]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | ||
9 | #include <proxmark3.h> | |
10 | #include <stdlib.h> | |
11 | #include "apps.h" | |
12 | #ifdef WITH_LCD | |
13 | #include "fonts.h" | |
14 | #include "LCD.h" | |
15 | #endif | |
16 | ||
17 | // The large multi-purpose buffer, typically used to hold A/D samples, | |
18 | // maybe pre-processed in some way. | |
19 | DWORD BigBuf[16000]; | |
20 | int usbattached = 0; | |
21 | ||
22 | //============================================================================= | |
23 | // A buffer where we can queue things up to be sent through the FPGA, for | |
24 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
25 | // is the order in which they go out on the wire. | |
26 | //============================================================================= | |
27 | ||
28 | BYTE ToSend[256]; | |
29 | int ToSendMax; | |
30 | static int ToSendBit; | |
31 | ||
32 | ||
33 | void BufferClear(void) | |
34 | { | |
35 | memset(BigBuf,0,sizeof(BigBuf)); | |
36 | DbpString("Buffer cleared"); | |
37 | } | |
38 | ||
39 | void ToSendReset(void) | |
40 | { | |
41 | ToSendMax = -1; | |
42 | ToSendBit = 8; | |
43 | } | |
44 | ||
45 | void ToSendStuffBit(int b) | |
46 | { | |
47 | if(ToSendBit >= 8) { | |
48 | ToSendMax++; | |
49 | ToSend[ToSendMax] = 0; | |
50 | ToSendBit = 0; | |
51 | } | |
52 | ||
53 | if(b) { | |
54 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
55 | } | |
56 | ||
57 | ToSendBit++; | |
58 | ||
59 | if(ToSendBit >= sizeof(ToSend)) { | |
60 | ToSendBit = 0; | |
61 | DbpString("ToSendStuffBit overflowed!"); | |
62 | } | |
63 | } | |
64 | ||
65 | //============================================================================= | |
66 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
67 | //============================================================================= | |
68 | ||
69 | void DbpString(char *str) | |
70 | { | |
71 | /* this holds up stuff unless we're connected to usb */ | |
72 | // if (!usbattached) | |
73 | // return; | |
74 | ||
75 | UsbCommand c; | |
76 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
77 | c.ext1 = strlen(str); | |
78 | memcpy(c.d.asBytes, str, c.ext1); | |
79 | ||
80 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
81 | // TODO fix USB so stupid things like this aren't req'd | |
82 | SpinDelay(50); | |
83 | } | |
84 | ||
85 | void DbpIntegers(int x1, int x2, int x3) | |
86 | { | |
87 | /* this holds up stuff unless we're connected to usb */ | |
88 | // if (!usbattached) | |
89 | // return; | |
90 | ||
91 | UsbCommand c; | |
92 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
93 | c.ext1 = x1; | |
94 | c.ext2 = x2; | |
95 | c.ext3 = x3; | |
96 | ||
97 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
98 | // XXX | |
99 | SpinDelay(50); | |
100 | } | |
101 | ||
102 | void AcquireRawAdcSamples125k(BOOL at134khz) | |
103 | { | |
104 | if(at134khz) { | |
105 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
106 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
107 | } else { | |
108 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
109 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
110 | } | |
111 | ||
112 | // Connect the A/D to the peak-detected low-frequency path. | |
113 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
114 | ||
115 | // Give it a bit of time for the resonant antenna to settle. | |
116 | SpinDelay(50); | |
117 | ||
118 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
119 | FpgaSetupSsc(); | |
120 | ||
121 | // Now call the acquisition routine | |
122 | DoAcquisition125k(at134khz); | |
123 | } | |
124 | ||
125 | // split into two routines so we can avoid timing issues after sending commands // | |
126 | void DoAcquisition125k(BOOL at134khz) | |
127 | { | |
128 | BYTE *dest = (BYTE *)BigBuf; | |
129 | int n = sizeof(BigBuf); | |
130 | int i; | |
131 | ||
132 | memset(dest,0,n); | |
133 | i = 0; | |
134 | for(;;) { | |
135 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
136 | SSC_TRANSMIT_HOLDING = 0x43; | |
137 | LED_D_ON(); | |
138 | } | |
139 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
140 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
141 | i++; | |
142 | LED_D_OFF(); | |
143 | if(i >= n) { | |
144 | break; | |
145 | } | |
146 | } | |
147 | } | |
148 | DbpIntegers(dest[0], dest[1], at134khz); | |
149 | } | |
150 | ||
151 | void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) | |
152 | { | |
153 | BOOL at134khz; | |
154 | ||
155 | // see if 'h' was specified | |
156 | if(command[strlen((char *) command) - 1] == 'h') | |
157 | at134khz= TRUE; | |
158 | else | |
159 | at134khz= FALSE; | |
160 | ||
161 | if(at134khz) { | |
162 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
163 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
164 | } else { | |
165 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
