]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Routines to support ISO 14443B. This includes both the reader software and | |
9 | // the `fake tag' modes. | |
10 | //----------------------------------------------------------------------------- | |
11 | #include "iso14443b.h" | |
12 | ||
13 | #ifndef FWT_TIMEOUT_14B | |
14 | // defaults to 2000ms | |
15 | # define FWT_TIMEOUT_14B 35312 | |
16 | #endif | |
17 | #ifndef ISO14443B_DMA_BUFFER_SIZE | |
18 | # define ISO14443B_DMA_BUFFER_SIZE 256 | |
19 | #endif | |
20 | #ifndef RECEIVE_MASK | |
21 | # define RECEIVE_MASK (ISO14443B_DMA_BUFFER_SIZE-1) | |
22 | #endif | |
23 | ||
24 | // Guard Time (per 14443-2) | |
25 | #ifndef TR0 | |
26 | # define TR0 0 | |
27 | #endif | |
28 | ||
29 | // Synchronization time (per 14443-2) | |
30 | #ifndef TR1 | |
31 | # define TR1 0 | |
32 | #endif | |
33 | // Frame Delay Time PICC to PCD (per 14443-3 Amendment 1) | |
34 | #ifndef TR2 | |
35 | # define TR2 0 | |
36 | #endif | |
37 | ||
38 | // 4sample | |
39 | #define SEND4STUFFBIT(x) ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x); | |
40 | //#define SEND4STUFFBIT(x) ToSendStuffBit(x); | |
41 | // iceman, this threshold value, what makes 8 a good amplituted for this IQ values? | |
42 | #ifndef SUBCARRIER_DETECT_THRESHOLD | |
43 | # define SUBCARRIER_DETECT_THRESHOLD 8 | |
44 | #endif | |
45 | ||
46 | static void iso14b_set_timeout(uint32_t timeout); | |
47 | static void iso14b_set_maxframesize(uint16_t size); | |
48 | static void switch_off(void); | |
49 | ||
50 | // the block number for the ISO14443-4 PCB (used with APDUs) | |
51 | static uint8_t pcb_blocknum = 0; | |
52 | static uint32_t iso14b_timeout = FWT_TIMEOUT_14B; | |
53 | ||
54 | ||
55 | //============================================================================= | |
56 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
57 | // a UART kind of thing that's implemented in software. When we get a | |
58 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
59 | // If it's good, then we can do something appropriate with it, and send | |
60 | // a response. | |
61 | //============================================================================= | |
62 | ||
63 | ||
64 | //----------------------------------------------------------------------------- | |
65 | // The software UART that receives commands from the reader, and its state variables. | |
66 | //----------------------------------------------------------------------------- | |
67 | static struct { | |
68 | enum { | |
69 | STATE_UNSYNCD, | |
70 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
71 | STATE_AWAITING_START_BIT, | |
72 | STATE_RECEIVING_DATA | |
73 | } state; | |
74 | uint16_t shiftReg; | |
75 | int bitCnt; | |
76 | int byteCnt; | |
77 | int byteCntMax; | |
78 | int posCnt; | |
79 | uint8_t *output; | |
80 | } Uart; | |
81 | ||
82 | static void UartReset() { | |
83 | Uart.state = STATE_UNSYNCD; | |
84 | Uart.shiftReg = 0; | |
85 | Uart.bitCnt = 0; | |
86 | Uart.byteCnt = 0; | |
87 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
88 | Uart.posCnt = 0; | |
89 | } | |
90 | ||
91 | static void UartInit(uint8_t *data) { | |
92 | Uart.output = data; | |
93 | UartReset(); | |
94 | // memset(Uart.output, 0x00, MAX_FRAME_SIZE); | |
95 | } | |
96 | ||
97 | //----------------------------------------------------------------------------- | |
98 | // The software Demod that receives commands from the tag, and its state variables. | |
99 | //----------------------------------------------------------------------------- | |
100 | static struct { | |
101 | enum { | |
102 | DEMOD_UNSYNCD, | |
103 | DEMOD_PHASE_REF_TRAINING, | |
104 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
105 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
106 | DEMOD_AWAITING_START_BIT, | |
107 | DEMOD_RECEIVING_DATA | |
108 | } state; | |
109 | uint16_t bitCount; | |
110 | int posCount; | |
111 | int thisBit; | |
112 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
113 | int metric; | |
114 | int metricN; | |
115 | */ | |
116 | uint16_t shiftReg; | |
117 | uint8_t *output; | |
118 | uint16_t len; | |
119 | int sumI; | |
120 | int sumQ; | |
121 | uint32_t startTime, endTime; | |
122 | } Demod; | |
123 | ||
124 | // Clear out the state of the "UART" that receives from the tag. | |
125 | static void DemodReset() { | |
126 | Demod.state = DEMOD_UNSYNCD; | |
127 | Demod.bitCount = 0; | |
128 | Demod.posCount = 0; | |
129 | Demod.thisBit = 0; | |
130 | Demod.shiftReg = 0; | |
131 | Demod.len = 0; | |
132 | Demod.sumI = 0; | |
133 | Demod.sumQ = 0; | |
134 | Demod.startTime = 0; | |
135 | Demod.endTime = 0; | |
136 | } | |
137 | ||
138 | static void DemodInit(uint8_t *data) { | |
139 | Demod.output = data; | |
140 | DemodReset(); | |
141 | // memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
142 | } | |
143 | ||
144 | ||
145 | /* | |
146 | * 9.4395 us = 1 ETU and clock is about 1.5 us | |
147 | * 13560000Hz | |
148 | * 1000ms/s | |
149 | * timeout in ETUs (time to transfer 1 bit, 9.4395 us) | |
150 | * | |
151 | * Formula to calculate FWT (in ETUs) by timeout (in ms): | |
152 | * fwt = 13560000 * 1000 / (8*16) * timeout; | |
153 | * Sample: 3sec == 3000ms | |
154 | * 13560000 * 1000 / (8*16) * 3000 == | |
155 | * 13560000000 / 384000 = 35312 FWT | |
156 | * @param timeout is in frame wait time, fwt, measured in ETUs | |
157 | */ | |
158 | static void iso14b_set_timeout(uint32_t timeout) { | |
159 | #define MAX_TIMEOUT 40542464 // 13560000Hz * 1000ms / (2^32-1) * (8*16) | |
160 | if(timeout > MAX_TIMEOUT) | |
161 | timeout = MAX_TIMEOUT; | |
162 | ||
163 | iso14b_timeout = timeout; | |
164 | if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout); | |
165 | } | |
166 | static void iso14b_set_maxframesize(uint16_t size) { | |
167 | if (size > 256) | |
168 | size = MAX_FRAME_SIZE; | |
169 | ||
170 | Uart.byteCntMax = size; | |
171 | if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443B Max frame size set to %d bytes", Uart.byteCntMax); | |
172 | } | |
173 | static void switch_off(void){ | |
174 | if (MF_DBGLEVEL > 3) Dbprintf("switch_off"); | |
175 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
176 | SpinDelay(100); | |
177 | FpgaDisableSscDma(); | |
178 | set_tracing(FALSE); | |
179 | LEDsoff(); | |
180 | } | |
181 | ||
182 | void AppendCrc14443b(uint8_t* data, int len) { | |
183 | ComputeCrc14443(CRC_14443_B, data, len, data+len, data+len+1); | |
184 | } | |
185 | ||
186 | //----------------------------------------------------------------------------- | |
187 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
188 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
189 | // them yet, just leaves them ready to send in ToSend[]. | |
190 | //----------------------------------------------------------------------------- | |
191 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) { | |
192 | /* ISO 14443 B | |
193 | * | |
194 | * Reader to card | ASK - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig) | |
195 | * Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B) | |
196 | * | |
197 | * fc - carrier frequency 13.56mHz | |
198 | * TR0 - Guard Time per 14443-2 | |
199 | * TR1 - Synchronization Time per 14443-2 | |
200 | * TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1) | |
201 | * | |
202 | * Elementary Time Unit (ETU) is | |
203 | * - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units | |
204 | * - 1 ETU = 1 bit | |
205 | * - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length) | |
206 | * - startbit is a 0 | |
207 | * - stopbit is a 1 | |
208 | * | |
209 | * Start of frame (SOF) is | |
210 | * - [10-11] ETU of ZEROS, unmodulated time | |
211 | * - [2-3] ETU of ONES, | |
212 | * | |
213 | * End of frame (EOF) is | |
214 | * - [10-11] ETU of ZEROS, unmodulated time | |
215 | * | |
216 | * -TO VERIFY THIS BELOW- | |
