if (ledcontrol) LED_A_OFF(); | |
930 | } | |
931 | ||
932 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
933 | { | |
934 | uint8_t *dest = BigBuf_get_addr(); | |
935 | ||
936 | size_t size=0, idx=0; | |
937 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
938 | uint32_t hi=0; | |
939 | uint64_t lo=0; | |
940 | //clear read buffer | |
941 | BigBuf_Clear_keep_EM(); | |
942 | // Configure to go in 125Khz listen mode | |
943 | LFSetupFPGAForADC(95, true); | |
944 | ||
945 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
946 | ||
947 | WDT_HIT(); | |
948 | if (ledcontrol) LED_A_ON(); | |
949 | ||
950 | DoAcquisition_default(-1,true); | |
951 | size = BigBuf_max_traceLen(); | |
952 | //askdemod and manchester decode | |
953 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format | |
954 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); | |
955 | WDT_HIT(); | |
956 | ||
957 | if (errCnt<0) continue; | |
958 | ||
959 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
960 | if (errCnt){ | |
961 | if (size>64){ | |
962 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
963 | hi, | |
964 | (uint32_t)(lo>>32), | |
965 | (uint32_t)lo, | |
966 | (uint32_t)(lo&0xFFFF), | |
967 | (uint32_t)((lo>>16LL) & 0xFF), | |
968 | (uint32_t)(lo & 0xFFFFFF)); | |
969 | } else { | |
970 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
971 | (uint32_t)(lo>>32), | |
972 | (uint32_t)lo, | |
973 | (uint32_t)(lo&0xFFFF), | |
974 | (uint32_t)((lo>>16LL) & 0xFF), | |
975 | (uint32_t)(lo & 0xFFFFFF)); | |
976 | } | |
977 | ||
978 | if (findone){ | |
979 | if (ledcontrol) LED_A_OFF(); | |
980 | *high=lo>>32; | |
981 | *low=lo & 0xFFFFFFFF; | |
982 | return; | |
983 | } | |
984 | } | |
985 | WDT_HIT(); | |
986 | hi = lo = size = idx = 0; | |
987 | clk = invert = errCnt = 0; | |
988 | } | |
989 | DbpString("Stopped"); | |
990 | if (ledcontrol) LED_A_OFF(); | |
991 | } | |
992 | ||
993 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
994 | { | |
995 | uint8_t *dest = BigBuf_get_addr(); | |
996 | int idx=0; | |
997 | uint32_t code=0, code2=0; | |
998 | uint8_t version=0; | |
999 | uint8_t facilitycode=0; | |
1000 | uint16_t number=0; | |
1001 | uint8_t crc = 0; | |
1002 | uint16_t calccrc = 0; | |
1003 | ||
1004 | //clear read buffer | |
1005 | BigBuf_Clear_keep_EM(); | |
1006 | ||
1007 | // Configure to go in 125Khz listen mode | |
1008 | LFSetupFPGAForADC(95, true); | |
1009 | ||
1010 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
1011 | WDT_HIT(); | |
1012 | if (ledcontrol) LED_A_ON(); | |
1013 | DoAcquisition_default(-1,true); | |
1014 | //fskdemod and get start index | |
1015 | WDT_HIT(); | |
1016 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
1017 | if (idx<0) continue; | |
1018 | //valid tag found | |
1019 | ||
1020 | //Index map | |
1021 | //0 10 20 30 40 50 60 | |
1022 | //| | | | | | | | |
1023 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1024 | //----------------------------------------------------------------------------- | |
1025 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 | |
1026 | // | |
1027 | //Checksum: | |
1028 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 | |
1029 | //preamble F0 E0 01 03 B6 75 | |
1030 | // How to calc checksum, | |
1031 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 | |
1032 | // F0 + E0 + 01 + 03 + B6 = 28A | |
1033 | // 28A & FF = 8A | |
1034 | // FF - 8A = 75 | |
1035 | // Checksum: 0x75 | |
1036 | //XSF(version)facility:codeone+codetwo | |
1037 | //Handle the data | |
1038 | if(findone){ //only print binary if we are doing one | |
1039 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1040 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1041 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1042 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1043 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1044 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1045 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1046 | } | |