166 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
167 | } | |
168 | ||
169 | // Give it a bit of time for the resonant antenna to settle. | |
170 | SpinDelay(50); | |
171 | ||
172 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
173 | FpgaSetupSsc(); | |
174 | ||
175 | // now modulate the reader field | |
176 | while(*command != '\0' && *command != ' ') | |
177 | { | |
178 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
179 | LED_D_OFF(); | |
180 | SpinDelayUs(delay_off); | |
181 | if(at134khz) { | |
182 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
183 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
184 | } else { | |
185 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
186 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
187 | } | |
188 | LED_D_ON(); | |
189 | if(*(command++) == '0') | |
190 | SpinDelayUs(period_0); | |
191 | else | |
192 | SpinDelayUs(period_1); | |
193 | } | |
194 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
195 | LED_D_OFF(); | |
196 | SpinDelayUs(delay_off); | |
197 | if(at134khz) { | |
198 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
199 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
200 | } else { | |
201 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
203 | } | |
204 | ||
205 | // now do the read | |
206 | DoAcquisition125k(at134khz); | |
207 | } | |
208 | ||
209 | void AcquireTiType(void) | |
210 | { | |
211 | int i; | |
212 | int n = 5000; | |
213 | ||
214 | // clear buffer | |
215 | memset(BigBuf,0,sizeof(BigBuf)); | |
216 | ||
217 | // Set up the synchronous serial port | |
218 | PIO_DISABLE = (1<<GPIO_SSC_DIN); | |
219 | PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN); | |
220 | ||
221 | // steal this pin from the SSP and use it to control the modulation | |
222 | PIO_ENABLE = (1<<GPIO_SSC_DOUT); | |
223 | PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT); | |
224 | ||
225 | SSC_CONTROL = SSC_CONTROL_RESET; | |
226 | SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE; | |
227 | ||
228 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
229 | // 48/2 = 24 MHz clock must be divided by 12 | |
230 | SSC_CLOCK_DIVISOR = 12; | |
231 | ||
232 | SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0); | |
233 | SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST; | |
234 | SSC_TRANSMIT_CLOCK_MODE = 0; | |
235 | SSC_TRANSMIT_FRAME_MODE = 0; | |
236 | ||
237 | LED_D_ON(); | |
238 | ||
239 | // modulate antenna | |
240 | PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT); | |
241 | ||
242 | // Charge TI tag for 50ms. | |
243 | SpinDelay(50); | |
244 | ||
245 | // stop modulating antenna and listen | |
246 | PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT); | |
247 | ||
248 | LED_D_OFF(); | |
249 | ||
250 | i = 0; | |
251 | for(;;) { | |
252 | if(SSC_STATUS & SSC_STATUS_RX_READY) { | |
253 | BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer | |
254 | i++; if(i >= n) return; | |
255 | } | |
256 | WDT_HIT(); | |
257 | } | |
258 | ||
259 | // return stolen pin ro SSP | |
260 | PIO_DISABLE = (1<<GPIO_SSC_DOUT); | |
261 | PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT); | |
262 | } | |
263 | ||
264 | void AcquireRawBitsTI(void) | |
265 | { | |
266 | LED_D_ON(); | |
267 | // TI tags charge at 134.2Khz | |
268 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
269 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
270 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
271 | // whether we're modulating the antenna (high) | |
272 | // or listening to the antenna (low) | |
273 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
274 | ||
275 | // get TI tag data into the buffer | |
276 | AcquireTiType(); | |
277 | ||
278 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
279 | } | |
280 | ||
281 | //----------------------------------------------------------------------------- | |
282 | // Read an ADC channel and block till it completes, then return the result | |
283 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
284 | // return that. | |
285 | //----------------------------------------------------------------------------- | |
286 | static int ReadAdc(int ch) | |
287 | { | |
288 | DWORD d; | |
289 | ||
290 | ADC_CONTROL = ADC_CONTROL_RESET; | |
291 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | | |
292 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
293 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); | |
294 | ||
295 | ADC_CONTROL = ADC_CONTROL_START; | |
296 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) | |
297 | ; | |
298 | d = ADC_CHANNEL_DATA(ch); | |
299 | ||
300 | return d; | |
301 | } | |
302 | ||
303 | static int AvgAdc(int ch) | |
304 | { | |
305 | int i; | |
306 | int a = 0; | |
307 | ||
308 | for(i = 0; i < 32; i++) { | |
309 | a += ReadAdc(ch); | |
310 | } | |
311 | ||
312 | return (a + 15) >> 5; | |
313 | } | |
314 | ||
