]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/nonce2key/crapto1.c
ADD: added the "llu" macro shortcut as format specifier.
[proxmark3-svn] / client / nonce2key / crapto1.c
... / ...
CommitLineData
1/* crapto1.c\r
2\r
3 This program is free software; you can redistribute it and/or\r
4 modify it under the terms of the GNU General Public License\r
5 as published by the Free Software Foundation; either version 2\r
6 of the License, or (at your option) any later version.\r
7\r
8 This program is distributed in the hope that it will be useful,\r
9 but WITHOUT ANY WARRANTY; without even the implied warranty of\r
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
11 GNU General Public License for more details.\r
12\r
13 You should have received a copy of the GNU General Public License\r
14 along with this program; if not, write to the Free Software\r
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
16 Boston, MA 02110-1301, US$\r
17\r
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>\r
19*/\r
20#include "crapto1.h"\r
21#include <stdlib.h>\r
22\r
23#if !defined LOWMEM && defined __GNUC__\r
24uint8_t filterlut[1 << 20];\r
25static void __attribute__((constructor)) fill_lut()\r
26{\r
27 uint32_t x;\r
28 uint32_t f;\r
29 for(x = 0; x < 1 << 20; ++x) {\r
30 f = 0xf22c0 >> (x & 0xf) & 16;\r
31 f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;\r
32 f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;\r
33 f |= 0x1e458 >> (x >> 12 & 0xf) & 2;\r
34 f |= 0x0d938 >> (x >> 16 & 0xf) & 1;\r
35 filterlut[x] = BIT(0xEC57E80A, f);\r
36 }\r
37}\r
38#endif\r
39\r
40\r
41\r
42typedef struct bucket {\r
43 uint32_t *head;\r
44 uint32_t *bp;\r
45} bucket_t;\r
46\r
47typedef bucket_t bucket_array_t[2][0x100];\r
48\r
49typedef struct bucket_info {\r
50 struct {\r
51 uint32_t *head, *tail;\r
52 } bucket_info[2][0x100];\r
53 uint32_t numbuckets;\r
54 } bucket_info_t;\r
55\r
56\r
57static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,\r
58 uint32_t* const ostart, uint32_t* const ostop,\r
59 bucket_info_t *bucket_info, bucket_array_t bucket)\r
60{\r
61 uint32_t *p1, *p2;\r
62 uint32_t *start[2];\r
63 uint32_t *stop[2];\r
64\r
65 start[0] = estart;\r
66 stop[0] = estop;\r
67 start[1] = ostart;\r
68 stop[1] = ostop;\r
69\r
70 // init buckets to be empty\r
71 for (uint32_t i = 0; i < 2; i++) {\r
72 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
73 bucket[i][j].bp = bucket[i][j].head;\r
74 }\r
75 }\r
76\r
77 // sort the lists into the buckets based on the MSB (contribution bits)\r
78 for (uint32_t i = 0; i < 2; i++) {\r
79 for (p1 = start[i]; p1 <= stop[i]; p1++) {\r
80 uint32_t bucket_index = (*p1 & 0xff000000) >> 24;\r
81 *(bucket[i][bucket_index].bp++) = *p1;\r
82 }\r
83 }\r
84\r
85\r
86 // write back intersecting buckets as sorted list.\r
87 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.\r
88 uint32_t nonempty_bucket;\r
89 for (uint32_t i = 0; i < 2; i++) {\r
90 p1 = start[i];\r
91 nonempty_bucket = 0;\r
92 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
93 if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only\r
94 bucket_info->bucket_info[i][nonempty_bucket].head = p1;\r
95 for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);\r
96 bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;\r
97 nonempty_bucket++;\r
98 }\r
99 }\r
100 bucket_info->numbuckets = nonempty_bucket;\r
101 }\r
102}\r
103\r
104/** binsearch\r
105 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
106 */\r
107static inline uint32_t*\r
108binsearch(uint32_t *start, uint32_t *stop)\r
109{\r
110 uint32_t mid, val = *stop & 0xff000000;\r