217 | * The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag | |
218 | * works like this: | |
219 | * - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (9.44µS) | |
220 | * - A 0-bit input to the FPGA becomes an unmodulated time of 9.44µS | |
221 | * | |
222 | * | |
223 | * | |
224 | * Card sends data ub 847.e kHz subcarrier | |
225 | * 848k = 9.44µS = 128 fc | |
226 | * 424k = 18.88µS = 256 fc | |
227 | * 212k = 37.76µS = 512 fc | |
228 | * 106k = 75.52µS = 1024 fc | |
229 | * | |
230 | * Reader data transmission: | |
231 | * - no modulation ONES | |
232 | * - SOF | |
233 | * - Command, data and CRC_B | |
234 | * - EOF | |
235 | * - no modulation ONES | |
236 | * | |
237 | * Card data transmission | |
238 | * - TR1 | |
239 | * - SOF | |
240 | * - data (each bytes is: 1startbit, 8bits, 1stopbit) | |
241 | * - CRC_B | |
242 | * - EOF | |
243 | * | |
244 | * FPGA implementation : | |
245 | * At this point only Type A is implemented. This means that we are using a | |
246 | * bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make | |
247 | * things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s) | |
248 | * | |
249 | */ | |
250 | ||
251 | int i,j; | |
252 | uint8_t b; | |
253 | ||
254 | ToSendReset(); | |
255 | ||
256 | // Transmit a burst of ones, as the initial thing that lets the | |
257 | // reader get phase sync. | |
258 | // This loop is TR1, per specification | |
259 | // TR1 minimum must be > 80/fs | |
260 | // TR1 maximum 200/fs | |
261 | // 80/fs < TR1 < 200/fs | |
262 | // 10 ETU < TR1 < 24 ETU | |
263 | ||
264 | // Send SOF. | |
265 | // 10-11 ETU * 4times samples ZEROS | |
266 | for(i = 0; i < 10; i++) { SEND4STUFFBIT(0); } | |
267 | //for(i = 0; i < 10; i++) { ToSendStuffBit(0); } | |
268 | ||
269 | // 2-3 ETU * 4times samples ONES | |
270 | for(i = 0; i < 3; i++) { SEND4STUFFBIT(1); } | |
271 | //for(i = 0; i < 3; i++) { ToSendStuffBit(1); } | |
272 | ||
273 | // data | |
274 | for(i = 0; i < len; ++i) { | |
275 | ||
276 | // Start bit | |
277 | SEND4STUFFBIT(0); | |
278 | //ToSendStuffBit(0); | |
279 | ||
280 | // Data bits | |
281 | b = cmd[i]; | |
282 | for(j = 0; j < 8; ++j) { | |
283 | // if(b & 1) { | |
284 | // SEND4STUFFBIT(1); | |
285 | // //ToSendStuffBit(1); | |
286 | // } else { | |
287 | // SEND4STUFFBIT(0); | |
288 | // //ToSendStuffBit(0); | |
289 | // } | |
290 | SEND4STUFFBIT( b & 1 ); | |
291 | b >>= 1; | |
292 | } | |
293 | ||
294 | // Stop bit | |
295 | SEND4STUFFBIT(1); | |
296 | //ToSendStuffBit(1); | |
297 | ||
298 | // Extra Guard bit | |
299 | // For PICC it ranges 0-18us (1etu = 9us) | |
300 | SEND4STUFFBIT(1); | |
301 | //ToSendStuffBit(1); | |
302 | } | |
303 | ||
304 | // Send EOF. | |
305 | // 10-11 ETU * 4 sample rate = ZEROS | |
306 | for(i = 0; i < 10; i++) { SEND4STUFFBIT(0); } | |
307 | //for(i = 0; i < 10; i++) { ToSendStuffBit(0); } | |
308 | ||
309 | // why this? | |
310 | for(i = 0; i < 40; i++) { SEND4STUFFBIT(1); } | |
311 | //for(i = 0; i < 40; i++) { ToSendStuffBit(1); } | |
312 | ||
313 | // Convert from last byte pos to length | |
314 | ++ToSendMax; | |
315 | } | |
316 | ||
317 | ||
318 | /* Receive & handle a bit coming from the reader. | |
319 | * | |
320 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
321 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
322 | * | |
323 | * LED handling: | |
324 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
325 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
326 | * | |
327 | * Returns: true if we received a EOF | |
328 | * false if we are still waiting for some more | |
329 | */ | |
330 | static RAMFUNC int Handle14443bReaderUartBit(uint8_t bit) { | |
331 | switch (Uart.state) { | |
332 | case STATE_UNSYNCD: | |
333 | if (!bit) { | |
334 | // we went low, so this could be the beginning of an SOF | |
335 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
336 | Uart.posCnt = 0; | |
337 | Uart.bitCnt = 0; | |
338 | } | |
339 | break; | |
340 | ||
341 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
342 | Uart.posCnt++; | |
343 | if (Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
344 | if (bit) { | |
345 | if (Uart.bitCnt > 9) { | |
346 | // we've seen enough consecutive | |
347 | // zeros that it's a valid SOF | |
348 | Uart.posCnt = 0; | |
349 | Uart.byteCnt = 0; | |
350 | Uart.state = STATE_AWAITING_START_BIT; | |
351 | LED_A_ON(); // Indicate we got a valid SOF | |
352 | } else { | |
353 | // didn't stay down long enough before going high, error | |
354 | Uart.state = STATE_UNSYNCD; | |
355 | } | |
356 | } else { | |
357 | // do nothing, keep waiting | |
358 | } | |
359 | Uart.bitCnt++; | |
360 | } | |
361 | if (Uart.posCnt >= 4) Uart.posCnt = 0; | |
362 | if (Uart.bitCnt > 12) { | |
363 | // Give up if we see too many zeros without a one, too. | |
364 | LED_A_OFF(); | |
365 | Uart.state = STATE_UNSYNCD; | |
366 | } | |
367 | break; | |
368 | ||
369 | case STATE_AWAITING_START_BIT: | |
370 | Uart.posCnt++; | |
371 | if (bit) { | |
372 | if (Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
373 | // stayed high for too long between characters, error | |
374 | Uart.state = STATE_UNSYNCD; | |
375 | } | |
376 | } else { | |
377 | // falling edge, this starts the data byte | |
378 | Uart.posCnt = 0; | |
379 | Uart.bitCnt = 0; | |
380 | Uart.shiftReg = 0; | |
381 | Uart.state = STATE_RECEIVING_DATA; | |
382 | } | |
383 | break; | |
384 | ||
385 | case STATE_RECEIVING_DATA: | |
386 | Uart.posCnt++; | |
387 | if (Uart.posCnt == 2) { | |
388 | // time to sample a bit | |
389 | Uart.shiftReg >>= 1; | |
390 | if (bit) { | |
391 | Uart.shiftReg |= 0x200; | |
392 | } | |
393 | Uart.bitCnt++; | |
394 | } | |
395 | if (Uart.posCnt >= 4) { | |
396 | Uart.posCnt = 0; | |
397 | } | |
398 | if (Uart.bitCnt == 10) { | |
399 | if ((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
400 | { | |
401 | // this is a data byte, with correct | |
402 | // start and stop bits | |
403 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
404 | Uart.byteCnt++; | |
405 | ||
406 | if (Uart.byteCnt >= Uart.byteCntMax) { | |
407 | // Buffer overflowed, give up | |
408 | LED_A_OFF(); | |
409 | Uart.state = STATE_UNSYNCD; | |
410 | } else { | |
411 | // so get the next byte now | |
412 | Uart.posCnt = 0; | |
413 | Uart.state = STATE_AWAITING_START_BIT; | |
414 | } | |
415 | } else if (Uart.shiftReg == 0x000) { | |
416 | // this is an EOF byte | |
417 | LED_A_OFF(); // Finished receiving | |
418 | Uart.state = STATE_UNSYNCD; | |
419 | if (Uart.byteCnt != 0) | |
420 | return TRUE; | |
421 | ||
422 | } else { | |
423 | // this is an error | |
424 | LED_A_OFF(); | |
425 | Uart.state = STATE_UNSYNCD; | |
426 | } | |
427 | } | |
428 | break; | |
429 | ||
430 | default: | |
431 | LED_A_OFF(); | |
432 | Uart.state = STATE_UNSYNCD; | |
433 | break; | |
434 | } | |
435 | return FALSE; | |
436 | } | |
437 | ||
438 | //----------------------------------------------------------------------------- | |
439 | // Receive a command (from the reader to us, where we are the simulated tag), | |
440 | // and store it in the given buffer, up to the given maximum length. Keeps | |
441 | // spinning, waiting for a well-framed command, until either we get one | |
442 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
443 | // | |
444 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
445 | // correctly. | |
446 | //----------------------------------------------------------------------------- | |
447 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) { | |
448 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen | |
449 | // only, since we are receiving, not transmitting). | |
450 | // Signal field is off with the appropriate LED | |
451 | LED_D_OFF(); | |
452 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
453 | ||
454 | StartCountSspClk(); | |
455 | ||
456 | volatile uint8_t b = 0; | |
457 | ||
458 | // clear receiving shift register and holding register | |