315 | void MeasureAntennaTuning(void) | |
316 | { | |
317 | BYTE *dest = (BYTE *)BigBuf; | |
318 | int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; | |
319 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
320 | ||
321 | UsbCommand c; | |
322 | ||
323 | DbpString("Measuring antenna characteristics, please wait."); | |
324 | memset(BigBuf,0,sizeof(BigBuf)); | |
325 | ||
326 | /* | |
327 | * Sweeps the useful LF range of the proxmark from | |
328 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
329 | * read the voltage in the antenna, the result left | |
330 | * in the buffer is a graph which should clearly show | |
331 | * the resonating frequency of your LF antenna | |
332 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
333 | */ | |
334 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
335 | for (i=255; i>19; i--) { | |
336 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
337 | SpinDelay(20); | |
338 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
339 | // can measure voltages up to 137500 mV | |
340 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
341 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
342 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
343 | ||
344 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
345 | if(dest[i] > peak) { | |
346 | peakv = adcval; | |
347 | peak = dest[i]; | |
348 | peakf = i; | |
349 | ptr = i; | |
350 | } | |
351 | } | |
352 | ||
353 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
354 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
355 | SpinDelay(20); | |
356 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
357 | // can measure voltages up to 33000 mV | |
358 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
359 | ||
360 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
361 | c.ext1 = (vLf125 << 0) | (vLf134 << 16); | |
362 | c.ext2 = vHf; | |
363 | c.ext3 = peakf | (peakv << 16); | |
364 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
365 | } | |
366 | ||
367 | void SimulateTagLowFrequency(int period, int ledcontrol) | |
368 | { | |
369 | int i; | |
370 | BYTE *tab = (BYTE *)BigBuf; | |
371 | ||
372 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); | |
373 | ||
374 | PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); | |
375 | ||
376 | PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); | |
377 | PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); | |
378 | ||
379 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
380 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
381 | ||
382 | i = 0; | |
383 | for(;;) { | |
384 | while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) { | |
385 | if(BUTTON_PRESS()) { | |
386 | DbpString("Stopped"); | |
387 | return; | |
388 | } | |
389 | WDT_HIT(); | |
390 | } | |
391 | ||
392 | if (ledcontrol) | |
393 | LED_D_ON(); | |
394 | ||
395 | if(tab[i]) | |
396 | OPEN_COIL(); | |
397 | else | |
398 | SHORT_COIL(); | |
399 | ||
400 | if (ledcontrol) | |
401 | LED_D_OFF(); | |
402 | ||
403 | while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) { | |
404 | if(BUTTON_PRESS()) { | |
405 | DbpString("Stopped"); | |
406 | return; | |
407 | } | |
408 | WDT_HIT(); | |
409 | } | |
410 | ||
411 | i++; | |
412 | if(i == period) i = 0; | |
413 | } | |
414 | } | |
415 | ||
416 | // compose fc/8 fc/10 waveform | |
417 | static void fc(int c, int *n) { | |
418 | BYTE *dest = (BYTE *)BigBuf; | |
419 | int idx; | |
420 | ||
421 | // for when we want an fc8 pattern every 4 logical bits | |
422 | if(c==0) { | |
423 | dest[((*n)++)]=1; | |
424 | dest[((*n)++)]=1; | |
425 | dest[((*n)++)]=0; | |
426 | dest[((*n)++)]=0; | |
427 | dest[((*n)++)]=0; | |
428 | dest[((*n)++)]=0; | |
429 | dest[((*n)++)]=0; | |
430 | dest[((*n)++)]=0; | |
431 | } | |
432 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
433 | if(c==8) { | |
434 | for (idx=0; idx<6; idx++) { | |
435 | dest[((*n)++)]=1; | |
436 | dest[((*n)++)]=1; | |
437 | dest[((*n)++)]=0; | |
438 | dest[((*n)++)]=0; | |
439 | dest[((*n)++)]=0; | |
440 | dest[((*n)++)]=0; | |
441 | dest[((*n)++)]=0; | |
442 | dest[((*n)++)]=0; | |
443 | } | |
444 | } | |
445 | ||
446 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
447 | if(c==10) { | |
448 | for (idx=0; idx<5; idx++) { | |
449 | dest[((*n)++)]=1; | |
450 | dest[((*n)++)]=1; | |
451 | dest[((*n)++)]=1; | |
452 | dest[((*n)++)]=0; | |
453 | dest[((*n)++)]=0; | |
454 | dest[((*n)++)]=0; | |
455 | dest[((*n)++)]=0; | |
456 | dest[((*n)++)]=0; | |
457 | dest[((*n)++)]=0; | |
458 | dest[((*n)++)]=0; | |
459 | } | |
460 | } | |
461 | } | |
462 | ||
463 | // prepare a waveform pattern in the buffer based on the ID given then | |
464 | // simulate a HID tag until the button is pressed | |
465 | static void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
466 | { | |
467 | int n=0, i=0; | |
468 | /* | |
469 | HID tag bitstream format | |
