]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/iso14443a.c
ADD: 'hf 14a read' - correct identify Aztek tags, instead of claiming it to be "not...
[proxmark3-svn] / armsrc / iso14443a.c
... / ...
CommitLineData
1 //-----------------------------------------------------------------------------
2// Merlok - June 2011, 2012
3// Gerhard de Koning Gans - May 2008
4// Hagen Fritsch - June 2010
5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
9//-----------------------------------------------------------------------------
10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12#include "iso14443a.h"
13
14static uint32_t iso14a_timeout;
15int rsamples = 0;
16uint8_t trigger = 0;
17// the block number for the ISO14443-4 PCB
18static uint8_t iso14_pcb_blocknum = 0;
19
20static uint8_t* free_buffer_pointer;
21
22//
23// ISO14443 timing:
24//
25// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
26#define REQUEST_GUARD_TIME (7000/16 + 1)
27// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
28#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
29// bool LastCommandWasRequest = FALSE;
30
31//
32// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
33//
34// When the PM acts as reader and is receiving tag data, it takes
35// 3 ticks delay in the AD converter
36// 16 ticks until the modulation detector completes and sets curbit
37// 8 ticks until bit_to_arm is assigned from curbit
38// 8*16 ticks for the transfer from FPGA to ARM
39// 4*16 ticks until we measure the time
40// - 8*16 ticks because we measure the time of the previous transfer
41#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
42
43// When the PM acts as a reader and is sending, it takes
44// 4*16 ticks until we can write data to the sending hold register
45// 8*16 ticks until the SHR is transferred to the Sending Shift Register
46// 8 ticks until the first transfer starts
47// 8 ticks later the FPGA samples the data
48// 1 tick to assign mod_sig_coil
49#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
50
51// When the PM acts as tag and is receiving it takes
52// 2 ticks delay in the RF part (for the first falling edge),
53// 3 ticks for the A/D conversion,
54// 8 ticks on average until the start of the SSC transfer,
55// 8 ticks until the SSC samples the first data
56// 7*16 ticks to complete the transfer from FPGA to ARM
57// 8 ticks until the next ssp_clk rising edge
58// 4*16 ticks until we measure the time
59// - 8*16 ticks because we measure the time of the previous transfer
60#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
61
62// The FPGA will report its internal sending delay in
63uint16_t FpgaSendQueueDelay;
64// the 5 first bits are the number of bits buffered in mod_sig_buf
65// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
66#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
67
68// When the PM acts as tag and is sending, it takes
69// 4*16 ticks until we can write data to the sending hold register
70// 8*16 ticks until the SHR is transferred to the Sending Shift Register
71// 8 ticks until the first transfer starts
72// 8 ticks later the FPGA samples the data
73// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
74// + 1 tick to assign mod_sig_coil
75#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
76
77// When the PM acts as sniffer and is receiving tag data, it takes
78// 3 ticks A/D conversion
79// 14 ticks to complete the modulation detection
80// 8 ticks (on average) until the result is stored in to_arm
81// + the delays in transferring data - which is the same for
82// sniffing reader and tag data and therefore not relevant
83#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
84
85// When the PM acts as sniffer and is receiving reader data, it takes
86// 2 ticks delay in analogue RF receiver (for the falling edge of the
87// start bit, which marks the start of the communication)
88// 3 ticks A/D conversion
89// 8 ticks on average until the data is stored in to_arm.