1047 | code = bytebits_to_byte(dest+idx,32); | |
1048 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1049 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1050 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1051 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1052 | ||
1053 | crc = bytebits_to_byte(dest+idx+54,8); | |
1054 | for (uint8_t i=1; i<6; ++i) | |
1055 | calccrc += bytebits_to_byte(dest+idx+9*i,8); | |
1056 | calccrc &= 0xff; | |
1057 | calccrc = 0xff - calccrc; | |
1058 | ||
1059 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; | |
1060 | ||
1061 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); | |
1062 | // if we're only looking for one tag | |
1063 | if (findone){ | |
1064 | if (ledcontrol) LED_A_OFF(); | |
1065 | *high=code; | |
1066 | *low=code2; | |
1067 | return; | |
1068 | } | |
1069 | code=code2=0; | |
1070 | version=facilitycode=0; | |
1071 | number=0; | |
1072 | idx=0; | |
1073 | ||
1074 | WDT_HIT(); | |
1075 | } | |
1076 | DbpString("Stopped"); | |
1077 | if (ledcontrol) LED_A_OFF(); | |
1078 | } | |
1079 | ||
1080 | /*------------------------------ | |
1081 | * T5555/T5557/T5567/T5577 routines | |
1082 | *------------------------------ | |
1083 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h | |
1084 | * | |
1085 | * Relevant communication times in microsecond | |
1086 | * To compensate antenna falling times shorten the write times | |
1087 | * and enlarge the gap ones. | |
1088 | * Q5 tags seems to have issues when these values changes. | |
1089 | */ | |
1090 | ||
1091 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) | |
1092 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) | |
1093 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) | |
1094 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 | |
1095 | #define READ_GAP 15*8 | |
1096 | ||
1097 | // VALUES TAKEN FROM EM4x function: SendForward | |
1098 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1099 | // WRITE_GAP = 128; (16*8) | |
1100 | // WRITE_1 = 256 32*8; (32*8) | |
1101 | ||
1102 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1103 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1104 | ||
1105 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
1106 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
1107 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
1108 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
1109 | // 1 Cycle = 8 microseconds(us) == 1 field clock | |
1110 | ||
1111 | void TurnReadLFOn(int delay) { | |
1112 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1113 | // Give it a bit of time for the resonant antenna to settle. | |
1114 | ||
1115 | // measure antenna strength. | |
1116 | //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); | |
1117 | // where to save it | |
1118 | ||
1119 | SpinDelayUs(delay); | |
1120 | } | |
1121 | ||
1122 | // Write one bit to card | |
1123 | void T55xxWriteBit(int bit) { | |
1124 | if (!bit) | |
1125 | TurnReadLFOn(WRITE_0); | |
1126 | else | |
1127 | TurnReadLFOn(WRITE_1); | |
1128 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1129 | SpinDelayUs(WRITE_GAP); | |
1130 | } | |
1131 | ||
1132 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) | |
1133 | void T55xxResetRead(void) { | |
1134 | LED_A_ON(); | |
1135 | //clear buffer now so it does not interfere with timing later | |
1136 | BigBuf_Clear_keep_EM(); | |
1137 | ||
1138 | // Set up FPGA, 125kHz | |
1139 | LFSetupFPGAForADC(95, true); | |
1140 | ||
1141 | // Trigger T55x7 in mode. | |
1142 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1143 | SpinDelayUs(START_GAP); | |
1144 | ||
1145 | // reset tag - op code 00 | |
1146 | T55xxWriteBit(0); | |
1147 | T55xxWriteBit(0); | |
1148 | ||
1149 | // Turn field on to read the response | |
1150 | TurnReadLFOn(READ_GAP); | |
1151 | ||