459 | // What does this loop do? Is it TR1? | |
460 | for(uint8_t c = 0; c < 10;) { | |
461 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
462 | AT91C_BASE_SSC->SSC_THR = 0xFF; | |
463 | ++c; | |
464 | } | |
465 | } | |
466 | ||
467 | // Now run a `software UART' on the stream of incoming samples. | |
468 | UartInit(received); | |
469 | ||
470 | uint8_t mask; | |
471 | while( !BUTTON_PRESS() ) { | |
472 | WDT_HIT(); | |
473 | ||
474 | if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) { | |
475 | b = (uint8_t) AT91C_BASE_SSC->SSC_RHR; | |
476 | for ( mask = 0x80; mask != 0; mask >>= 1) { | |
477 | if ( Handle14443bReaderUartBit(b & mask)) { | |
478 | *len = Uart.byteCnt; | |
479 | return TRUE; | |
480 | } | |
481 | } | |
482 | } | |
483 | } | |
484 | return FALSE; | |
485 | } | |
486 | ||
487 | void ClearFpgaShiftingRegisters(void){ | |
488 | ||
489 | volatile uint8_t b; | |
490 | ||
491 | // clear receiving shift register and holding register | |
492 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {}; | |
493 | ||
494 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
495 | ||
496 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {}; | |
497 | ||
498 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
499 | ||
500 | ||
501 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) | |
502 | for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
503 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
504 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
505 | } | |
506 | ||
507 | // Clear TXRDY: | |
508 | //AT91C_BASE_SSC->SSC_THR = 0xFF; | |
509 | } | |
510 | ||
511 | void WaitForFpgaDelayQueueIsEmpty( uint16_t delay ){ | |
512 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: | |
513 | uint8_t fpga_queued_bits = delay >> 3; // twich /8 ?? >>3, | |
514 | for (uint8_t i = 0; i <= fpga_queued_bits/8 + 1; ) { | |
515 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
516 | AT91C_BASE_SSC->SSC_THR = 0xFF; | |
517 | i++; | |
518 | } | |
519 | } | |
520 | } | |
521 | ||
522 | static void TransmitFor14443b_AsTag( uint8_t *response, uint16_t len) { | |
523 | ||
524 | volatile uint32_t b; | |
525 | ||
526 | // Signal field is off with the appropriate LED | |
527 | LED_D_OFF(); | |
528 | //uint16_t fpgasendQueueDelay = 0; | |
529 | ||
530 | // Modulate BPSK | |
531 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
532 | SpinDelay(40); | |
533 | ||
534 | ClearFpgaShiftingRegisters(); | |
535 | ||
536 | FpgaSetupSsc(); | |
537 | ||
538 | // Transmit the response. | |
539 | for(uint16_t i = 0; i < len;) { | |
540 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
541 | AT91C_BASE_SSC->SSC_THR = response[++i]; | |
542 | } | |
543 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
544 | b = AT91C_BASE_SSC->SSC_RHR; | |
545 | (void)b; | |
546 | } | |
547 | } | |
548 | ||
549 | //WaitForFpgaDelayQueueIsEmpty(fpgasendQueueDelay); | |
550 | AT91C_BASE_SSC->SSC_THR = 0xFF; | |
551 | } | |
552 | //----------------------------------------------------------------------------- | |
553 | // Main loop of simulated tag: receive commands from reader, decide what | |
554 | // response to send, and send it. | |
555 | //----------------------------------------------------------------------------- | |
556 | void SimulateIso14443bTag(uint32_t pupi) { | |
557 | ||
558 | ///////////// setup device. | |
559 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
560 | ||
561 | // allocate command receive buffer | |
562 | BigBuf_free(); | |
563 | BigBuf_Clear_ext(false); | |
564 | clear_trace(); //sim | |
565 | set_tracing(TRUE); | |
566 | ||
567 | // connect Demodulated Signal to ADC: | |
568 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
569 | ||
570 | // Set up the synchronous serial port | |
571 | FpgaSetupSsc(); | |
572 | ///////////// | |
573 | ||
574 | uint16_t len, cmdsReceived = 0; | |
575 | int cardSTATE = SIM_NOFIELD; | |
576 | int vHf = 0; // in mV | |
577 | // uint32_t time_0 = 0; | |
578 | // uint32_t t2r_time = 0; | |
579 | // uint32_t r2t_time = 0; | |
580 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
581 | ||
582 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: | |
583 | // static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
584 | // ... and REQB, AFI=0, Normal Request, N=1: | |
585 | // static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB | |
586 | // ... and ATTRIB | |
587 | // static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB | |
588 | ||
589 | // ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
590 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, | |
591 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
592 | uint8_t respATQB[] = { 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, | |
593 | 0x22, 0x00, 0x21, 0x85, 0x5e, 0xd7 }; | |
594 | ||
595 | // response to HLTB and ATTRIB | |
596 | static const uint8_t respOK[] = {0x00, 0x78, 0xF0}; | |
597 | ||
598 | // ...PUPI/UID supplied from user. Adjust ATQB response accordingly | |
599 | if ( pupi > 0 ) { | |
600 | uint8_t len = sizeof(respATQB); | |
601 | num_to_bytes(pupi, 4, respATQB+1); | |
602 | ComputeCrc14443(CRC_14443_B, respATQB, 12, &respATQB[len-2], &respATQB[len-1]); | |
603 | } | |
604 | ||
605 | // prepare "ATQB" tag answer (encoded): | |
606 | CodeIso14443bAsTag(respATQB, sizeof(respATQB)); | |
607 | uint8_t *encodedATQB = BigBuf_malloc(ToSendMax); | |
608 | uint16_t encodedATQBLen = ToSendMax; | |
609 | memcpy(encodedATQB, ToSend, ToSendMax); | |
610 | ||
611 | ||
612 | // prepare "OK" tag answer (encoded): | |
613 | CodeIso14443bAsTag(respOK, sizeof(respOK)); | |
614 | uint8_t *encodedOK = BigBuf_malloc(ToSendMax); | |
615 | uint16_t encodedOKLen = ToSendMax; | |
616 | memcpy(encodedOK, ToSend, ToSendMax); | |
617 | ||
618 | // Simulation loop | |
619 | while (!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
620 | WDT_HIT(); | |
621 | ||
622 | // find reader field | |
623 | if (cardSTATE == SIM_NOFIELD) { | |
624 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
625 | if ( vHf > MF_MINFIELDV ) { | |
626 | cardSTATE = SIM_IDLE; | |
627 | LED_A_ON(); | |
628 | } | |
629 | } | |
630 | if (cardSTATE == SIM_NOFIELD) continue; | |
631 | ||
632 | // Get reader command | |
633 | if (!GetIso14443bCommandFromReader(receivedCmd, &len)) { | |
634 | Dbprintf("button pressed, received %d commands", cmdsReceived); | |
635 | break; | |
636 | } | |
637 | ||
638 | // ISO14443-B protocol states: | |
639 | // REQ or WUP request in ANY state | |
640 | // WUP in HALTED state | |
641 | if (len == 5 ) { | |
642 | if ( (receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8)== 0x8 && cardSTATE == SIM_HALTED) || | |
643 | receivedCmd[0] == ISO14443B_REQB ){ | |
644 | LogTrace(receivedCmd, len, 0, 0, NULL, TRUE); | |
645 | cardSTATE = SIM_SELECTING; | |
646 | } | |
647 | } | |
648 | ||
649 | /* | |
650 | * How should this flow go? | |
651 | * REQB or WUPB | |
652 | * send response ( waiting for Attrib) | |
653 | * ATTRIB | |
654 | * send response ( waiting for commands 7816) | |
655 | * HALT | |
656 | send halt response ( waiting for wupb ) | |
657 | */ | |
658 | ||
659 | switch (cardSTATE) { | |
660 | case SIM_NOFIELD: | |
661 | case SIM_HALTED: | |
662 | case SIM_IDLE: { | |
663 | LogTrace(receivedCmd, len, 0, 0, NULL, TRUE); | |
664 | break; | |
665 | } | |
666 | case SIM_SELECTING: { | |
667 | TransmitFor14443b_AsTag( encodedATQB, encodedATQBLen ); | |
668 | LogTrace(respATQB, sizeof(respATQB), 0, 0, NULL, FALSE); | |
669 | cardSTATE = SIM_WORK; | |
670 | break; | |
671 | } | |
672 | case SIM_HALTING: { | |
673 | TransmitFor14443b_AsTag( encodedOK, encodedOKLen ); | |
674 | LogTrace(respOK, sizeof(respOK), 0, 0, NULL, FALSE); | |
675 | cardSTATE = SIM_HALTED; | |
676 | break; | |
677 | } | |
678 | case SIM_ACKNOWLEDGE: { | |
679 | TransmitFor14443b_AsTag( encodedOK, encodedOKLen ); | |