90// + the delays in transferring data - which is the same for
91// sniffing reader and tag data and therefore not relevant
92#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
93
94//variables used for timing purposes:
95//these are in ssp_clk cycles:
96static uint32_t NextTransferTime;
97static uint32_t LastTimeProxToAirStart;
98static uint32_t LastProxToAirDuration;
99
100// CARD TO READER - manchester
101// Sequence D: 11110000 modulation with subcarrier during first half
102// Sequence E: 00001111 modulation with subcarrier during second half
103// Sequence F: 00000000 no modulation with subcarrier
104// READER TO CARD - miller
105// Sequence X: 00001100 drop after half a period
106// Sequence Y: 00000000 no drop
107// Sequence Z: 11000000 drop at start
108#define SEC_D 0xf0
109#define SEC_E 0x0f
110#define SEC_F 0x00
111#define SEC_X 0x0c
112#define SEC_Y 0x00
113#define SEC_Z 0xc0
114
115void iso14a_set_trigger(bool enable) {
116 trigger = enable;
117}
118
119void iso14a_set_timeout(uint32_t timeout) {
120 iso14a_timeout = timeout;
121 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
122}
123
124void iso14a_set_ATS_timeout(uint8_t *ats) {
125 uint8_t tb1;
126 uint8_t fwi;
127 uint32_t fwt;
128
129 if (ats[0] > 1) { // there is a format byte T0
130 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
131
132 if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
133 tb1 = ats[3];
134 else
135 tb1 = ats[2];
136
137 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
138 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
139 //fwt = 4096 * (1 << fwi);
140
141 iso14a_set_timeout(fwt/(8*16));
142 //iso14a_set_timeout(fwt/128);
143 }
144 }
145}
146
147//-----------------------------------------------------------------------------
148// Generate the parity value for a byte sequence
149//
150//-----------------------------------------------------------------------------
151void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) {
152 uint16_t paritybit_cnt = 0;
153 uint16_t paritybyte_cnt = 0;
154 uint8_t parityBits = 0;
155
156 for (uint16_t i = 0; i < iLen; i++) {
157 // Generate the parity bits
158 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
159 if (paritybit_cnt == 7) {
160 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
161 parityBits = 0; // and advance to next Parity Byte
162 paritybyte_cnt++;
163 paritybit_cnt = 0;
164 } else {
165 paritybit_cnt++;
166 }
167 }
168
169 // save remaining parity bits
170 par[paritybyte_cnt] = parityBits;
171}
172
173void AppendCrc14443a(uint8_t* data, int len) {
174 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
175}
176
177//=============================================================================
178// ISO 14443 Type A - Miller decoder
179//=============================================================================
180// Basics:
181// This decoder is used when the PM3 acts as a tag.
182// The reader will generate "pauses" by temporarily switching of the field.
183// At the PM3 antenna we will therefore measure a modulated antenna voltage.
184// The FPGA does a comparison with a threshold and would deliver e.g.:
185// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
186// The Miller decoder needs to identify the following sequences:
187// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
188// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
189// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
190// Note 1: the bitstream may start at any time. We therefore need to sync.
191// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
192//-----------------------------------------------------------------------------
193static tUart Uart;
194
195// Lookup-Table to decide if 4 raw bits are a modulation.
196// We accept the following:
197// 0001 - a 3 tick wide pause
198// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
199// 0111 - a 2 tick wide pause shifted left
200// 1001 - a 2 tick wide pause shifted right
201const bool Mod_Miller_LUT[] = {
202 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
203 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
204};
205#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
206#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
207
208void UartReset() {
209 Uart.state = STATE_UNSYNCD;
210 Uart.bitCount = 0;
211 Uart.len = 0; // number of decoded data bytes
212 Uart.parityLen = 0; // number of decoded parity bytes
213 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
214 Uart.parityBits = 0; // holds 8 parity bits
215 Uart.startTime = 0;
216 Uart.endTime = 0;
217
218 Uart.byteCntMax = 0;
219 Uart.posCnt = 0;
220 Uart.syncBit = 9999;
221}
222
223void UartInit(uint8_t *data, uint8_t *parity) {
224 Uart.output = data;
225 Uart.parity = parity;
226 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
227 UartReset();
228}
229
230// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
231static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
232 Uart.fourBits = (Uart.fourBits << 8) | bit;
233
234 if (Uart.state == STATE_UNSYNCD) { // not yet synced
235 Uart.syncBit = 9999; // not set
236
237 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
238 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
239 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
240
241 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