1152 | // Acquisition | |
1153 | doT55x7Acquisition(BigBuf_max_traceLen()); | |
1154 | ||
1155 | // Turn the field off | |
1156 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1157 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1158 | LED_A_OFF(); | |
1159 | } | |
1160 | ||
1161 | // Write one card block in page 0, no lock | |
1162 | void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { | |
1163 | LED_A_ON(); | |
1164 | bool PwdMode = arg & 0x1; | |
1165 | uint8_t Page = (arg & 0x2)>>1; | |
1166 | uint32_t i = 0; | |
1167 | ||
1168 | // Set up FPGA, 125kHz | |
1169 | LFSetupFPGAForADC(95, true); | |
1170 | ||
1171 | // Trigger T55x7 in mode. | |
1172 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1173 | SpinDelayUs(START_GAP); | |
1174 | ||
1175 | // Opcode 10 | |
1176 | T55xxWriteBit(1); | |
1177 | T55xxWriteBit(Page); //Page 0 | |
1178 | if (PwdMode){ | |
1179 | // Send Pwd | |
1180 | for (i = 0x80000000; i != 0; i >>= 1) | |
1181 | T55xxWriteBit(Pwd & i); | |
1182 | } | |
1183 | // Send Lock bit | |
1184 | T55xxWriteBit(0); | |
1185 | ||
1186 | // Send Data | |
1187 | for (i = 0x80000000; i != 0; i >>= 1) | |
1188 | T55xxWriteBit(Data & i); | |
1189 | ||
1190 | // Send Block number | |
1191 | for (i = 0x04; i != 0; i >>= 1) | |
1192 | T55xxWriteBit(Block & i); | |
1193 | ||
1194 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1195 | // so wait a little more) | |
1196 | TurnReadLFOn(20 * 1000); | |
1197 | //could attempt to do a read to confirm write took | |
1198 | // as the tag should repeat back the new block | |
1199 | // until it is reset, but to confirm it we would | |
1200 | // need to know the current block 0 config mode | |
1201 | ||
1202 | // turn field off | |
1203 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1204 | LED_A_OFF(); | |
1205 | } | |
1206 | ||
1207 | // Write one card block in page 0, no lock | |
1208 | void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { | |
1209 | T55xxWriteBlockExt(Data, Block, Pwd, arg); | |
1210 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1211 | } | |
1212 | ||
1213 | // Read one card block in page [page] | |
1214 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { | |
1215 | LED_A_ON(); | |
1216 | bool PwdMode = arg0 & 0x1; | |
1217 | uint8_t Page = (arg0 & 0x2) >> 1; | |
1218 | uint32_t i = 0; | |
1219 | bool RegReadMode = (Block == 0xFF); | |
1220 | ||
1221 | //clear buffer now so it does not interfere with timing later | |
1222 | BigBuf_Clear_ext(false); | |
1223 | ||
1224 | //make sure block is at max 7 | |
1225 | Block &= 0x7; | |
1226 | ||
1227 | // Set up FPGA, 125kHz to power up the tag | |
1228 | LFSetupFPGAForADC(95, true); | |
1229 | ||
1230 | // Trigger T55x7 Direct Access Mode with start gap | |
1231 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1232 | SpinDelayUs(START_GAP); | |
1233 | ||
1234 | // Opcode 1[page] | |
1235 | T55xxWriteBit(1); | |
1236 | T55xxWriteBit(Page); //Page 0 | |
1237 | ||
1238 | if (PwdMode){ | |
1239 | // Send Pwd | |
1240 | for (i = 0x80000000; i != 0; i >>= 1) | |
1241 | T55xxWriteBit(Pwd & i); | |
1242 | } | |
1243 | // Send a zero bit separation | |
1244 | T55xxWriteBit(0); | |
1245 | ||
1246 | // Send Block number (if direct access mode) | |
1247 | if (!RegReadMode) | |
1248 | for (i = 0x04; i != 0; i >>= 1) | |
1249 | T55xxWriteBit(Block & i); | |
1250 | ||
1251 | // Turn field on to read the response | |
1252 | TurnReadLFOn(READ_GAP); | |
1253 | ||
1254 | // Acquisition | |
1255 | doT55x7Acquisition(12000); | |
1256 | ||
1257 | // Turn the field off | |
1258 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1259 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1260 | LED_A_OFF(); | |
1261 | } | |
1262 | ||
1263 | void T55xxWakeUp(uint32_t Pwd){ | |
1264 | LED_B_ON(); | |
1265 | uint32_t i = 0; | |
1266 | ||
1267 | // Set up FPGA, 125kHz | |
1268 | LFSetupFPGAForADC(95, true); | |
1269 | ||