470 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
471 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
472 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
473 | A fc8 is inserted before every 4 bits | |
474 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
475 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
476 | */ | |
477 | ||
478 | if (hi>0xFFF) { | |
479 | DbpString("Tags can only have 44 bits."); | |
480 | return; | |
481 | } | |
482 | fc(0,&n); | |
483 | // special start of frame marker containing invalid bit sequences | |
484 | fc(8, &n); fc(8, &n); // invalid | |
485 | fc(8, &n); fc(10, &n); // logical 0 | |
486 | fc(10, &n); fc(10, &n); // invalid | |
487 | fc(8, &n); fc(10, &n); // logical 0 | |
488 | ||
489 | WDT_HIT(); | |
490 | // manchester encode bits 43 to 32 | |
491 | for (i=11; i>=0; i--) { | |
492 | if ((i%4)==3) fc(0,&n); | |
493 | if ((hi>>i)&1) { | |
494 | fc(10, &n); fc(8, &n); // low-high transition | |
495 | } else { | |
496 | fc(8, &n); fc(10, &n); // high-low transition | |
497 | } | |
498 | } | |
499 | ||
500 | WDT_HIT(); | |
501 | // manchester encode bits 31 to 0 | |
502 | for (i=31; i>=0; i--) { | |
503 | if ((i%4)==3) fc(0,&n); | |
504 | if ((lo>>i)&1) { | |
505 | fc(10, &n); fc(8, &n); // low-high transition | |
506 | } else { | |
507 | fc(8, &n); fc(10, &n); // high-low transition | |
508 | } | |
509 | } | |
510 | ||
511 | if (ledcontrol) | |
512 | LED_A_ON(); | |
513 | SimulateTagLowFrequency(n, ledcontrol); | |
514 | ||
515 | if (ledcontrol) | |
516 | LED_A_OFF(); | |
517 | } | |
518 | ||
519 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
520 | static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
521 | { | |
522 | BYTE *dest = (BYTE *)BigBuf; | |
523 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; | |
524 | DWORD hi=0, lo=0; | |
525 | ||
526 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
527 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
528 | ||
529 | // Connect the A/D to the peak-detected low-frequency path. | |
530 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
531 | ||
532 | // Give it a bit of time for the resonant antenna to settle. | |
533 | SpinDelay(50); | |
534 | ||
535 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
536 | FpgaSetupSsc(); | |
537 | ||
538 | for(;;) { | |
539 | WDT_HIT(); | |
540 | if (ledcontrol) | |
541 | LED_A_ON(); | |
542 | if(BUTTON_PRESS()) { | |
543 | DbpString("Stopped"); | |
544 | if (ledcontrol) | |
545 | LED_A_OFF(); | |
546 | return; | |
547 | } | |
548 | ||
549 | i = 0; | |
550 | m = sizeof(BigBuf); | |
551 | memset(dest,128,m); | |
552 | for(;;) { | |
553 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
554 | SSC_TRANSMIT_HOLDING = 0x43; | |
555 | if (ledcontrol) | |
556 | LED_D_ON(); | |
557 | } | |
558 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
559 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
560 | // we don't care about actual value, only if it's more or less than a | |
561 | // threshold essentially we capture zero crossings for later analysis | |
562 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
563 | i++; | |
564 | if (ledcontrol) | |
565 | LED_D_OFF(); | |
566 | if(i >= m) { | |
567 | break; | |
568 | } | |
569 | } | |
570 | } | |
571 | ||
572 | // FSK demodulator | |
573 | ||
574 | // sync to first lo-hi transition | |
575 | for( idx=1; idx<m; idx++) { | |
576 | if (dest[idx-1]<dest[idx]) | |
577 | lastval=idx; | |
578 | break; | |
579 | } | |
580 | WDT_HIT(); | |
581 | ||
582 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
583 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
584 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
585 | for( i=0; idx<m; idx++) { | |
586 | if (dest[idx-1]<dest[idx]) { | |
587 | dest[i]=idx-lastval; | |
588 | if (dest[i] <= 8) { | |
589 | dest[i]=1; | |
590 | } else { | |
591 | dest[i]=0; | |
592 | } | |
593 | ||
594 | lastval=idx; | |
595 | i++; | |
596 | } | |
597 | } | |
598 | m=i; | |
599 | WDT_HIT(); | |
600 | ||
601 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
602 | lastval=dest[0]; | |
603 | idx=0; | |
604 | i=0; | |
605 | n=0; | |
606 | for( idx=0; idx<m; idx++) { | |
607 | if (dest[idx]==lastval) { | |
608 | n++; | |
609 | } else { | |
610 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
611 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
612 | // swallowed up by rounding | |
613 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
614 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
615 | // like 111000 | |
616 | if (dest[idx-1]) { | |
617 | n=(n+1)/6; // fc/8 in sets of 6 | |
618 | } else { | |
619 | n=(n+1)/5; // fc/10 in sets of 5 | |
620 | } | |
621 | switch (n) { // stuff appropriate bits in buffer | |
622 | case 0: | |
623 | case 1: // one bit | |
624 | dest[i++]=dest[idx-1]; | |
625 | break; | |
626 | case 2: // two bits | |