680 | LogTrace(respOK, sizeof(respOK), 0, 0, NULL, FALSE); | |
681 | cardSTATE = SIM_IDLE; | |
682 | break; | |
683 | } | |
684 | case SIM_WORK: { | |
685 | if ( len == 7 && receivedCmd[0] == ISO14443B_HALT ) { | |
686 | cardSTATE = SIM_HALTED; | |
687 | } else if ( len == 11 && receivedCmd[0] == ISO14443B_ATTRIB ) { | |
688 | cardSTATE = SIM_ACKNOWLEDGE; | |
689 | } else { | |
690 | // Todo: | |
691 | // - SLOT MARKER | |
692 | // - ISO7816 | |
693 | // - emulate with a memory dump | |
694 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsReceived); | |
695 | ||
696 | // CRC Check | |
697 | uint8_t b1, b2; | |
698 | if (len >= 3){ // if crc exists | |
699 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
700 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) | |
701 | DbpString("+++CRC fail"); | |
702 | else | |
703 | DbpString("CRC passes"); | |
704 | } | |
705 | cardSTATE = SIM_IDLE; | |
706 | } | |
707 | break; | |
708 | } | |
709 | default: break; | |
710 | } | |
711 | ||
712 | ++cmdsReceived; | |
713 | // iceman, could add a switch to turn this on/off (if off, no logging?) | |
714 | if(cmdsReceived > 1000) { | |
715 | DbpString("14B Simulate, 1000 commands later..."); | |
716 | break; | |
717 | } | |
718 | } | |
719 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); | |
720 | switch_off(); //simulate | |
721 | } | |
722 | ||
723 | //============================================================================= | |
724 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
725 | // appropriately, and then send them to the tag. We then listen for the | |
726 | // tag's response, which we leave in the buffer to be demodulated on the | |
727 | // PC side. | |
728 | //============================================================================= | |
729 | ||
730 | /* | |
731 | * Handles reception of a bit from the tag | |
732 | * | |
733 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
734 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
735 | * | |
736 | * LED handling: | |
737 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
738 | * LED C -> OFF once we have received EOF or are unsynced | |
739 | * | |
740 | * Returns: true if we received a EOF | |
741 | * false if we are still waiting for some more | |
742 | * | |
743 | */ | |
744 | static RAMFUNC int Handle14443bTagSamplesDemod(int ci, int cq) { | |
745 | int v = 0, myI = ABS(ci), myQ = ABS(cq); | |
746 | ||
747 | // The soft decision on the bit uses an estimate of just the | |
748 | // quadrant of the reference angle, not the exact angle. | |
749 | #define MAKE_SOFT_DECISION() { \ | |
750 | if(Demod.sumI > 0) { \ | |
751 | v = ci; \ | |
752 | } else { \ | |
753 | v = -ci; \ | |
754 | } \ | |
755 | if(Demod.sumQ > 0) { \ | |
756 | v += cq; \ | |
757 | } else { \ | |
758 | v -= cq; \ | |
759 | } \ | |
760 | } | |
761 | ||
762 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq) | |
763 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
764 | #define CHECK_FOR_SUBCARRIER_old() { \ | |
765 | if(ci < 0) { \ | |
766 | if(cq < 0) { /* ci < 0, cq < 0 */ \ | |
767 | if (cq < ci) { \ | |
768 | v = -cq - (ci >> 1); \ | |
769 | } else { \ | |
770 | v = -ci - (cq >> 1); \ | |
771 | } \ | |
772 | } else { /* ci < 0, cq >= 0 */ \ | |
773 | if (cq < -ci) { \ | |
774 | v = -ci + (cq >> 1); \ | |
775 | } else { \ | |
776 | v = cq - (ci >> 1); \ | |
777 | } \ | |
778 | } \ | |
779 | } else { \ | |
780 | if(cq < 0) { /* ci >= 0, cq < 0 */ \ | |
781 | if (-cq < ci) { \ | |
782 | v = ci - (cq >> 1); \ | |
783 | } else { \ | |
784 | v = -cq + (ci >> 1); \ | |
785 | } \ | |
786 | } else { /* ci >= 0, cq >= 0 */ \ | |
787 | if (cq < ci) { \ | |
788 | v = ci + (cq >> 1); \ | |
789 | } else { \ | |
790 | v = cq + (ci >> 1); \ | |
791 | } \ | |
792 | } \ | |
793 | } \ | |
794 | } | |
795 | ||
796 | //note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow | |
797 | #define CHECK_FOR_SUBCARRIER() { \ | |
798 | v = MAX(myI, myQ) + (MIN(myI, myQ) >> 1); \ | |
799 | } | |
800 | ||
801 | switch(Demod.state) { | |
802 | case DEMOD_UNSYNCD: | |
803 | ||
804 | CHECK_FOR_SUBCARRIER(); | |
805 | ||
806 | // subcarrier detected | |
807 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
808 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
809 | Demod.sumI = ci; | |
810 | Demod.sumQ = cq; | |
811 | Demod.posCount = 1; | |
812 | } | |
813 | break; | |
814 | ||
815 | case DEMOD_PHASE_REF_TRAINING: | |
816 | if (Demod.posCount < 8) { | |
817 | ||
818 | CHECK_FOR_SUBCARRIER(); | |
819 | ||
820 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
821 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
822 | // note: synchronization time > 80 1/fs | |
823 | Demod.sumI += ci; | |
824 | Demod.sumQ += cq; | |
825 | ++Demod.posCount; | |
826 | } else { | |
827 | // subcarrier lost | |
828 | Demod.state = DEMOD_UNSYNCD; | |
829 | } | |
830 | } else { | |
831 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
832 | } | |
833 | break; | |
834 | ||
835 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
836 | ||
837 | MAKE_SOFT_DECISION(); | |
838 | ||
839 | if (v < 0) { // logic '0' detected | |
840 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
841 | Demod.posCount = 0; // start of SOF sequence | |
842 | } else { | |
843 | // maximum length of TR1 = 200 1/fs | |
844 | if(Demod.posCount > 26*2) Demod.state = DEMOD_UNSYNCD; | |
845 | } | |
846 | ++Demod.posCount; | |
847 | break; | |
848 | ||
849 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
850 | ++Demod.posCount; | |
851 | ||
852 | MAKE_SOFT_DECISION(); | |
853 | ||
854 | if (v > 0) { | |
855 | // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
856 | if (Demod.posCount < 8*2) { | |
857 | Demod.state = DEMOD_UNSYNCD; | |
858 | } else { | |
859 | LED_C_ON(); // Got SOF | |
860 | //Demod.startTime = GetCountSspClk(); | |
861 | Demod.state = DEMOD_AWAITING_START_BIT; | |
862 | Demod.posCount = 0; | |
863 | Demod.len = 0; | |
864 | } | |
865 | } else { | |
866 | // low phase of SOF too long (> 12 etu) | |
867 | if (Demod.posCount > 14*2) { | |
868 | Demod.state = DEMOD_UNSYNCD; | |
869 | LED_C_OFF(); | |
870 | } | |
871 | } | |
872 | break; | |
873 | ||
874 | case DEMOD_AWAITING_START_BIT: | |
875 | ++Demod.posCount; | |
876 | ||
877 | MAKE_SOFT_DECISION(); | |
878 | ||
879 | if (v > 0) { | |
880 | if(Demod.posCount > 2*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
881 | Demod.state = DEMOD_UNSYNCD; | |
882 | LED_C_OFF(); | |
883 | } | |
884 | } else { // start bit detected | |
885 | Demod.bitCount = 0; | |
886 | Demod.posCount = 1; // this was the first half | |
887 | Demod.thisBit = v; | |
888 | Demod.shiftReg = 0; | |
889 | Demod.state = DEMOD_RECEIVING_DATA; | |
890 | } | |
891 | break; | |
892 | ||
893 | case DEMOD_RECEIVING_DATA: | |
894 | ||
895 | MAKE_SOFT_DECISION(); | |
896 | ||
897 | if (Demod.posCount == 0) { | |
898 | // first half of bit | |
899 | Demod.thisBit = v; | |
900 | Demod.posCount = 1; | |
901 | } else { | |
902 | // second half of bit | |
903 | Demod.thisBit += v; | |
904 | Demod.shiftReg >>= 1; | |
905 | ||
906 | // OR in a logic '1' | |
907 | if (Demod.thisBit > 0) Demod.shiftReg |= 0x200; | |
908 | ||
909 | ++Demod.bitCount; | |
910 | ||
911 | // 1 start 8 data 1 stop = 10 | |
912 | if (Demod.bitCount == 10) { | |
913 | ||
914 | uint16_t s = Demod.shiftReg; | |
915 | ||
916 | // stop bit == '1', start bit == '0' | |
917 | if ((s & 0x200) && (s & 0x001) == 0 ) { | |
918 | // left shift to drop the startbit | |
919 | Demod.output[Demod.len] = (s >> 1) & 0xFF; | |
920 | ++Demod.len; | |
921 | Demod.state = DEMOD_AWAITING_START_BIT; | |
922 | } else { | |
923 | // this one is a bit hard, either its a correc byte or its unsynced. | |
924 | Demod.state = DEMOD_UNSYNCD; | |
925 | //Demod.endTime = GetCountSspClk(); | |
926 | LED_C_OFF(); | |
927 | ||