1270 | // Trigger T55x7 Direct Access Mode | |
1271 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1272 | SpinDelayUs(START_GAP); | |
1273 | ||
1274 | // Opcode 10 | |
1275 | T55xxWriteBit(1); | |
1276 | T55xxWriteBit(0); //Page 0 | |
1277 | ||
1278 | // Send Pwd | |
1279 | for (i = 0x80000000; i != 0; i >>= 1) | |
1280 | T55xxWriteBit(Pwd & i); | |
1281 | ||
1282 | // Turn and leave field on to let the begin repeating transmission | |
1283 | TurnReadLFOn(20*1000); | |
1284 | } | |
1285 | ||
1286 | /*-------------- Cloning routines -----------*/ | |
1287 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { | |
1288 | // write last block first and config block last (if included) | |
1289 | for (uint8_t i = numblocks+startblock; i > startblock; i--) | |
1290 | T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0); | |
1291 | } | |
1292 | ||
1293 | // Copy HID id to card and setup block 0 config | |
1294 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { | |
1295 | uint32_t data[] = {0,0,0,0,0,0,0}; | |
1296 | uint8_t last_block = 0; | |
1297 | ||
1298 | if (longFMT){ | |
1299 | // Ensure no more than 84 bits supplied | |
1300 | if (hi2 > 0xFFFFF) { | |
1301 | DbpString("Tags can only have 84 bits."); | |
1302 | return; | |
1303 | } | |
1304 | // Build the 6 data blocks for supplied 84bit ID | |
1305 | last_block = 6; | |
1306 | // load preamble (1D) & long format identifier (9E manchester encoded) | |
1307 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); | |
1308 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) | |
1309 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); | |
1310 | data[3] = manchesterEncode2Bytes(hi >> 16); | |
1311 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); | |
1312 | data[5] = manchesterEncode2Bytes(lo >> 16); | |
1313 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1314 | } else { | |
1315 | // Ensure no more than 44 bits supplied | |
1316 | if (hi > 0xFFF) { | |
1317 | DbpString("Tags can only have 44 bits."); | |
1318 | return; | |
1319 | } | |
1320 | // Build the 3 data blocks for supplied 44bit ID | |
1321 | last_block = 3; | |
1322 | // load preamble | |
1323 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); | |
1324 | data[2] = manchesterEncode2Bytes(lo >> 16); | |
1325 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1326 | } | |
1327 | // load chip config block | |
1328 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; | |
1329 | ||
1330 | //TODO add selection of chip for Q5 or T55x7 | |
1331 | // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; | |
1332 | ||
1333 | LED_D_ON(); | |
1334 | // Program the data blocks for supplied ID | |
1335 | // and the block 0 for HID format | |
1336 | WriteT55xx(data, 0, last_block+1); | |
1337 | ||
1338 | LED_D_OFF(); | |
1339 | ||
1340 | DbpString("DONE!"); | |
1341 | } | |
1342 | ||
1343 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { | |
1344 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1345 | //TODO add selection of chip for Q5 or T55x7 | |
1346 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) | |
1347 | // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; | |
1348 | ||
1349 | LED_D_ON(); | |
1350 | // Program the data blocks for supplied ID | |
1351 | // and the block 0 config | |
1352 | WriteT55xx(data, 0, 3); | |
1353 | LED_D_OFF(); | |
1354 | DbpString("DONE!"); | |
1355 | } | |
1356 | ||
1357 | // Clone Indala 64-bit tag by UID to T55x7 | |
1358 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { | |
1359 | //Program the 2 data blocks for supplied 64bit UID | |
1360 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) | |
1361 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1362 | //TODO add selection of chip for Q5 or T55x7 | |
1363 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; | |
1364 | ||
1365 | WriteT55xx(data, 0, 3); | |
1366 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1367 | // T5567WriteBlock(0x603E1042,0); | |