627 | dest[i++]=dest[idx-1]; | |
628 | dest[i++]=dest[idx-1]; | |
629 | break; | |
630 | case 3: // 3 bit start of frame markers | |
631 | dest[i++]=dest[idx-1]; | |
632 | dest[i++]=dest[idx-1]; | |
633 | dest[i++]=dest[idx-1]; | |
634 | break; | |
635 | // When a logic 0 is immediately followed by the start of the next transmisson | |
636 | // (special pattern) a pattern of 4 bit duration lengths is created. | |
637 | case 4: | |
638 | dest[i++]=dest[idx-1]; | |
639 | dest[i++]=dest[idx-1]; | |
640 | dest[i++]=dest[idx-1]; | |
641 | dest[i++]=dest[idx-1]; | |
642 | break; | |
643 | default: // this shouldn't happen, don't stuff any bits | |
644 | break; | |
645 | } | |
646 | n=0; | |
647 | lastval=dest[idx]; | |
648 | } | |
649 | } | |
650 | m=i; | |
651 | WDT_HIT(); | |
652 | ||
653 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
654 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
655 | for( idx=0; idx<m-6; idx++) { | |
656 | // search for a start of frame marker | |
657 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
658 | { | |
659 | found=1; | |
660 | idx+=6; | |
661 | if (found && (hi|lo)) { | |
662 | DbpString("TAG ID"); | |
663 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
664 | /* if we're only looking for one tag */ | |
665 | if (findone) | |
666 | { | |
667 | *high = hi; | |
668 | *low = lo; | |
669 | return; | |
670 | } | |
671 | hi=0; | |
672 | lo=0; | |
673 | found=0; | |
674 | } | |
675 | } | |
676 | if (found) { | |
677 | if (dest[idx] && (!dest[idx+1]) ) { | |
678 | hi=(hi<<1)|(lo>>31); | |
679 | lo=(lo<<1)|0; | |
680 | } else if ( (!dest[idx]) && dest[idx+1]) { | |
681 | hi=(hi<<1)|(lo>>31); | |
682 | lo=(lo<<1)|1; | |
683 | } else { | |
684 | found=0; | |
685 | hi=0; | |
686 | lo=0; | |
687 | } | |
688 | idx++; | |
689 | } | |
690 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
691 | { | |
692 | found=1; | |
693 | idx+=6; | |
694 | if (found && (hi|lo)) { | |
695 | DbpString("TAG ID"); | |
696 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
697 | /* if we're only looking for one tag */ | |
698 | if (findone) | |
699 | { | |
700 | *high = hi; | |
701 | *low = lo; | |
702 | return; | |
703 | } | |
704 | hi=0; | |
705 | lo=0; | |
706 | found=0; | |
707 | } | |
708 | } | |
709 | } | |
710 | WDT_HIT(); | |
711 | } | |
712 | } | |
713 | ||
714 | void SimulateTagHfListen(void) | |
715 | { | |
716 | BYTE *dest = (BYTE *)BigBuf; | |
717 | int n = sizeof(BigBuf); | |
718 | BYTE v = 0; | |
719 | int i; | |
720 | int p = 0; | |
721 | ||
722 | // We're using this mode just so that I can test it out; the simulated | |
723 | // tag mode would work just as well and be simpler. | |
724 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
725 | ||
726 | // We need to listen to the high-frequency, peak-detected path. | |
727 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
728 | ||
729 | FpgaSetupSsc(); | |
730 | ||
731 | i = 0; | |
732 | for(;;) { | |
733 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
734 | SSC_TRANSMIT_HOLDING = 0xff; | |
735 | } | |
736 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
737 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING; | |
738 | ||
739 | v <<= 1; | |
740 | if(r & 1) { | |
741 | v |= 1; | |
742 | } | |
743 | p++; | |
744 | ||
745 | if(p >= 8) { | |
746 | dest[i] = v; | |
747 | v = 0; | |
748 | p = 0; | |
749 | i++; | |
750 | ||
751 | if(i >= n) { | |
752 | break; | |
753 | } | |
754 | } | |
755 | } | |
756 | } | |
757 | DbpString("simulate tag (now type bitsamples)"); | |
758 | } | |
759 | ||
760 | void UsbPacketReceived(BYTE *packet, int len) | |
761 | { | |
762 | UsbCommand *c = (UsbCommand *)packet; | |
763 | ||
764 | switch(c->cmd) { | |
765 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
766 | AcquireRawAdcSamples125k(c->ext1); | |
767 | break; | |
768 | ||
769 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
770 | ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); | |
771 | break; | |
772 | ||
773 | case CMD_ACQUIRE_RAW_BITS_TI_TYPE: | |
774 | AcquireRawBitsTI(); | |
775 | break; | |
776 | ||
777 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
778 | AcquireRawAdcSamplesIso15693(); | |
779 | break; | |
780 | ||
781 | case CMD_BUFF_CLEAR: | |
782 | BufferClear(); | |
783 | break; | |
784 | ||
785 | case CMD_READER_ISO_15693: | |
786 | ReaderIso15693(c->ext1); | |
787 | break; | |
788 | ||
789 | case CMD_SIMTAG_ISO_15693: | |
790 | SimTagIso15693(c->ext1); | |
791 | break; | |
792 | ||
793 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
794 | AcquireRawAdcSamplesIso14443(c->ext1); | |
795 | break; | |
796 | ||
797 | case CMD_READ_SRI512_TAG: | |
798 | ReadSRI512Iso14443(c->ext1); | |
799 | break; | |
800 | ||
801 | case CMD_READER_ISO_14443a: | |
802 | ReaderIso14443a(c->ext1); | |
803 | break; | |
804 | ||
805 | case CMD_SNOOP_ISO_14443: | |
806 | SnoopIso14443(); | |