928 | // This is EOF (start, stop and all data bits == '0' | |
929 | if (s == 0) return TRUE; | |
930 | } | |
931 | } | |
932 | Demod.posCount = 0; | |
933 | } | |
934 | break; | |
935 | ||
936 | default: | |
937 | Demod.state = DEMOD_UNSYNCD; | |
938 | LED_C_OFF(); | |
939 | break; | |
940 | } | |
941 | return FALSE; | |
942 | } | |
943 | ||
944 | ||
945 | /* | |
946 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
947 | * quiet: set to 'TRUE' to disable debug output | |
948 | */ | |
949 | static void GetTagSamplesFor14443bDemod() { | |
950 | bool gotFrame = FALSE, finished = FALSE; | |
951 | int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
952 | int ci = 0, cq = 0; | |
953 | uint32_t time_0 = 0, time_stop = 0; | |
954 | ||
955 | BigBuf_free(); | |
956 | ||
957 | // Set up the demodulator for tag -> reader responses. | |
958 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
959 | ||
960 | // The DMA buffer, used to stream samples from the FPGA | |
961 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
962 | int8_t *upTo = dmaBuf; | |
963 | ||
964 | // Setup and start DMA. | |
965 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE) ){ | |
966 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
967 | return; | |
968 | } | |
969 | ||
970 | // And put the FPGA in the appropriate mode | |
971 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
972 | ||
973 | // get current clock | |
974 | time_0 = GetCountSspClk(); | |
975 | ||
976 | // rx counter - dma counter? (how much?) & (mod) mask > 2. (since 2bytes at the time is read) | |
977 | while ( !finished ) { | |
978 | ||
979 | LED_A_INV(); | |
980 | WDT_HIT(); | |
981 | ||
982 | // LSB is a fpga signal bit. | |
983 | ci = upTo[0] >> 1; | |
984 | cq = upTo[1] >> 1; | |
985 | upTo += 2; | |
986 | lastRxCounter -= 2; | |
987 | ||
988 | // restart DMA buffer to receive again. | |
989 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
990 | upTo = dmaBuf; | |
991 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
992 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
993 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
994 | } | |
995 | ||
996 | // https://github.com/Proxmark/proxmark3/issues/103 | |
997 | gotFrame = Handle14443bTagSamplesDemod(ci, cq); | |
998 | time_stop = GetCountSspClk() - time_0; | |
999 | ||
1000 | finished = (time_stop > iso14b_timeout || gotFrame); | |
1001 | } | |
1002 | ||
1003 | FpgaDisableSscDma(); | |
1004 | ||
1005 | if ( upTo ) upTo = NULL; | |
1006 | ||
1007 | if (MF_DBGLEVEL >= 3) { | |
1008 | Dbprintf("Demod.state = %d, Demod.len = %u, PDC_RCR = %u", | |
1009 | Demod.state, | |
1010 | Demod.len, | |
1011 | AT91C_BASE_PDC_SSC->PDC_RCR | |
1012 | ); | |
1013 | } | |
1014 | ||
1015 | // print the last batch of IQ values from FPGA | |
1016 | if (MF_DBGLEVEL == 4) | |
1017 | Dbhexdump(ISO14443B_DMA_BUFFER_SIZE, (uint8_t *)dmaBuf, FALSE); | |
1018 | ||
1019 | if ( Demod.len > 0 ) | |
1020 | LogTrace(Demod.output, Demod.len, time_0, time_stop, NULL, FALSE); | |
1021 | } | |
1022 | ||
1023 | ||
1024 | //----------------------------------------------------------------------------- | |
1025 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1026 | //----------------------------------------------------------------------------- | |
1027 | static void TransmitFor14443b_AsReader(void) { | |
1028 | ||
1029 | // we could been in following mode: | |
1030 | // FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | |
1031 | // if its second call or more | |
1032 | ||
1033 | // while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1034 | // AT91C_BASE_SSC->SSC_THR = 0XFF; | |
1035 | // } | |
1036 | ||
1037 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1038 | SpinDelay(40); | |
1039 | ||
1040 | int c; | |
1041 | volatile uint32_t b; | |
1042 | ||
1043 | // What does this loop do? Is it TR1? | |
1044 | // 0xFF = 8 bits of 1. 1 bit == 1Etu,.. | |
1045 | // loop 10 * 8 = 80 ETU of delay, with a non modulated signal. why? | |
1046 | // 80*9 = 720us. | |
1047 | for(c = 0; c < 50;) { | |
1048 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1049 | AT91C_BASE_SSC->SSC_THR = 0xFF; | |
1050 | ++c; | |
1051 | } | |
1052 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1053 | b = AT91C_BASE_SSC->SSC_RHR; | |
1054 | (void)b; | |
1055 | } | |
1056 | } | |
1057 | ||
1058 | // Send frame loop | |
1059 | for(c = 0; c < ToSendMax;) { | |
1060 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1061 | AT91C_BASE_SSC->SSC_THR = ToSend[c++]; | |
1062 | } | |
1063 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1064 | b = AT91C_BASE_SSC->SSC_RHR; | |
1065 | (void)b; | |
1066 | } | |
1067 | } | |
1068 | //WaitForFpgaDelayQueueIsEmpty(delay); | |
1069 | // We should wait here for the FPGA to send all bits. | |
1070 | WDT_HIT(); | |
1071 | } | |
1072 | ||
1073 | //----------------------------------------------------------------------------- | |
1074 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
1075 | // so that it is ready to transmit to the tag using TransmitFor14443b(). | |
1076 | //----------------------------------------------------------------------------- | |
1077 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) { | |
1078 | /* | |
1079 | * Reader data transmission: | |
1080 | * - no modulation ONES | |
1081 | * - SOF | |
1082 | * - Command, data and CRC_B | |
1083 | * - EOF | |
1084 | * - no modulation ONES | |
1085 | * | |
1086 | * 1 ETU == 1 BIT! | |
1087 | * TR0 - 8 ETUS minimum. | |
1088 | * | |
1089 | * QUESTION: how long is a 1 or 0 in pulses in the xcorr_848 mode? | |
1090 | * 1 "stuffbit" = 1ETU (9us) | |
1091 | */ | |
1092 | int i; | |
1093 | uint8_t b; | |
1094 | ||
1095 | ToSendReset(); | |
1096 | ||
1097 | // Send SOF | |
1098 | // 10-11 ETUs of ZERO | |
1099 | for(i = 0; i < 10; ++i) ToSendStuffBit(0); | |
1100 | ||
1101 | // 2-3 ETUs of ONE | |
1102 | ToSendStuffBit(1); | |
1103 | ToSendStuffBit(1); | |
1104 | ToSendStuffBit(1); | |
1105 | ||
1106 | // Sending cmd, LSB | |
1107 | // from here we add BITS | |
1108 | for(i = 0; i < len; ++i) { | |
1109 | // Start bit | |
1110 | ToSendStuffBit(0); | |
1111 | // Data bits | |
1112 | b = cmd[i]; | |
1113 | // if ( b & 1 ) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1114 | // if ( (b>>1) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1115 | // if ( (b>>2) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1116 | // if ( (b>>3) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1117 | // if ( (b>>4) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1118 | // if ( (b>>5) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1119 | // if ( (b>>6) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1120 | // if ( (b>>7) & 1) ToSendStuffBit(1); else ToSendStuffBit(0); | |
1121 | ||
1122 | ToSendStuffBit( b & 1); | |
1123 | ToSendStuffBit( (b>>1) & 1); | |
1124 | ToSendStuffBit( (b>>2) & 1); | |
1125 | ToSendStuffBit( (b>>3) & 1); | |
1126 | ToSendStuffBit( (b>>4) & 1); | |
1127 | ToSendStuffBit( (b>>5) & 1); | |
1128 | ToSendStuffBit( (b>>6) & 1); | |
1129 | ToSendStuffBit( (b>>7) & 1); | |
1130 | ||
1131 | // Stop bit | |
1132 | ToSendStuffBit(1); | |
1133 | // EGT extra guard time | |
1134 | // For PCD it ranges 0-57us (1etu = 9us) | |
1135 | ToSendStuffBit(1); | |
1136 | ToSendStuffBit(1); | |
1137 | ToSendStuffBit(1); | |
1138 | } | |
1139 | ||
1140 | // Send EOF | |
1141 | // 10-11 ETUs of ZERO | |
1142 | for(i = 0; i < 10; ++i) ToSendStuffBit(0); | |
1143 | ||
1144 | // Transition time. TR0 - guard time | |
1145 | // 8ETUS minum? | |
1146 | // Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF. | |
1147 | // I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode | |
1148 | for(i = 0; i < 32 ; ++i) ToSendStuffBit(1); | |
1149 | ||
1150 | // TR1 - Synchronization time | |
1151 | // Convert from last character reference to length | |