1368 | DbpString("DONE!"); | |
1369 | } | |
1370 | // Clone Indala 224-bit tag by UID to T55x7 | |
1371 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { | |
1372 | //Program the 7 data blocks for supplied 224bit UID | |
1373 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; | |
1374 | // and the block 0 for Indala224 format | |
1375 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1376 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); | |
1377 | //TODO add selection of chip for Q5 or T55x7 | |
1378 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; | |
1379 | WriteT55xx(data, 0, 8); | |
1380 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1381 | // T5567WriteBlock(0x603E10E2,0); | |
1382 | DbpString("DONE!"); | |
1383 | } | |
1384 | // clone viking tag to T55xx | |
1385 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { | |
1386 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; | |
1387 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) | |
1388 | if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; | |
1389 | // Program the data blocks for supplied ID and the block 0 config | |
1390 | WriteT55xx(data, 0, 3); | |
1391 | LED_D_OFF(); | |
1392 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1393 | } | |
1394 | ||
1395 | // Define 9bit header for EM410x tags | |
1396 | #define EM410X_HEADER 0x1FF | |
1397 | #define EM410X_ID_LENGTH 40 | |
1398 | ||
1399 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { | |
1400 | int i, id_bit; | |
1401 | uint64_t id = EM410X_HEADER; | |
1402 | uint64_t rev_id = 0; // reversed ID | |
1403 | int c_parity[4]; // column parity | |
1404 | int r_parity = 0; // row parity | |
1405 | uint32_t clock = 0; | |
1406 | ||
1407 | // Reverse ID bits given as parameter (for simpler operations) | |
1408 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1409 | if (i < 32) { | |
1410 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1411 | id_lo >>= 1; | |
1412 | } else { | |
1413 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1414 | id_hi >>= 1; | |
1415 | } | |
1416 | } | |
1417 | ||
1418 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1419 | id_bit = rev_id & 1; | |
1420 | ||
1421 | if (i % 4 == 0) { | |
1422 | // Don't write row parity bit at start of parsing | |
1423 | if (i) | |
1424 | id = (id << 1) | r_parity; | |
1425 | // Start counting parity for new row | |
1426 | r_parity = id_bit; | |
1427 | } else { | |
1428 | // Count row parity | |
1429 | r_parity ^= id_bit; | |
1430 | } | |
1431 | ||
1432 | // First elements in column? | |
1433 | if (i < 4) | |
1434 | // Fill out first elements | |
1435 | c_parity[i] = id_bit; | |
1436 | else | |
1437 | // Count column parity | |
1438 | c_parity[i % 4] ^= id_bit; | |
1439 | ||
1440 | // Insert ID bit | |
1441 | id = (id << 1) | id_bit; | |
1442 | rev_id >>= 1; | |
1443 | } | |
1444 | ||
1445 | // Insert parity bit of last row | |
1446 | id = (id << 1) | r_parity; | |
1447 | ||
1448 | // Fill out column parity at the end of tag | |
1449 | for (i = 0; i < 4; ++i) | |
1450 | id = (id << 1) | c_parity[i]; | |
1451 | ||
1452 | // Add stop bit | |
1453 | id <<= 1; | |
1454 | ||
1455 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1456 | LED_D_ON(); | |
1457 | ||
1458 | // Write EM410x ID | |
1459 | uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; | |
1460 | ||
1461 | clock = (card & 0xFF00) >> 8; | |
1462 | clock = (clock == 0) ? 64 : clock; | |
1463 | Dbprintf("Clock rate: %d", clock); | |
1464 | if (card & 0xFF) { //t55x7 | |
1465 | clock = GetT55xxClockBit(clock); | |
1466 | if (clock == 0) { | |
1467 | Dbprintf("Invalid clock rate: %d", clock); | |
1468 | return; | |
1469 | } | |
1470 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); | |
1471 | } else { //t5555 (Q5) | |
1472 | clock = (clock-2)>>1; //n = (RF-2)/2 | |
1473 | data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); | |