807 | break; | |
808 | ||
809 | case CMD_SNOOP_ISO_14443a: | |
810 | SnoopIso14443a(); | |
811 | break; | |
812 | ||
813 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
814 | SimulateTagHfListen(); | |
815 | break; | |
816 | ||
817 | case CMD_SIMULATE_TAG_ISO_14443: | |
818 | SimulateIso14443Tag(); | |
819 | break; | |
820 | ||
821 | case CMD_SIMULATE_TAG_ISO_14443a: | |
822 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID | |
823 | break; | |
824 | ||
825 | case CMD_MEASURE_ANTENNA_TUNING: | |
826 | MeasureAntennaTuning(); | |
827 | break; | |
828 | ||
829 | case CMD_LISTEN_READER_FIELD: | |
830 | ListenReaderField(c->ext1); | |
831 | break; | |
832 | ||
833 | case CMD_HID_DEMOD_FSK: | |
834 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
835 | break; | |
836 | ||
837 | case CMD_HID_SIM_TAG: | |
838 | CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID | |
839 | break; | |
840 | ||
841 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
842 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
843 | SpinDelay(200); | |
844 | LED_D_OFF(); // LED D indicates field ON or OFF | |
845 | break; | |
846 | ||
847 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
848 | case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { | |
849 | UsbCommand n; | |
850 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
851 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
852 | } else { | |
853 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
854 | } | |
855 | n.ext1 = c->ext1; | |
856 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); | |
857 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
858 | break; | |
859 | } | |
860 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
861 | BYTE *b = (BYTE *)BigBuf; | |
862 | memcpy(b+c->ext1, c->d.asBytes, 48); | |
863 | break; | |
864 | } | |
865 | case CMD_SIMULATE_TAG_125K: | |
866 | LED_A_ON(); | |
867 | SimulateTagLowFrequency(c->ext1, 1); | |
868 | LED_A_OFF(); | |
869 | break; | |
870 | #ifdef WITH_LCD | |
871 | case CMD_LCD_RESET: | |
872 | LCDReset(); | |
873 | break; | |
874 | #endif | |
875 | case CMD_READ_MEM: | |
876 | ReadMem(c->ext1); | |
877 | break; | |
878 | case CMD_SET_LF_DIVISOR: | |
879 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); | |
880 | break; | |
881 | #ifdef WITH_LCD | |
882 | case CMD_LCD: | |
883 | LCDSend(c->ext1); | |
884 | break; | |
885 | #endif | |
886 | case CMD_SETUP_WRITE: | |
887 | case CMD_FINISH_WRITE: | |
888 | case CMD_HARDWARE_RESET: | |
889 | USB_D_PLUS_PULLUP_OFF(); | |
890 | SpinDelay(1000); | |
891 | SpinDelay(1000); | |
892 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; | |
893 | for(;;) { | |
894 | // We're going to reset, and the bootrom will take control. | |
895 | } | |
896 | break; | |
897 | ||
898 | ||
899 | default: | |
900 | DbpString("unknown command"); | |
901 | break; | |
902 | } | |
903 | } | |
904 | ||
905 | void ReadMem(int addr) | |
906 | { | |
907 | const DWORD *data = ((DWORD *)addr); | |
908 | int i; | |
909 | ||
910 | DbpString("Reading memory at address"); | |
911 | DbpIntegers(0, 0, addr); | |
912 | for (i = 0; i < 8; i+= 2) | |
913 | DbpIntegers(0, data[i], data[i+1]); | |
914 | } | |
915 | ||
916 | void AppMain(void) | |
917 | { | |
918 | memset(BigBuf,0,sizeof(BigBuf)); | |
919 | SpinDelay(100); | |
920 | ||
921 | LED_D_OFF(); | |
922 | LED_C_OFF(); | |
923 | LED_B_OFF(); | |
924 | LED_A_OFF(); | |
925 | ||
926 | UsbStart(); | |
927 | ||
928 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
929 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); | |
930 | PIO_DISABLE = (1 << GPIO_PCK0); | |
931 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; | |
932 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
933 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | | |
934 | PMC_CLK_PRESCALE_DIV_4; | |
935 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); | |
936 | ||
937 | // Reset SPI | |
938 | SPI_CONTROL = SPI_CONTROL_RESET; | |
939 | // Reset SSC | |
940 | SSC_CONTROL = SSC_CONTROL_RESET; | |
941 | ||
942 | // Load the FPGA image, which we have stored in our flash. | |
943 | FpgaDownloadAndGo(); | |
944 | ||
945 | #ifdef WITH_LCD | |
946 | ||
947 | LCDInit(); | |
948 | ||
949 | // test text on different colored backgrounds | |
950 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
951 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
952 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); | |
953 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); | |
954 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
955 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
956 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
957 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
958 | ||
959 | // color bands | |
960 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