111 while(start != stop)\r
112 if(start[mid = (stop - start) >> 1] > val)\r
113 stop = &start[mid];\r
114 else\r
115 start += mid + 1;\r
116\r
117 return start;\r
118}\r
119\r
120/** update_contribution\r
121 * helper, calculates the partial linear feedback contributions and puts in MSB\r
122 */\r
123static inline void\r
124update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
125{\r
126 uint32_t p = *item >> 25;\r
127\r
128 p = p << 1 | parity(*item & mask1);\r
129 p = p << 1 | parity(*item & mask2);\r
130 *item = p << 24 | (*item & 0xffffff);\r
131}\r
132\r
133/** extend_table\r
134 * using a bit of the keystream extend the table of possible lfsr states\r
135 */\r
136static inline void\r
137extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
138{\r
139 in <<= 24;\r
140\r
141 for(uint32_t *p = tbl; p <= *end; p++) {\r
142 *p <<= 1;\r
143 if(filter(*p) != filter(*p | 1)) { // replace\r
144 *p |= filter(*p) ^ bit;\r
145 update_contribution(p, m1, m2);\r
146 *p ^= in;\r
147 } else if(filter(*p) == bit) { // insert\r
148 *++*end = p[1];\r
149 p[1] = p[0] | 1;\r
150 update_contribution(p, m1, m2);\r
151 *p++ ^= in;\r
152 update_contribution(p, m1, m2);\r
153 *p ^= in;\r
154 } else { // drop\r
155 *p-- = *(*end)--;\r
156 }\r
157 }\r
158\r
159}\r
160\r
161\r
162/** extend_table_simple\r
163 * using a bit of the keystream extend the table of possible lfsr states\r
164 */\r
165static inline void\r
166extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
167{\r
168 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
169 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace\r
170 *tbl |= filter(*tbl) ^ bit;\r
171 } else if(filter(*tbl) == bit) { // insert\r
172 *++*end = *++tbl;\r
173 *tbl = tbl[-1] | 1;\r
174 } else // drop\r
175 *tbl-- = *(*end)--;\r
176}\r
177\r
178\r
179/** recover\r
180 * recursively narrow down the search space, 4 bits of keystream at a time\r
181 */\r
182static struct Crypto1State*\r
183recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
184 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
185 struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)\r
186{\r
187 uint32_t *o, *e;\r
188 bucket_info_t bucket_info;\r
189\r
190 if(rem == -1) {\r
191 for(e = e_head; e <= e_tail; ++e) {\r
192 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
193 for(o = o_head; o <= o_tail; ++o, ++sl) {\r
194 sl->even = *o;\r
195 sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
196 }\r
197 }\r
198 sl->odd = sl->even = 0;\r
199 return sl;\r
200 }\r
201\r
202 for(uint32_t i = 0; i < 4 && rem--; i++) {\r
203 extend_table(o_head, &o_tail, (oks >>= 1) & 1,\r
204 LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);\r
205 if(o_head > o_tail)\r
206 return sl;\r
207\r
208 extend_table(e_head, &e_tail, (eks >>= 1) & 1,\r
209 LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);\r
210 if(e_head > e_tail)\r
211 return sl;\r
212 }\r
213\r
214 bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);\r
215\r
216 for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {\r
217 sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,\r
218 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,\r
219 rem, sl, in, bucket);\r
220 }\r
221\r
222 return sl;\r
223}\r
224/** lfsr_recovery\r
225 * recover the state of the lfsr given 32 bits of the keystream\r
226 * additionally you can use the in parameter to specify the value\r
227 * that was fed into the lfsr at the time the keystream was generated\r
228 */\r
229struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
230{\r
231 struct Crypto1State *statelist;\r