1474 | } | |
1475 | ||
1476 | WriteT55xx(data, 0, 3); | |
1477 | ||
1478 | LED_D_OFF(); | |
1479 | Dbprintf("Tag %s written with 0x%08x%08x\n", | |
1480 | card ? "T55x7":"T5555", | |
1481 | (uint32_t)(id >> 32), | |
1482 | (uint32_t)id); | |
1483 | } | |
1484 | ||
1485 | //----------------------------------- | |
1486 | // EM4469 / EM4305 routines | |
1487 | //----------------------------------- | |
1488 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1489 | #define FWD_CMD_WRITE 0xA | |
1490 | #define FWD_CMD_READ 0x9 | |
1491 | #define FWD_CMD_DISABLE 0x5 | |
1492 | ||
1493 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1494 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1495 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1496 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1497 | ||
1498 | //==================================================================== | |
1499 | // prepares command bits | |
1500 | // see EM4469 spec | |
1501 | //==================================================================== | |
1502 | //-------------------------------------------------------------------- | |
1503 | // VALUES TAKEN FROM EM4x function: SendForward | |
1504 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1505 | // WRITE_GAP = 128; (16*8) | |
1506 | // WRITE_1 = 256 32*8; (32*8) | |
1507 | ||
1508 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1509 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1510 | ||
1511 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1512 | ||
1513 | *forward_ptr++ = 0; //start bit | |
1514 | *forward_ptr++ = 0; //second pause for 4050 code | |
1515 | ||
1516 | *forward_ptr++ = cmd; | |
1517 | cmd >>= 1; | |
1518 | *forward_ptr++ = cmd; | |
1519 | cmd >>= 1; | |
1520 | *forward_ptr++ = cmd; | |
1521 | cmd >>= 1; | |
1522 | *forward_ptr++ = cmd; | |
1523 | ||
1524 | return 6; //return number of emited bits | |
1525 | } | |
1526 | ||
1527 | //==================================================================== | |
1528 | // prepares address bits | |
1529 | // see EM4469 spec | |
1530 | //==================================================================== | |
1531 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1532 | ||
1533 | register uint8_t line_parity; | |
1534 | ||
1535 | uint8_t i; | |
1536 | line_parity = 0; | |
1537 | for(i=0;i<6;i++) { | |
1538 | *forward_ptr++ = addr; | |
1539 | line_parity ^= addr; | |
1540 | addr >>= 1; | |
1541 | } | |
1542 | ||
1543 | *forward_ptr++ = (line_parity & 1); | |
1544 | ||
1545 | return 7; //return number of emited bits | |
1546 | } | |
1547 | ||
1548 | //==================================================================== | |
1549 | // prepares data bits intreleaved with parity bits | |
1550 | // see EM4469 spec | |
1551 | //==================================================================== | |
1552 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1553 | ||
1554 | register uint8_t line_parity; | |
1555 | register uint8_t column_parity; | |
1556 | register uint8_t i, j; | |
1557 | register uint16_t data; | |
1558 | ||
1559 | data = data_low; | |
1560 | column_parity = 0; | |
1561 | ||
1562 | for(i=0; i<4; i++) { | |
1563 | line_parity = 0; | |
1564 | for(j=0; j<8; j++) { | |
1565 | line_parity ^= data; | |
1566 | column_parity ^= (data & 1) << j; | |
1567 | *forward_ptr++ = data; | |
1568 | data >>= 1; | |
1569 | } | |
1570 | *forward_ptr++ = line_parity; | |
1571 | if(i == 1) | |
1572 | data = data_hi; | |
1573 | } | |
1574 | ||
1575 | for(j=0; j<8; j++) { | |
1576 | *forward_ptr++ = column_parity; | |
1577 | column_parity >>= 1; | |
1578 | } | |
1579 | *forward_ptr = 0; | |
1580 | ||
1581 | return 45; //return number of emited bits | |
1582 | } | |
1583 | ||
1584 | //==================================================================== | |
1585 | // Forward Link send function | |