961 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
962 | LCDFill(0, 1+8*10, 132, 8, RED); | |
963 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
964 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
965 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
966 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
967 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
968 | ||
969 | #endif | |
970 | ||
971 | for(;;) { | |
972 | usbattached = UsbPoll(FALSE); | |
973 | WDT_HIT(); | |
974 | ||
975 | if (BUTTON_HELD(1000) > 0) | |
976 | SamyRun(); | |
977 | } | |
978 | } | |
979 | ||
980 | ||
981 | // samy's sniff and repeat routine | |
982 | void SamyRun() | |
983 | { | |
984 | DbpString("Stand-alone mode! No PC necessary."); | |
985 | ||
986 | // 3 possible options? no just 2 for now | |
987 | #define OPTS 2 | |
988 | ||
989 | int high[OPTS], low[OPTS]; | |
990 | ||
991 | // Oooh pretty -- notify user we're in elite samy mode now | |
992 | LED(LED_RED, 200); | |
993 | LED(LED_ORANGE, 200); | |
994 | LED(LED_GREEN, 200); | |
995 | LED(LED_ORANGE, 200); | |
996 | LED(LED_RED, 200); | |
997 | LED(LED_ORANGE, 200); | |
998 | LED(LED_GREEN, 200); | |
999 | LED(LED_ORANGE, 200); | |
1000 | LED(LED_RED, 200); | |
1001 | ||
1002 | int selected = 0; | |
1003 | int playing = 0; | |
1004 | ||
1005 | // Turn on selected LED | |
1006 | LED(selected + 1, 0); | |
1007 | ||
1008 | for (;;) | |
1009 | { | |
1010 | usbattached = UsbPoll(FALSE); | |
1011 | WDT_HIT(); | |
1012 | ||
1013 | // Was our button held down or pressed? | |
1014 | int button_pressed = BUTTON_HELD(1000); | |
1015 | SpinDelay(300); | |
1016 | ||
1017 | // Button was held for a second, begin recording | |
1018 | if (button_pressed > 0) | |
1019 | { | |
1020 | LEDsoff(); | |
1021 | LED(selected + 1, 0); | |
1022 | LED(LED_RED2, 0); | |
1023 | ||
1024 | // record | |
1025 | DbpString("Starting recording"); | |
1026 | ||
1027 | // wait for button to be released | |
1028 | while(BUTTON_PRESS()) | |
1029 | WDT_HIT(); | |
1030 | ||
1031 | /* need this delay to prevent catching some weird data */ | |
1032 | SpinDelay(500); | |
1033 | ||
1034 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
1035 | DbpString("Recorded"); | |
1036 | DbpIntegers(selected, high[selected], low[selected]); | |
1037 | ||
1038 | LEDsoff(); | |
1039 | LED(selected + 1, 0); | |
1040 | // Finished recording | |
1041 | ||
1042 | // If we were previously playing, set playing off | |
1043 | // so next button push begins playing what we recorded | |
1044 | playing = 0; | |
1045 | } | |
1046 | ||
1047 | // Change where to record (or begin playing) | |
1048 | else if (button_pressed) | |
1049 | { | |
1050 | // Next option if we were previously playing | |
1051 | if (playing) | |
1052 | selected = (selected + 1) % OPTS; | |
1053 | playing = !playing; | |
1054 | ||
1055 | LEDsoff(); | |
1056 | LED(selected + 1, 0); | |
1057 | ||
1058 | // Begin transmitting | |
1059 | if (playing) | |
1060 | { | |
1061 | LED(LED_GREEN, 0); | |
1062 | DbpString("Playing"); | |
1063 | // wait for button to be released | |
1064 | while(BUTTON_PRESS()) | |
1065 | WDT_HIT(); | |
1066 | DbpIntegers(selected, high[selected], low[selected]); | |
1067 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
1068 | DbpString("Done playing"); | |
1069 | if (BUTTON_HELD(1000) > 0) | |
1070 | { | |
1071 | DbpString("Exiting"); | |
1072 | LEDsoff(); | |
1073 | return; | |
1074 | } | |
1075 | ||
1076 | /* We pressed a button so ignore it here with a delay */ | |
1077 | SpinDelay(300); | |
1078 | ||
1079 | // when done, we're done playing, move to next option | |
1080 | selected = (selected + 1) % OPTS; | |
1081 | playing = !playing; | |
1082 | LEDsoff(); | |
1083 | LED(selected + 1, 0); | |
1084 | } | |
1085 | else | |
1086 | while(BUTTON_PRESS()) | |
1087 | WDT_HIT(); | |
1088 | } | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | ||
1093 | /* \r | |
1094 | OBJECTIVE\r | |
1095 | Listen and detect an external reader. Determine the best location\r | |
1096 | for the antenna.\r | |
1097 | \r | |
1098 | INSTRUCTIONS:\r | |
1099 | Inside the ListenReaderField() function, there is two mode. \r | |
1100 | By default, when you call the function, you will enter mode 1.\r | |
1101 | If you press the PM3 button one time, you will enter mode 2.\r | |
1102 | If you press the PM3 button a second time, you will exit the function.\r | |
1103 | \r | |
1104 | DESCRIPTION OF MODE 1:\r | |
1105 | This mode just listens for an external reader field and lights up green \r | |
1106 | for HF and/or red for LF. This is the original mode of the detectreader\r | |
1107 | function.\r | |
1108 | \r | |
1109 | DESCRIPTION OF MODE 2:\r | |
1110 | This mode will visually represent, using the LEDs, the actual strength of the\r | |
1111 | current compared to the maximum current detected. Basically, once you know \r | |