1152 | ++ToSendMax; | |
1153 | } | |
1154 | ||
1155 | ||
1156 | /* | |
1157 | * Convenience function to encode, transmit and trace iso 14443b comms | |
1158 | */ | |
1159 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) { | |
1160 | ||
1161 | uint32_t time_start = GetCountSspClk(); | |
1162 | ||
1163 | CodeIso14443bAsReader(cmd, len); | |
1164 | ||
1165 | TransmitFor14443b_AsReader(); | |
1166 | ||
1167 | if(trigger) LED_A_ON(); | |
1168 | ||
1169 | LogTrace(cmd, len, time_start, GetCountSspClk()-time_start, NULL, TRUE); | |
1170 | } | |
1171 | ||
1172 | /* Sends an APDU to the tag | |
1173 | * TODO: check CRC and preamble | |
1174 | */ | |
1175 | uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) | |
1176 | { | |
1177 | uint8_t crc[2] = {0x00, 0x00}; | |
1178 | uint8_t message_frame[message_length + 4]; | |
1179 | // PCB | |
1180 | message_frame[0] = 0x0A | pcb_blocknum; | |
1181 | pcb_blocknum ^= 1; | |
1182 | // CID | |
1183 | message_frame[1] = 0; | |
1184 | // INF | |
1185 | memcpy(message_frame + 2, message, message_length); | |
1186 | // EDC (CRC) | |
1187 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
1188 | // send | |
1189 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); //no | |
1190 | // get response | |
1191 | GetTagSamplesFor14443bDemod(); //no | |
1192 | if(Demod.len < 3) | |
1193 | return 0; | |
1194 | ||
1195 | // VALIDATE CRC | |
1196 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1197 | if ( crc[0] != Demod.output[Demod.len-2] || crc[1] != Demod.output[Demod.len-1] ) | |
1198 | return 0; | |
1199 | ||
1200 | // copy response contents | |
1201 | if(response != NULL) | |
1202 | memcpy(response, Demod.output, Demod.len); | |
1203 | ||
1204 | return Demod.len; | |
1205 | } | |
1206 | ||
1207 | /** | |
1208 | * SRx Initialise. | |
1209 | */ | |
1210 | uint8_t iso14443b_select_srx_card(iso14b_card_select_t *card ) | |
1211 | { | |
1212 | // INITIATE command: wake up the tag using the INITIATE | |
1213 | static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b }; | |
1214 | // SELECT command (with space for CRC) | |
1215 | uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00}; | |
1216 | // temp to calc crc. | |
1217 | uint8_t crc[2] = {0x00, 0x00}; | |
1218 | ||
1219 | CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx)); | |
1220 | GetTagSamplesFor14443bDemod(); //no | |
1221 | ||
1222 | if (Demod.len == 0) return 2; | |
1223 | ||
1224 | // Randomly generated Chip ID | |
1225 | if (card) card->chipid = Demod.output[0]; | |
1226 | ||
1227 | select_srx[1] = Demod.output[0]; | |
1228 | ||
1229 | ComputeCrc14443(CRC_14443_B, select_srx, 2, &select_srx[2], &select_srx[3]); | |
1230 | CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx)); | |
1231 | GetTagSamplesFor14443bDemod(); //no | |
1232 | ||
1233 | if (Demod.len != 3) return 2; | |
1234 | ||
1235 | // Check the CRC of the answer: | |
1236 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2 , &crc[0], &crc[1]); | |
1237 | if(crc[0] != Demod.output[1] || crc[1] != Demod.output[2]) return 3; | |
1238 | ||
1239 | // Check response from the tag: should be the same UID as the command we just sent: | |
1240 | if (select_srx[1] != Demod.output[0]) return 1; | |
1241 | ||
1242 | // First get the tag's UID: | |
1243 | select_srx[0] = ISO14443B_GET_UID; | |
1244 | ||
1245 | ComputeCrc14443(CRC_14443_B, select_srx, 1 , &select_srx[1], &select_srx[2]); | |
1246 | CodeAndTransmit14443bAsReader(select_srx, 3); // Only first three bytes for this one | |
1247 | GetTagSamplesFor14443bDemod(); //no | |
1248 | ||
1249 | if (Demod.len != 10) return 2; | |
1250 | ||
1251 | // The check the CRC of the answer | |
1252 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1253 | if(crc[0] != Demod.output[8] || crc[1] != Demod.output[9]) return 3; | |
1254 | ||
1255 | if (card) { | |
1256 | card->uidlen = 8; | |
1257 | memcpy(card->uid, Demod.output, 8); | |
1258 | } | |
1259 | ||
1260 | return 0; | |
1261 | } | |
1262 | /* Perform the ISO 14443 B Card Selection procedure | |
1263 | * Currently does NOT do any collision handling. | |
1264 | * It expects 0-1 cards in the device's range. | |
1265 | * TODO: Support multiple cards (perform anticollision) | |
1266 | * TODO: Verify CRC checksums | |
1267 | */ | |
1268 | uint8_t iso14443b_select_card(iso14b_card_select_t *card ) | |
1269 | { | |
1270 | // WUPB command (including CRC) | |
1271 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
1272 | static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; | |
1273 | // ATTRIB command (with space for CRC) | |
1274 | uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; | |
1275 | ||
1276 | // temp to calc crc. | |
1277 | uint8_t crc[2] = {0x00, 0x00}; | |
1278 | ||
1279 | // first, wake up the tag | |
1280 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
1281 | GetTagSamplesFor14443bDemod(); //select_card | |
1282 | ||
1283 | // ATQB too short? | |
1284 | if (Demod.len < 14) return 2; | |
1285 | ||
1286 | // VALIDATE CRC | |
1287 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1288 | if ( crc[0] != Demod.output[12] || crc[1] != Demod.output[13] ) | |
1289 | return 3; | |
1290 | ||
1291 | if (card) { | |
1292 | card->uidlen = 4; | |
1293 | memcpy(card->uid, Demod.output+1, 4); | |
1294 | memcpy(card->atqb, Demod.output+5, 7); | |
1295 | } | |
1296 | ||
1297 | // copy the PUPI to ATTRIB ( PUPI == UID ) | |
1298 | memcpy(attrib + 1, Demod.output + 1, 4); | |
1299 | ||
1300 | // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3) | |
1301 | attrib[7] = Demod.output[10] & 0x0F; | |
1302 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
1303 | ||
1304 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); | |
1305 | GetTagSamplesFor14443bDemod();//select_card | |
1306 | ||
1307 | // Answer to ATTRIB too short? | |
1308 | if(Demod.len < 3) return 2; | |
1309 | ||
1310 | // VALIDATE CRC | |
1311 | ComputeCrc14443(CRC_14443_B, Demod.output, Demod.len-2, &crc[0], &crc[1]); | |
1312 | if ( crc[0] != Demod.output[1] || crc[1] != Demod.output[2] ) | |
1313 | return 3; | |
1314 | ||
1315 | if (card) { | |
1316 | ||
1317 | // CID | |
1318 | card->cid = Demod.output[0]; | |
1319 | ||
1320 | // MAX FRAME | |
1321 | uint16_t maxFrame = card->atqb[5] >> 4; | |
1322 | if (maxFrame < 5) maxFrame = 8 * maxFrame + 16; | |
1323 | else if (maxFrame == 5) maxFrame = 64; | |
1324 | else if (maxFrame == 6) maxFrame = 96; | |
1325 | else if (maxFrame == 7) maxFrame = 128; | |
1326 | else if (maxFrame == 8) maxFrame = 256; | |
1327 | else maxFrame = 257; | |
1328 | iso14b_set_maxframesize(maxFrame); | |
1329 | ||
1330 | // FWT | |
1331 | uint8_t fwt = card->atqb[6] >> 4; | |
1332 | if ( fwt < 16 ){ | |
1333 | uint32_t fwt_time = (302 << fwt); | |
1334 | iso14b_set_timeout( fwt_time); | |
1335 | } | |
1336 | } | |
1337 | // reset PCB block number | |
1338 | pcb_blocknum = 0; | |
1339 | return 0; | |
1340 | } | |
1341 | ||
1342 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
1343 | // field is setup for "Sending as Reader" | |
1344 | void iso14443b_setup() { | |
1345 | if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup Enter"); | |
1346 | LEDsoff(); | |
1347 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1348 | //BigBuf_free(); | |
1349 | //BigBuf_Clear_ext(false); | |
1350 | ||
1351 | // Initialize Demod and Uart structs | |
1352 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1353 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1354 | ||
1355 | // connect Demodulated Signal to ADC: | |
1356 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1357 | ||
1358 | // Set up the synchronous serial port | |
1359 | FpgaSetupSsc(); | |
1360 | ||
1361 | // Signal field is on with the appropriate LED | |
1362 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1363 | SpinDelay(100); | |
1364 | ||
1365 | // Start the timer | |
1366 | StartCountSspClk(); | |