242 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
243 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
244 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
245 //
246#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
247#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
248
249 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
250 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
251 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
252 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
253 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
254 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
255 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
256 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
257
258 if (Uart.syncBit != 9999) { // found a sync bit
259 Uart.startTime = non_real_time ? non_real_time : (GetCountSspClk() & 0xfffffff8);
260 Uart.startTime -= Uart.syncBit;
261 Uart.endTime = Uart.startTime;
262 Uart.state = STATE_START_OF_COMMUNICATION;
263 }
264 } else {
265
266 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
267 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
268 UartReset();
269 } else { // Modulation in first half = Sequence Z = logic "0"
270 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
271 UartReset();
272 } else {
273 Uart.bitCount++;
274 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
275 Uart.state = STATE_MILLER_Z;
276 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
277 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
278 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
279 Uart.parityBits <<= 1; // make room for the parity bit
280 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
281 Uart.bitCount = 0;
282 Uart.shiftReg = 0;
283 if((Uart.len&0x0007) == 0) { // every 8 data bytes
284 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
285 Uart.parityBits = 0;
286 }
287 }
288 }
289 }
290 } else {
291 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
292 Uart.bitCount++;
293 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
294 Uart.state = STATE_MILLER_X;
295 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
296 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
297 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
298 Uart.parityBits <<= 1; // make room for the new parity bit
299 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
300 Uart.bitCount = 0;
301 Uart.shiftReg = 0;
302 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
303 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
304 Uart.parityBits = 0;
305 }
306 }
307 } else { // no modulation in both halves - Sequence Y
308 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
309 Uart.state = STATE_UNSYNCD;
310 Uart.bitCount--; // last "0" was part of EOC sequence
311 Uart.shiftReg <<= 1; // drop it
312 if(Uart.bitCount > 0) { // if we decoded some bits
313 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
314 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
315 Uart.parityBits <<= 1; // add a (void) parity bit
316 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
317 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
318 return TRUE;
319 } else if (Uart.len & 0x0007) { // there are some parity bits to store
320 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
321 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
322 }
323 if (Uart.len) {
324 return TRUE; // we are finished with decoding the raw data sequence
325 } else {
326 UartReset(); // Nothing received - start over
327 }
328 }
329 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
330 UartReset();
331 } else { // a logic "0"
332 Uart.bitCount++;
333 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
334 Uart.state = STATE_MILLER_Y;
335 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
336 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
337 Uart.parityBits <<= 1; // make room for the parity bit
338 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
339 Uart.bitCount = 0;
340 Uart.shiftReg = 0;
341 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
342 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
343 Uart.parityBits = 0;
344 }
345 }
346 }
347 }
348 }
349 }
350 return FALSE; // not finished yet, need more data
351}
352
353//=============================================================================
354// ISO 14443 Type A - Manchester decoder
355//=============================================================================
356// Basics:
357// This decoder is used when the PM3 acts as a reader.
358// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
359// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
360// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
361// The Manchester decoder needs to identify the following sequences:
362// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
363// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
364// 8 ticks unmodulated: Sequence F = end of communication
365// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
366// Note 1: the bitstream may start at any time. We therefore need to sync.
367// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
368static tDemod Demod;
369
370// Lookup-Table to decide if 4 raw bits are a modulation.