1112 | what kind of external reader is present, it will help you spot the best location to place\r | |
1113 | your antenna. You will probably not get some good results if there is a LF and a HF reader\r | |
1114 | at the same place! :-)\r | |
1115 | \r | |
1116 | LIGHT SCHEME USED:\r | |
1117 | \r | |
1118 | Light scheme | Descriptiong\r | |
1119 | ----------------------------------------------------\r | |
1120 | ---- | No field detected\r | |
1121 | X--- | 14% of maximum current detected\r | |
1122 | -X-- | 29% of maximum current detected\r | |
1123 | --X- | 43% of maximum current detected\r | |
1124 | ---X | 57% of maximum current detected\r | |
1125 | --XX | 71% of maximum current detected\r | |
1126 | -XXX | 86% of maximum current detected\r | |
1127 | XXXX | 100% of maximum current detected\r | |
1128 | \r | |
1129 | TODO:\r | |
1130 | Add the LF part for MODE 2\r | |
1131 | \r | |
1132 | */\r | |
1133 | void ListenReaderField(int limit)\r | |
1134 | {\r | |
1135 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;\r | |
1136 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;\r | |
1137 | int mode=1;\r | |
1138 | \r | |
1139 | #define LF_ONLY 1\r | |
1140 | #define HF_ONLY 2\r | |
1141 | \r | |
1142 | LED_A_OFF();\r | |
1143 | LED_B_OFF();\r | |
1144 | LED_C_OFF();\r | |
1145 | LED_D_OFF();\r | |
1146 | \r | |
1147 | lf_av= ReadAdc(ADC_CHAN_LF);\r | |
1148 | \r | |
1149 | if(limit != HF_ONLY) \r | |
1150 | {\r | |
1151 | DbpString("LF 125/134 Baseline:");\r | |
1152 | DbpIntegers(lf_av,0,0);\r | |
1153 | lf_baseline= lf_av;\r | |
1154 | }\r | |
1155 | \r | |
1156 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r | |
1157 | \r | |
1158 | if (limit != LF_ONLY) \r | |
1159 | {\r | |
1160 | DbpString("HF 13.56 Baseline:");\r | |
1161 | DbpIntegers(hf_av,0,0);\r | |
1162 | hf_baseline= hf_av;\r | |
1163 | }\r | |
1164 | \r | |
1165 | for(;;) \r | |
1166 | {\r | |
1167 | if (BUTTON_PRESS()) {\r | |
1168 | SpinDelay(500);\r | |
1169 | switch (mode) {\r | |
1170 | case 1:\r | |
1171 | mode=2;\r | |
1172 | DbpString("Signal Strength Mode"); | |
1173 | break;\r | |
1174 | case 2:\r | |
1175 | default:\r | |
1176 | DbpString("Stopped");\r | |
1177 | LED_A_OFF();\r | |
1178 | LED_B_OFF();\r | |
1179 | LED_C_OFF();\r | |
1180 | LED_D_OFF();\r | |
1181 | return;\r | |
1182 | break;\r | |
1183 | }\r | |
1184 | }\r | |
1185 | WDT_HIT();\r | |
1186 | \r | |
1187 | if (limit != HF_ONLY) \r | |
1188 | {\r | |
1189 | if (abs(lf_av - lf_baseline) > 10)\r | |
1190 | LED_D_ON();\r | |
1191 | else\r | |
1192 | LED_D_OFF();\r | |
1193 | ++lf_count;\r | |
1194 | lf_av_new= ReadAdc(ADC_CHAN_LF);\r | |
1195 | // see if there's a significant change\r | |
1196 | if(abs(lf_av - lf_av_new) > 10) \r | |
1197 | {\r | |
1198 | DbpString("LF 125/134 Field Change:");\r | |
1199 | DbpIntegers(lf_av,lf_av_new,lf_count);\r | |
1200 | lf_av= lf_av_new;\r | |
1201 | lf_count= 0;\r | |
1202 | }\r | |
1203 | }\r | |
1204 | \r | |
1205 | if (limit != LF_ONLY) \r | |
1206 | {\r | |
1207 | if (abs(hf_av - hf_baseline) > 10) {\r | |
1208 | if (mode == 1)\r | |
1209 | LED_B_ON();\r | |
1210 | if (mode == 2) {\r | |
1211 | if ( hf_av>(hf_max/7)*6) {\r | |
1212 | LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON();\r | |
1213 | }\r | |
1214 | if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) {\r | |
1215 | LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r | |
1216 | }\r | |
1217 | if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) {\r | |
1218 | LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r | |
1219 | }\r | |
1220 | if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) {\r | |
1221 | LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON();\r | |
1222 | }\r | |
1223 | if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) {\r | |
1224 | LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF();\r | |
1225 | }\r | |
1226 | if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) {\r | |
1227 | LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r | |
1228 | }\r | |
1229 | if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) {\r | |
1230 | LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF();\r | |
1231 | }\r | |
1232 | } \r | |
1233 | } else {\r | |
1234 | if (mode == 1) {\r | |
1235 | LED_B_OFF();\r | |
1236 | }\r | |
1237 | if (mode == 2) {\r | |
1238 | LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r | |
1239 | }\r | |
1240 | }\r | |
1241 | \r | |
1242 | ++hf_count;\r | |
1243 | hf_av_new= ReadAdc(ADC_CHAN_HF);\r | |
1244 | // see if there's a significant change\r | |
1245 | if(abs(hf_av - hf_av_new) > 10) \r | |
1246 | {\r | |
1247 | DbpString("HF 13.56 Field Change:");\r | |
1248 | DbpIntegers(hf_av,hf_av_new,hf_count);\r | |
1249 | hf_av= hf_av_new;\r | |
1250 | if (hf_av > hf_max)\r | |
1251 | hf_max = hf_av;\r | |
1252 | hf_count= 0;\r | |
1253 | }\r | |
1254 | }\r | |
1255 | }\r | |
1256 | }\r | |
1257 | \r |