1586 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1587 | // fwd_bit_count set with number of bits to be sent | |
1588 | //==================================================================== | |
1589 | void SendForward(uint8_t fwd_bit_count) { | |
1590 | ||
1591 | fwd_write_ptr = forwardLink_data; | |
1592 | fwd_bit_sz = fwd_bit_count; | |
1593 | ||
1594 | LED_D_ON(); | |
1595 | ||
1596 | // Set up FPGA, 125kHz | |
1597 | LFSetupFPGAForADC(95, true); | |
1598 | ||
1599 | // force 1st mod pulse (start gap must be longer for 4305) | |
1600 | fwd_bit_sz--; //prepare next bit modulation | |
1601 | fwd_write_ptr++; | |
1602 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1603 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1604 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1605 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1606 | ||
1607 | // now start writting | |
1608 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1609 | if(((*fwd_write_ptr++) & 1) == 1) | |
1610 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1611 | else { | |
1612 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1613 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1614 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1615 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on | |
1616 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1617 | } | |
1618 | } | |
1619 | } | |
1620 | ||
1621 | void EM4xLogin(uint32_t Password) { | |
1622 | ||
1623 | uint8_t fwd_bit_count; | |
1624 | ||
1625 | forward_ptr = forwardLink_data; | |
1626 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1627 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1628 | ||
1629 | SendForward(fwd_bit_count); | |
1630 | ||
1631 | //Wait for command to complete | |
1632 | SpinDelay(20); | |
1633 | } | |
1634 | ||
1635 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1636 | ||
1637 | uint8_t fwd_bit_count; | |
1638 | uint8_t *dest = BigBuf_get_addr(); | |
1639 | uint16_t bufsize = BigBuf_max_traceLen(); | |
1640 | uint32_t i = 0; | |
1641 | ||
1642 | // Clear destination buffer before sending the command | |
1643 | BigBuf_Clear_ext(false); | |
1644 | ||
1645 | //If password mode do login | |
1646 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1647 | ||
1648 | forward_ptr = forwardLink_data; | |
1649 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1650 | fwd_bit_count += Prepare_Addr( Address ); | |
1651 | ||
1652 | // Connect the A/D to the peak-detected low-frequency path. | |
1653 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1654 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1655 | FpgaSetupSsc(); | |
1656 | ||
1657 | SendForward(fwd_bit_count); | |
1658 | ||
1659 | // Now do the acquisition | |
1660 | i = 0; | |
1661 | for(;;) { | |
1662 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1663 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1664 | } | |
1665 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1666 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1667 | ++i; | |
1668 | if (i >= bufsize) break; | |
1669 | } | |
1670 | } | |
1671 | ||
1672 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1673 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1674 | LED_D_OFF(); | |
1675 | } | |
1676 | ||
1677 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1678 | ||
1679 | uint8_t fwd_bit_count; | |
1680 | ||
1681 | //If password mode do login | |
1682 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1683 | ||
1684 | forward_ptr = forwardLink_data; | |
1685 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1686 | fwd_bit_count += Prepare_Addr( Address ); | |
1687 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1688 | ||
1689 | SendForward(fwd_bit_count); | |
1690 | ||
1691 | //Wait for write to complete | |
1692 | SpinDelay(20); | |
1693 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1694 | LED_D_OFF(); | |
1695 | } |