232 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
233 uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
234 int i;\r
235\r
236 // split the keystream into an odd and even part\r
237 for(i = 31; i >= 0; i -= 2)\r
238 oks = oks << 1 | BEBIT(ks2, i);\r
239 for(i = 30; i >= 0; i -= 2)\r
240 eks = eks << 1 | BEBIT(ks2, i);\r
241\r
242 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
243 even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
244 statelist = malloc(sizeof(struct Crypto1State) << 18);\r
245 if(!odd_tail-- || !even_tail-- || !statelist) {\r
246 goto out;\r
247 }\r
248 statelist->odd = statelist->even = 0;\r
249\r
250 // allocate memory for out of place bucket_sort\r
251 bucket_array_t bucket;\r
252 for (uint32_t i = 0; i < 2; i++)\r
253 for (uint32_t j = 0; j <= 0xff; j++) {\r
254 bucket[i][j].head = malloc(sizeof(uint32_t)<<14);\r
255 if (!bucket[i][j].head) {\r
256 goto out;\r
257 }\r
258 }\r
259\r
260 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream\r
261 for(i = 1 << 20; i >= 0; --i) {\r
262 if(filter(i) == (oks & 1))\r
263 *++odd_tail = i;\r
264 if(filter(i) == (eks & 1))\r
265 *++even_tail = i;\r
266 }\r
267\r
268 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):\r
269 for(i = 0; i < 4; i++) {\r
270 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
271 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
272 }\r
273\r
274 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.\r
275 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"\r
276 // parameter into account.\r
277\r
278 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping\r
279\r
280 recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);\r
281\r
282out:\r
283 free(odd_head);\r
284 free(even_head);\r
285 for (uint32_t i = 0; i < 2; i++)\r
286 for (uint32_t j = 0; j <= 0xff; j++)\r
287 free(bucket[i][j].head);\r
288\r
289 return statelist;\r
290}\r
291\r
292static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
293 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
294 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
295static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
296 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
297 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
298 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
299static const uint32_t T1[] = {\r
300 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
301 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
302 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
303 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
304static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
305 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
306 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
307 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
308 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
309 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
310static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
311static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
312/** Reverse 64 bits of keystream into possible cipher states\r
313 * Variation mentioned in the paper. Somewhat optimized version\r
314 */\r
315struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
316{\r
317 struct Crypto1State *statelist, *sl;\r
318 uint8_t oks[32], eks[32], hi[32];\r
319 uint32_t low = 0, win = 0;\r
320 uint32_t *tail, table[1 << 16];\r
321 int i, j;\r
322\r
323 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
324 if(!sl)\r
325 return 0;\r
326 sl->odd = sl->even = 0;\r
327\r
328 for(i = 30; i >= 0; i -= 2) {\r