1367 | ||
1368 | LED_D_ON(); | |
1369 | if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup Exit"); | |
1370 | } | |
1371 | ||
1372 | //----------------------------------------------------------------------------- | |
1373 | // Read a SRI512 ISO 14443B tag. | |
1374 | // | |
1375 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
1376 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
1377 | // we have a single tag in the field. | |
1378 | // | |
1379 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
1380 | //----------------------------------------------------------------------------- | |
1381 | void ReadSTMemoryIso14443b(uint8_t numofblocks) | |
1382 | { | |
1383 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1384 | ||
1385 | // Make sure that we start from off, since the tags are stateful; | |
1386 | // confusing things will happen if we don't reset them between reads. | |
1387 | switch_off(); // before ReadStMemory | |
1388 | ||
1389 | set_tracing(TRUE); | |
1390 | ||
1391 | uint8_t i = 0x00; | |
1392 | ||
1393 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1394 | FpgaSetupSsc(); | |
1395 | ||
1396 | // Now give it time to spin up. | |
1397 | // Signal field is on with the appropriate LED | |
1398 | LED_D_ON(); | |
1399 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
1400 | SpinDelay(20); | |
1401 | ||
1402 | // First command: wake up the tag using the INITIATE command | |
1403 | uint8_t cmd1[] = {ISO14443B_INITIATE, 0x00, 0x97, 0x5b}; | |
1404 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no | |
1405 | GetTagSamplesFor14443bDemod(); // no | |
1406 | ||
1407 | if (Demod.len == 0) { | |
1408 | DbpString("No response from tag"); | |
1409 | set_tracing(FALSE); | |
1410 | return; | |
1411 | } else { | |
1412 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", | |
1413 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
1414 | } | |
1415 | ||
1416 | // There is a response, SELECT the uid | |
1417 | DbpString("Now SELECT tag:"); | |
1418 | cmd1[0] = ISO14443B_SELECT; // 0x0E is SELECT | |
1419 | cmd1[1] = Demod.output[0]; | |
1420 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1421 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no | |
1422 | GetTagSamplesFor14443bDemod(); //no | |
1423 | if (Demod.len != 3) { | |
1424 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); | |
1425 | set_tracing(FALSE); | |
1426 | return; | |
1427 | } | |
1428 | // Check the CRC of the answer: | |
1429 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1430 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
1431 | DbpString("CRC Error reading select response."); | |
1432 | set_tracing(FALSE); | |
1433 | return; | |
1434 | } | |
1435 | // Check response from the tag: should be the same UID as the command we just sent: | |
1436 | if (cmd1[1] != Demod.output[0]) { | |
1437 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); | |
1438 | set_tracing(FALSE); | |
1439 | return; | |
1440 | } | |
1441 | ||
1442 | // Tag is now selected, | |
1443 | // First get the tag's UID: | |
1444 | cmd1[0] = ISO14443B_GET_UID; | |
1445 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
1446 | CodeAndTransmit14443bAsReader(cmd1, 3); // no -- Only first three bytes for this one | |
1447 | GetTagSamplesFor14443bDemod(); //no | |
1448 | if (Demod.len != 10) { | |
1449 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); | |
1450 | set_tracing(FALSE); | |
1451 | return; | |
1452 | } | |
1453 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1454 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
1455 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { | |
1456 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1457 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); | |
1458 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1459 | } | |
1460 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
1461 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], | |
1462 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
1463 | ||
1464 | // Now loop to read all 16 blocks, address from 0 to last block | |
1465 | Dbprintf("Tag memory dump, block 0 to %d", numofblocks); | |
1466 | cmd1[0] = 0x08; | |
1467 | i = 0x00; | |
1468 | ++numofblocks; | |
1469 | ||
1470 | for (;;) { | |
1471 | if (i == numofblocks) { | |
1472 | DbpString("System area block (0xff):"); | |
1473 | i = 0xff; | |
1474 | } | |
1475 | cmd1[1] = i; | |
1476 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1477 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); //no | |
1478 | GetTagSamplesFor14443bDemod(); //no | |
1479 | ||
1480 | if (Demod.len != 6) { // Check if we got an answer from the tag | |
1481 | DbpString("Expected 6 bytes from tag, got less..."); | |
1482 | return; | |
1483 | } | |
1484 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1485 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1486 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
1487 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1488 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); | |
1489 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1490 | } | |
1491 | // Now print out the memory location: | |
1492 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, | |
1493 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], | |
1494 | (Demod.output[4]<<8)+Demod.output[5]); | |
1495 | ||
1496 | if (i == 0xff) break; | |
1497 | ++i; | |
1498 | } | |
1499 | ||
1500 | set_tracing(FALSE); | |
1501 | } | |
1502 | ||
1503 | ||
1504 | static void iso1444b_setup_snoop(void){ | |
1505 | if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup_snoop Enter"); | |
1506 | LEDsoff(); | |
1507 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1508 | BigBuf_free(); | |
1509 | BigBuf_Clear_ext(false); | |
1510 | clear_trace();//setup snoop | |
1511 | set_tracing(TRUE); | |
1512 | ||
1513 | // Initialize Demod and Uart structs | |
1514 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1515 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1516 | ||
1517 | if (MF_DBGLEVEL > 1) { | |
1518 | // Print debug information about the buffer sizes | |
1519 | Dbprintf("Snooping buffers initialized:"); | |
1520 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1521 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1522 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
1523 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); | |
1524 | } | |
1525 | ||
1526 | // connect Demodulated Signal to ADC: | |
1527 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1528 | ||
1529 | // Setup for the DMA. | |
1530 | FpgaSetupSsc(); | |
1531 | ||
1532 | // Set FPGA in the appropriate mode | |
1533 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
1534 | SpinDelay(20); | |
1535 | ||
1536 | // Start the SSP timer | |
1537 | StartCountSspClk(); | |
1538 | if (MF_DBGLEVEL > 3) Dbprintf("iso1443b_setup_snoop Exit"); | |
1539 | } | |
1540 | ||
1541 | //============================================================================= | |
1542 | // Finally, the `sniffer' combines elements from both the reader and | |
1543 | // simulated tag, to show both sides of the conversation. | |
1544 | //============================================================================= | |
1545 | ||
1546 | //----------------------------------------------------------------------------- | |
1547 | // Record the sequence of commands sent by the reader to the tag, with | |
1548 | // triggering so that we start recording at the point that the tag is moved | |
1549 | // near the reader. | |
1550 | //----------------------------------------------------------------------------- | |
1551 | /* | |
1552 | * Memory usage for this function, (within BigBuf) | |
1553 | * Last Received command (reader->tag) - MAX_FRAME_SIZE | |
1554 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