371// We accept three or four "1" in any position
372const bool Mod_Manchester_LUT[] = {
373 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
374 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
375};
376
377#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
378#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
379
380void DemodReset() {
381 Demod.state = DEMOD_UNSYNCD;
382 Demod.len = 0; // number of decoded data bytes
383 Demod.parityLen = 0;
384 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
385 Demod.parityBits = 0; //
386 Demod.collisionPos = 0; // Position of collision bit
387 Demod.twoBits = 0xffff; // buffer for 2 Bits
388 Demod.highCnt = 0;
389 Demod.startTime = 0;
390 Demod.endTime = 0;
391 Demod.bitCount = 0;
392 Demod.syncBit = 0xFFFF;
393 Demod.samples = 0;
394}
395
396void DemodInit(uint8_t *data, uint8_t *parity) {
397 Demod.output = data;
398 Demod.parity = parity;
399 DemodReset();
400}
401
402// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
403static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
404 Demod.twoBits = (Demod.twoBits << 8) | bit;
405
406 if (Demod.state == DEMOD_UNSYNCD) {
407
408 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
409 if (Demod.twoBits == 0x0000) {
410 Demod.highCnt++;
411 } else {
412 Demod.highCnt = 0;
413 }
414 } else {
415 Demod.syncBit = 0xFFFF; // not set
416 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
417 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
418 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
419 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
420 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
421 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
422 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
423 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
424 if (Demod.syncBit != 0xFFFF) {
425 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
426 Demod.startTime -= Demod.syncBit;
427 Demod.bitCount = offset; // number of decoded data bits
428 Demod.state = DEMOD_MANCHESTER_DATA;
429 }
430 }
431 } else {
432
433 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
434 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
435 if (!Demod.collisionPos) {
436 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
437 }
438 } // modulation in first half only - Sequence D = 1
439 Demod.bitCount++;
440 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
441 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
442 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
443 Demod.parityBits <<= 1; // make room for the parity bit
444 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
445 Demod.bitCount = 0;
446 Demod.shiftReg = 0;
447 if((Demod.len&0x0007) == 0) { // every 8 data bytes
448 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
449 Demod.parityBits = 0;
450 }
451 }
452 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
453 } else { // no modulation in first half
454 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
455 Demod.bitCount++;
456 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
457 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
458 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
459 Demod.parityBits <<= 1; // make room for the new parity bit
460 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
461 Demod.bitCount = 0;
462 Demod.shiftReg = 0;
463 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
464 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
465 Demod.parityBits = 0;
466 }
467 }
468 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
469 } else { // no modulation in both halves - End of communication
470 if(Demod.bitCount > 0) { // there are some remaining data bits
471 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
472 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
473 Demod.parityBits <<= 1; // add a (void) parity bit
474 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
475 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
476 return TRUE;
477 } else if (Demod.len & 0x0007) { // there are some parity bits to store
478 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
479 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
480 }
481 if (Demod.len) {
482 return TRUE; // we are finished with decoding the raw data sequence
483 } else { // nothing received. Start over
484 DemodReset();
485 }
486 }
487 }
488 }
489 return FALSE; // not finished yet, need more data
490}
491
492//=============================================================================
493// Finally, a `sniffer' for ISO 14443 Type A
494// Both sides of communication!
495//=============================================================================
496
497//-----------------------------------------------------------------------------
498// Record the sequence of commands sent by the reader to the tag, with
499// triggering so that we start recording at the point that the tag is moved
500// near the reader.
501// "hf 14a sniff"
502//-----------------------------------------------------------------------------
503void RAMFUNC SniffIso14443a(uint8_t param) {
504 // param:
505 // bit 0 - trigger from first card answer
506 // bit 1 - trigger from first reader 7-bit request
507 LEDsoff();
508
509 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
510
511 // Allocate memory from BigBuf for some buffers
512 // free all previous allocations first
513 BigBuf_free(); BigBuf_Clear_ext(false);
514 clear_trace();
515 set_tracing(TRUE);
516
517 // The command (reader -> tag) that we're receiving.
518 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
519 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
520
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
523 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
524
525 // The DMA buffer, used to stream samples from the FPGA
526 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
527
528 uint8_t *data = dmaBuf;
529 uint8_t previous_data = 0;
530 int maxDataLen = 0;
531 int dataLen = 0;
532 bool TagIsActive = FALSE;
533 bool ReaderIsActive = FALSE;
534
535 // Set up the demodulator for tag -> reader responses.
536 DemodInit(receivedResponse, receivedResponsePar);
537
538 // Set up the demodulator for the reader -> tag commands
539 UartInit(receivedCmd, receivedCmdPar);
540
541 // Setup and start DMA.
542 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
543 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
544 return;
545 }
546
547 // We won't start recording the frames that we acquire until we trigger;
548 // a good trigger condition to get started is probably when we see a
549 // response from the tag.
550 // triggered == FALSE -- to wait first for card
551 bool triggered = !(param & 0x03);
552
553 // And now we loop, receiving samples.