329 oks[i >> 1] = BIT(ks2, i ^ 24);\r
330 oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
331 }\r
332 for(i = 31; i >= 0; i -= 2) {\r
333 eks[i >> 1] = BIT(ks2, i ^ 24);\r
334 eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
335 }\r
336\r
337 for(i = 0xfffff; i >= 0; --i) {\r
338 if (filter(i) != oks[0])\r
339 continue;\r
340\r
341 *(tail = table) = i;\r
342 for(j = 1; tail >= table && j < 29; ++j)\r
343 extend_table_simple(table, &tail, oks[j]);\r
344\r
345 if(tail < table)\r
346 continue;\r
347\r
348 for(j = 0; j < 19; ++j)\r
349 low = low << 1 | parity(i & S1[j]);\r
350 for(j = 0; j < 32; ++j)\r
351 hi[j] = parity(i & T1[j]);\r
352\r
353 for(; tail >= table; --tail) {\r
354 for(j = 0; j < 3; ++j) {\r
355 *tail = *tail << 1;\r
356 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
357 if(filter(*tail) != oks[29 + j])\r
358 goto continue2;\r
359 }\r
360\r
361 for(j = 0; j < 19; ++j)\r
362 win = win << 1 | parity(*tail & S2[j]);\r
363\r
364 win ^= low;\r
365 for(j = 0; j < 32; ++j) {\r
366 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
367 if(filter(win) != eks[j])\r
368 goto continue2;\r
369 }\r
370\r
371 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
372 sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
373 sl->even = win;\r
374 ++sl;\r
375 sl->odd = sl->even = 0;\r
376 continue2:;\r
377 }\r
378 }\r
379 return statelist;\r
380}\r
381\r
382/** lfsr_rollback_bit\r
383 * Rollback the shift register in order to get previous states\r
384 */\r
385void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
386{\r
387 int out;\r
388 uint32_t tmp;\r
389\r
390 s->odd &= 0xffffff;\r
391 tmp = s->odd;\r
392 s->odd = s->even;\r
393 s->even = tmp;\r
394\r
395 out = s->even & 1;\r
396 out ^= LF_POLY_EVEN & (s->even >>= 1);\r
397 out ^= LF_POLY_ODD & s->odd;\r
398 out ^= !!in;\r
399 out ^= filter(s->odd) & !!fb;\r
400\r
401 s->even |= parity(out) << 23;\r
402}\r
403/** lfsr_rollback_byte\r
404 * Rollback the shift register in order to get previous states\r
405 */\r
406void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
407{\r
408/* int i;\r
409 for (i = 7; i >= 0; --i)\r
410 lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
411*/\r
412// unfold loop 20160112\r
413 lfsr_rollback_bit(s, BEBIT(in, 7), fb);\r
414 lfsr_rollback_bit(s, BEBIT(in, 6), fb);\r
415 lfsr_rollback_bit(s, BEBIT(in, 5), fb);\r
416 lfsr_rollback_bit(s, BEBIT(in, 4), fb);\r
417 lfsr_rollback_bit(s, BEBIT(in, 3), fb);\r
418 lfsr_rollback_bit(s, BEBIT(in, 2), fb);\r
419 lfsr_rollback_bit(s, BEBIT(in, 1), fb);\r
420 lfsr_rollback_bit(s, BEBIT(in, 0), fb);\r
421}\r
422/** lfsr_rollback_word\r
423 * Rollback the shift register in order to get previous states\r
424 */\r
425void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
426{\r
427/*\r
428 int i;\r
429 for (i = 31; i >= 0; --i)\r
430 lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
431*/\r
432// unfold loop 20160112\r
433 lfsr_rollback_bit(s, BEBIT(in, 31), fb);\r
434 lfsr_rollback_bit(s, BEBIT(in, 30), fb);\r
435 lfsr_rollback_bit(s, BEBIT(in, 29), fb);\r
436 lfsr_rollback_bit(s, BEBIT(in, 28), fb);\r
437 lfsr_rollback_bit(s, BEBIT(in, 27), fb);\r
438 lfsr_rollback_bit(s, BEBIT(in, 26), fb);\r
439 lfsr_rollback_bit(s, BEBIT(in, 25), fb);\r
440 lfsr_rollback_bit(s, BEBIT(in, 24), fb);\r
441\r
442 lfsr_rollback_bit(s, BEBIT(in, 23), fb);\r
443 lfsr_rollback_bit(s, BEBIT(in, 22), fb);\r
444 lfsr_rollback_bit(s, BEBIT(in, 21), fb);\r
445 lfsr_rollback_bit(s, BEBIT(in, 20), fb);\r
446 lfsr_rollback_bit(s, BEBIT(in, 19), fb);\r
447 lfsr_rollback_bit(s, BEBIT(in, 18), fb);\r