1555 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE | |
1556 | * Demodulated samples received - all the rest | |
1557 | */ | |
1558 | void RAMFUNC SnoopIso14443b(void) { | |
1559 | ||
1560 | uint32_t time_0 = 0, time_start = 0, time_stop = 0; | |
1561 | int ci = 0, cq = 0; | |
1562 | int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
1563 | ||
1564 | // We won't start recording the frames that we acquire until we trigger; | |
1565 | // a good trigger condition to get started is probably when we see a | |
1566 | // response from the tag. | |
1567 | bool triggered = TRUE; // TODO: set and evaluate trigger condition | |
1568 | bool TagIsActive = FALSE; | |
1569 | bool ReaderIsActive = FALSE; | |
1570 | ||
1571 | iso1444b_setup_snoop(); | |
1572 | ||
1573 | // The DMA buffer, used to stream samples from the FPGA | |
1574 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
1575 | int8_t *upTo = dmaBuf; | |
1576 | ||
1577 | // Setup and start DMA. | |
1578 | if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE) ){ | |
1579 | if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); | |
1580 | BigBuf_free(); | |
1581 | return; | |
1582 | } | |
1583 | ||
1584 | time_0 = GetCountSspClk(); | |
1585 | ||
1586 | // And now we loop, receiving samples. | |
1587 | for(;;) { | |
1588 | ||
1589 | WDT_HIT(); | |
1590 | ||
1591 | ci = upTo[0]; | |
1592 | cq = upTo[1]; | |
1593 | upTo += 2; | |
1594 | lastRxCounter -= 2; | |
1595 | ||
1596 | if (upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
1597 | upTo = dmaBuf; | |
1598 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
1599 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
1600 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
1601 | ||
1602 | if (!tracing) { | |
1603 | if (MF_DBGLEVEL >= 2) DbpString("Trace full"); | |
1604 | break; | |
1605 | } | |
1606 | ||
1607 | if (BUTTON_PRESS()) { | |
1608 | if (MF_DBGLEVEL >= 2) DbpString("cancelled"); | |
1609 | break; | |
1610 | } | |
1611 | } | |
1612 | ||
1613 | if (!TagIsActive) { | |
1614 | ||
1615 | LED_A_ON(); | |
1616 | ||
1617 | // no need to try decoding reader data if the tag is sending | |
1618 | if (Handle14443bReaderUartBit(ci & 0x01)) { | |
1619 | ||
1620 | time_stop = GetCountSspClk() - time_0; | |
1621 | ||
1622 | if (triggered) | |
1623 | LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, TRUE); | |
1624 | ||
1625 | /* And ready to receive another command. */ | |
1626 | UartReset(); | |
1627 | /* And also reset the demod code, which might have been */ | |
1628 | /* false-triggered by the commands from the reader. */ | |
1629 | DemodReset(); | |
1630 | } else { | |
1631 | time_start = GetCountSspClk() - time_0; | |
1632 | } | |
1633 | ||
1634 | if (Handle14443bReaderUartBit(cq & 0x01)) { | |
1635 | ||
1636 | time_stop = GetCountSspClk() - time_0; | |
1637 | ||
1638 | if (triggered) | |
1639 | LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, TRUE); | |
1640 | ||
1641 | /* And ready to receive another command. */ | |
1642 | UartReset(); | |
1643 | /* And also reset the demod code, which might have been */ | |
1644 | /* false-triggered by the commands from the reader. */ | |
1645 | DemodReset(); | |
1646 | } else { | |
1647 | time_start = GetCountSspClk() - time_0; | |
1648 | } | |
1649 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); | |
1650 | LED_A_OFF(); | |
1651 | } | |
1652 | ||
1653 | if (!ReaderIsActive) { | |
1654 | // no need to try decoding tag data if the reader is sending - and we cannot afford the time | |
1655 | // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103 | |
1656 | // LSB is a fpga signal bit. | |
1657 | if (Handle14443bTagSamplesDemod(ci >> 1, cq >> 1)) { | |
1658 | ||
1659 | time_stop = GetCountSspClk() - time_0; | |
1660 | ||
1661 | LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, FALSE); | |
1662 | ||
1663 | triggered = TRUE; | |
1664 | ||
1665 | // And ready to receive another response. | |
1666 | DemodReset(); | |
1667 | } else { | |
1668 | time_start = GetCountSspClk() - time_0; | |
1669 | } | |
1670 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | switch_off(); // Snoop | |
1675 | ||
1676 | DbpString("Snoop statistics:"); | |
1677 | Dbprintf(" Uart State: %x ByteCount: %i ByteCountMax: %i", Uart.state, Uart.byteCnt, Uart.byteCntMax); | |
1678 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
1679 | ||
1680 | // free mem refs. | |
1681 | if ( upTo ) upTo = NULL; | |
1682 | ||
1683 | // Uart.byteCntMax should be set with ATQB value.. | |
1684 | } | |
1685 | ||
1686 | void iso14b_set_trigger(bool enable) { | |
1687 | trigger = enable; | |
1688 | } | |
1689 | ||
1690 | /* | |
1691 | * Send raw command to tag ISO14443B | |
1692 | * @Input | |
1693 | * param flags enum ISO14B_COMMAND. (mifare.h) | |
1694 | * len len of buffer data | |
1695 | * data buffer with bytes to send | |
1696 | * | |
1697 | * @Output | |
1698 | * none | |
1699 | * | |
1700 | */ | |
1701 | void SendRawCommand14443B_Ex(UsbCommand *c) | |
1702 | { | |
1703 | iso14b_command_t param = c->arg[0]; | |
1704 | size_t len = c->arg[1] & 0xffff; | |
1705 | uint8_t *cmd = c->d.asBytes; | |
1706 | uint8_t status = 0; | |
1707 | uint32_t sendlen = sizeof(iso14b_card_select_t); | |
1708 | uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; | |
1709 | ||
1710 | if (MF_DBGLEVEL > 3) Dbprintf("14b raw: param, %04x", param ); | |
1711 | ||
1712 | // turn on trigger (LED_A) | |
1713 | if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER) | |
1714 | iso14b_set_trigger(TRUE); | |
1715 | ||
1716 | if ((param & ISO14B_CONNECT) == ISO14B_CONNECT) { | |
1717 | // Make sure that we start from off, since the tags are stateful; | |
1718 | // confusing things will happen if we don't reset them between reads. | |
1719 | //switch_off(); // before connect in raw | |
1720 | iso14443b_setup(); | |
1721 | } | |
1722 | ||
1723 | set_tracing(TRUE); | |
1724 | ||
1725 | if ((param & ISO14B_SELECT_STD) == ISO14B_SELECT_STD) { | |
1726 | iso14b_card_select_t *card = (iso14b_card_select_t*)buf; | |
1727 | status = iso14443b_select_card(card); | |
1728 | cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen); | |
1729 | // 0: OK 2: attrib fail, 3:crc fail, | |
1730 | if ( status > 0 ) return; | |
1731 | } | |
1732 | ||
1733 | if ((param & ISO14B_SELECT_SR) == ISO14B_SELECT_SR) { | |
1734 | iso14b_card_select_t *card = (iso14b_card_select_t*)buf; | |
1735 | status = iso14443b_select_srx_card(card); | |
1736 | cmd_send(CMD_ACK, status, sendlen, 0, buf, sendlen); | |
1737 | // 0: OK 2: attrib fail, 3:crc fail, | |
1738 | if ( status > 0 ) return; | |
1739 | } | |
1740 | ||
1741 | if ((param & ISO14B_APDU) == ISO14B_APDU) { | |
1742 | status = iso14443b_apdu(cmd, len, buf); | |
1743 | cmd_send(CMD_ACK, status, status, 0, buf, status); | |
1744 | } | |
1745 | ||
1746 | if ((param & ISO14B_RAW) == ISO14B_RAW) { | |
1747 | if((param & ISO14B_APPEND_CRC) == ISO14B_APPEND_CRC) { | |
1748 | AppendCrc14443b(cmd, len); | |
1749 | len += 2; | |
1750 | } | |
1751 | ||
1752 | CodeAndTransmit14443bAsReader(cmd, len); // raw | |
1753 | GetTagSamplesFor14443bDemod(); // raw | |
1754 | ||
1755 | sendlen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1756 | status = (Demod.len > 0) ? 0 : 1; | |
1757 | cmd_send(CMD_ACK, status, sendlen, 0, Demod.output, sendlen); | |
1758 | } | |
1759 | ||
1760 | // turn off trigger (LED_A) | |
1761 | if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER) | |
1762 | iso14b_set_trigger(FALSE); | |
1763 | ||
1764 | // turn off antenna et al | |
1765 | // we don't send a HALT command. | |
1766 | if ((param & ISO14B_DISCONNECT) == ISO14B_DISCONNECT) { | |
1767 | if (MF_DBGLEVEL > 3) Dbprintf("disconnect"); | |
1768 | switch_off(); // disconnect raw | |
1769 | } else { | |
1770 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1771 | } | |
1772 | ||
1773 | } |