554 for(uint32_t rsamples = 0; TRUE; ) {
555
556 if(BUTTON_PRESS()) {
557 DbpString("cancelled by button");
558 break;
559 }
560
561 LED_A_ON();
562 WDT_HIT();
563
564 int register readBufDataP = data - dmaBuf;
565 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
566 if (readBufDataP <= dmaBufDataP){
567 dataLen = dmaBufDataP - readBufDataP;
568 } else {
569 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
570 }
571 // test for length of buffer
572 if(dataLen > maxDataLen) {
573 maxDataLen = dataLen;
574 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
575 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
576 break;
577 }
578 }
579 if(dataLen < 1) continue;
580
581 // primary buffer was stopped( <-- we lost data!
582 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
583 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
584 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
585 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
586 }
587 // secondary buffer sets as primary, secondary buffer was stopped
588 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
589 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
590 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
591 }
592
593 LED_A_OFF();
594
595 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
596
597 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
598 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
599 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
600 LED_C_ON();
601
602 // check - if there is a short 7bit request from reader
603 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
604
605 if(triggered) {
606 if (!LogTrace(receivedCmd,
607 Uart.len,
608 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
609 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
610 Uart.parity,
611 TRUE)) break;
612 }
613 /* And ready to receive another command. */
614 UartReset();
615 /* And also reset the demod code, which might have been */
616 /* false-triggered by the commands from the reader. */
617 DemodReset();
618 LED_B_OFF();
619 }
620 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
621 }
622
623 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
624 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
625 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
626 LED_B_ON();
627
628 if (!LogTrace(receivedResponse,
629 Demod.len,
630 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
631 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
632 Demod.parity,
633 FALSE)) break;
634
635 if ((!triggered) && (param & 0x01)) triggered = TRUE;
636
637 // And ready to receive another response.
638 DemodReset();
639 // And reset the Miller decoder including itS (now outdated) input buffer
640 UartInit(receivedCmd, receivedCmdPar);
641 LED_C_OFF();
642 }
643 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
644 }
645 }
646
647 previous_data = *data;
648 rsamples++;
649 data++;
650 if(data == dmaBuf + DMA_BUFFER_SIZE) {
651 data = dmaBuf;
652 }
653 } // main cycle
654
655 if (MF_DBGLEVEL >= 1) {
656 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
657 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
658 }
659 FpgaDisableSscDma();
660 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
661 LEDsoff();
662 set_tracing(FALSE);
663}
664
665//-----------------------------------------------------------------------------
666// Prepare tag messages
667//-----------------------------------------------------------------------------
668static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
669 ToSendReset();
670
671 // Correction bit, might be removed when not needed
672 ToSendStuffBit(0);
673 ToSendStuffBit(0);
674 ToSendStuffBit(0);
675 ToSendStuffBit(0);
676 ToSendStuffBit(1); // 1
677 ToSendStuffBit(0);
678 ToSendStuffBit(0);
679 ToSendStuffBit(0);
680
681 // Send startbit
682 ToSend[++ToSendMax] = SEC_D;
683 LastProxToAirDuration = 8 * ToSendMax - 4;
684
685 for(uint16_t i = 0; i < len; i++) {
686 uint8_t b = cmd[i];
687
688 // Data bits
689 for(uint16_t j = 0; j < 8; j++) {
690 if(b & 1) {
691 ToSend[++ToSendMax] = SEC_D;
692 } else {
693 ToSend[++ToSendMax] = SEC_E;
694 }
695 b >>= 1;
696 }
697
698 // Get the parity bit
699 if (parity[i>>3] & (0x80>>(i&0x0007))) {
700 ToSend[++ToSendMax] = SEC_D;
701 LastProxToAirDuration = 8 * ToSendMax - 4;
702 } else {
703 ToSend[++ToSendMax] = SEC_E;
704 LastProxToAirDuration = 8 * ToSendMax;
705 }
706 }
707
708 // Send stopbit
709 ToSend[++ToSendMax] = SEC_F;
710
711 // Convert from last byte pos to length
712 ++ToSendMax;
713}
714
715static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) {
716 uint8_t par[MAX_PARITY_SIZE] = {0};
717 GetParity(cmd, len, par);
718 CodeIso14443aAsTagPar(cmd, len, par);
719}
720
721static void Code4bitAnswerAsTag(uint8_t cmd) {
722 uint8_t b = cmd;
723
724 ToSendReset();
725
726 // Correction bit, might be removed when not needed
727 ToSendStuffBit(0);
728 ToSendStuffBit(0);
729 ToSendStuffBit(0);
730 ToSendStuffBit(0);
731 ToSendStuffBit(1); // 1
732 ToSendStuffBit(0);
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735
736 // Send startbit
737 ToSend[++ToSendMax] = SEC_D;
738
739 for(uint8_t i = 0; i < 4; i++) {
740 if(b & 1) {
741 ToSend[++ToSendMax] = SEC_D;
742 LastProxToAirDuration = 8 * ToSendMax - 4;
743 } else {
744 ToSend[++ToSendMax] = SEC_E;
745 LastProxToAirDuration = 8 * ToSendMax;
746 }
747 b >>= 1;
748 }
749
750 // Send stopbit
751 ToSend[++ToSendMax] = SEC_F;
752
753 // Convert from last byte pos to length
754 ToSendMax++;
755}
756
757//-----------------------------------------------------------------------------
758// Wait for commands from reader
759// Stop when button is pressed
760// Or return TRUE when command is captured
761//-----------------------------------------------------------------------------
762static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
763 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
764 // only, since we are receiving, not transmitting).