448 lfsr_rollback_bit(s, BEBIT(in, 17), fb);\r
449 lfsr_rollback_bit(s, BEBIT(in, 16), fb);\r
450\r
451 lfsr_rollback_bit(s, BEBIT(in, 15), fb);\r
452 lfsr_rollback_bit(s, BEBIT(in, 14), fb);\r
453 lfsr_rollback_bit(s, BEBIT(in, 13), fb);\r
454 lfsr_rollback_bit(s, BEBIT(in, 12), fb);\r
455 lfsr_rollback_bit(s, BEBIT(in, 11), fb);\r
456 lfsr_rollback_bit(s, BEBIT(in, 10), fb);\r
457 lfsr_rollback_bit(s, BEBIT(in, 9), fb);\r
458 lfsr_rollback_bit(s, BEBIT(in, 8), fb);\r
459\r
460 lfsr_rollback_bit(s, BEBIT(in, 7), fb);\r
461 lfsr_rollback_bit(s, BEBIT(in, 6), fb);\r
462 lfsr_rollback_bit(s, BEBIT(in, 5), fb);\r
463 lfsr_rollback_bit(s, BEBIT(in, 4), fb);\r
464 lfsr_rollback_bit(s, BEBIT(in, 3), fb);\r
465 lfsr_rollback_bit(s, BEBIT(in, 2), fb);\r
466 lfsr_rollback_bit(s, BEBIT(in, 1), fb);\r
467 lfsr_rollback_bit(s, BEBIT(in, 0), fb);\r
468}\r
469\r
470/** nonce_distance\r
471 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
472 */\r
473static uint16_t *dist = 0;\r
474int nonce_distance(uint32_t from, uint32_t to)\r
475{\r
476 uint16_t x, i;\r
477 if(!dist) {\r
478 dist = malloc(2 << 16);\r
479 if(!dist)\r
480 return -1;\r
481 for (x = i = 1; i; ++i) {\r
482 dist[(x & 0xff) << 8 | x >> 8] = i;\r
483 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
484 }\r
485 }\r
486 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
487}\r
488\r
489\r
490static uint32_t fastfwd[2][8] = {\r
491 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
492 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
493\r
494\r
495/** lfsr_prefix_ks\r
496 *\r
497 * Is an exported helper function from the common prefix attack\r
498 * Described in the "dark side" paper. It returns an -1 terminated array\r
499 * of possible partial(21 bit) secret state.\r
500 * The required keystream(ks) needs to contain the keystream that was used to\r
501 * encrypt the NACK which is observed when varying only the 4 last bits of Nr\r
502 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
503 */\r
504uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
505{\r
506 uint32_t *candidates = malloc(4 << 21);\r
507 uint32_t c, entry;\r
508 int size, i;\r
509\r
510 if(!candidates)\r
511 return 0;\r
512\r
513 size = (1 << 21) - 1;\r
514 for(i = 0; i <= size; ++i)\r
515 candidates[i] = i;\r
516\r
517 for(c = 0; c < 8; ++c)\r
518 for(i = 0;i <= size; ++i) {\r
519 entry = candidates[i] ^ fastfwd[isodd][c];\r
520\r
521 if(filter(entry >> 1) == BIT(ks[c], isodd))\r
522 if(filter(entry) == BIT(ks[c], isodd + 2))\r
523 continue;\r
524\r
525 candidates[i--] = candidates[size--];\r
526 }\r
527\r
528 candidates[size + 1] = -1;\r
529\r
530 return candidates;\r
531}\r
532\r
533/** brute_top\r
534 * helper function which eliminates possible secret states using parity bits\r
535 */\r
536static struct Crypto1State*\r
537brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],\r
538 uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)\r
539{\r
540 struct Crypto1State s;\r
541 uint32_t ks1, nr, ks2, rr, ks3, good, c;\r
542\r
543 for(c = 0; c < 8; ++c) {\r
544 s.odd = odd ^ fastfwd[1][c];\r
545 s.even = even ^ fastfwd[0][c];\r
546\r
547 lfsr_rollback_bit(&s, 0, 0);\r
548 lfsr_rollback_bit(&s, 0, 0);\r
549 lfsr_rollback_bit(&s, 0, 0);\r
550\r
551 lfsr_rollback_word(&s, 0, 0);\r
552 lfsr_rollback_word(&s, prefix | c << 5, 1);\r
553\r
554 sl->odd = s.odd;\r
555 sl->even = s.even;\r
556\r
557 if (no_chk)\r
558 break;\r
559\r
560 ks1 = crypto1_word(&s, prefix | c << 5, 1);\r
561 ks2 = crypto1_word(&s,0,0);\r
562 ks3 = crypto1_word(&s, 0,0);\r
563 nr = ks1 ^ (prefix | c << 5);\r
564 rr = ks2 ^ rresp;\r
565\r
566 good = 1;\r
567 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
568 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
569 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
570 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
571 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);\r
572\r
573 if(!good)\r
574 return sl;\r
575 }\r
576\r
577 return ++sl;\r
578}\r
579\r
580\r
581/** lfsr_common_prefix\r
582 * Implentation of the common prefix attack.\r
583 * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
584 * The reader response used (rr)\r
585 * The keystream used to encrypt the observed NACK's (ks)\r
586 * The parity bits (par)\r
587 * It returns a zero terminated list of possible cipher states after the\r
588 * tag nonce was fed in\r
589 */\r
590struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)\r
591{\r
592 struct Crypto1State *statelist, *s;\r
593 uint32_t *odd, *even, *o, *e, top;\r
594\r
595 odd = lfsr_prefix_ks(ks, 1);\r
596 even = lfsr_prefix_ks(ks, 0);\r
597\r
598 statelist = malloc((sizeof *statelist) << 21); //how large should be?\r
599 if(!statelist || !odd || !even)\r
600 {\r
601 free(statelist);\r
602 free(odd);\r
603 free(even);\r
604 return 0;\r
605 }\r
606\r
607 s = statelist;\r
608 for(o = odd; *o != -1; ++o)\r
609 for(e = even; *e != -1; ++e)\r
610 for(top = 0; top < 64; ++top) {\r
611 *o = (*o & 0x1fffff) | (top << 21);\r
612 *e = (*e & 0x1fffff) | (top >> 3) << 21;\r
613 s = brute_top(pfx, rr, par, *o, *e, s, no_par);\r
614 }\r
615\r
616 s->odd = s->even = -1;\r
617 //printf("state count = %d\n",s-statelist);\r
618\r
619 free(odd);\r
620 free(even);\r
621\r
622 return statelist;\r
623}\r
624\r
625/*\r
626struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par, uint32_t nt, uint32_t uid)\r
627{\r
628 long long int amount = 0;\r
629 struct Crypto1State *statelist, *s;\r
630 uint32_t *odd, *even, *o, *e, top;\r
631\r
632 odd = lfsr_prefix_ks(ks, 1);\r
633 even = lfsr_prefix_ks(ks, 0);\r
634\r
635 s = statelist = malloc((sizeof *statelist) << 20);\r
636 if(!s || !odd || !even) {\r
637 free(odd);\r
638 free(even);\r
639 free(statelist);\r
640 return 0;\r
641 }\r
642\r
643 char filename[50] = "archivo.txt";\r
644 sprintf(filename, "logs/%x.txt", nt);\r
645 PrintAndLog("Name: %s\n", filename);\r
646 FILE *file = fopen(filename,"w+");\r
647 if ( !file ) {\r
648 s->odd = s->even = 0;\r
649 free(odd);\r
650 free(even);\r
651 PrintAndLog("Failed to create file");\r
652 return 0;\r
653 }\r
654 PrintAndLog("Creating file... ");\r
655 uint32_t xored = uid^nt;\r
656 \r
657 int lastOdd = 0;\r
658 for(o = odd; *o + 1; ++o)\r
659 for(e = even; *e + 1; ++e)\r
660 for(top = 0; top < 64; ++top) {\r
661 *o += 1 << 21;\r
662 *e += (!(top & 7) + 1) << 21;\r
663\r
664 //added by MG\r
665 if(lastOdd != statelist->odd){\r
666 // Here I create a temporal crypto1 state, \r
667 // where I load the odd and even state and work with it,\r
668 // in order not to interfere with regular mechanism, This is what I save to file\r
669 struct Crypto1State *state;\r
670 lastOdd = state->odd = statelist->odd; state->even = statelist->even;\r
671 lfsr_rollback_word(state,xored,0);\r
672 fprintf(file,"%x %x \n",state->odd,state->even);\r
673 amount++;\r
674 }\r
675 //s = check_pfx_parity(pfx, rr, par, *o, *e, s); //This is not useful at all when attacking chineese cards\r
676 s = brute_top(pfx, rr, par, *o, *e, s, no_par); \r
677 }\r
678\r
679 PrintAndLog("File created, amount %u\n",amount);\r
680 fclose(file);\r
681 s->odd = s->even = 0;\r
682 free(odd);\r
683 free(even);\r
684 return statelist;\r
685}\r
686 */\r
Impressum, Datenschutz