765 // Signal field is off with the appropriate LED
766 LED_D_OFF();
767 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
768
769 // Now run a `software UART` on the stream of incoming samples.
770 UartInit(received, parity);
771
772 // clear RXRDY:
773 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
774
775 for(;;) {
776 WDT_HIT();
777
778 if(BUTTON_PRESS()) return FALSE;
779
780 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
781 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
782 if(MillerDecoding(b, 0)) {
783 *len = Uart.len;
784 return TRUE;
785 }
786 }
787 }
788}
789
790bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
791 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
792 // This will need the following byte array for a modulation sequence
793 // 144 data bits (18 * 8)
794 // 18 parity bits
795 // 2 Start and stop
796 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
797 // 1 just for the case
798 // ----------- +
799 // 166 bytes, since every bit that needs to be send costs us a byte
800 //
801 // Prepare the tag modulation bits from the message
802 CodeIso14443aAsTag(response_info->response,response_info->response_n);
803
804 // Make sure we do not exceed the free buffer space
805 if (ToSendMax > max_buffer_size) {
806 Dbprintf("Out of memory, when modulating bits for tag answer:");
807 Dbhexdump(response_info->response_n,response_info->response,false);
808 return FALSE;
809 }
810
811 // Copy the byte array, used for this modulation to the buffer position
812 memcpy(response_info->modulation,ToSend,ToSendMax);
813
814 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
815 response_info->modulation_n = ToSendMax;
816 response_info->ProxToAirDuration = LastProxToAirDuration;
817 return TRUE;
818}
819
820// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
821// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
822// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
823// -> need 273 bytes buffer
824// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
825// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
826#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
827
828bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
829 // Retrieve and store the current buffer index
830 response_info->modulation = free_buffer_pointer;
831
832 // Determine the maximum size we can use from our buffer
833 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
834
835 // Forward the prepare tag modulation function to the inner function
836 if (prepare_tag_modulation(response_info, max_buffer_size)) {
837 // Update the free buffer offset
838 free_buffer_pointer += ToSendMax;
839 return true;
840 } else {
841 return false;
842 }
843}
844
845//-----------------------------------------------------------------------------
846// Main loop of simulated tag: receive commands from reader, decide what
847// response to send, and send it.
848// 'hf 14a sim'
849//-----------------------------------------------------------------------------
850void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
851
852 #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
853 // init pseudorand
854 fast_prand();
855
856 uint8_t sak = 0;
857 uint32_t cuid = 0;
858 uint32_t nonce = 0;
859
860 // PACK response to PWD AUTH for EV1/NTAG
861 uint8_t response8[4] = {0,0,0,0};
862 // Counter for EV1/NTAG
863 uint32_t counters[] = {0,0,0};
864
865 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
866 uint8_t response1[] = {0,0};
867
868 // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2
869 // it should also collect block, keytype.
870 uint8_t cardAUTHSC = 0;
871 uint8_t cardAUTHKEY = 0xff; // no authentication
872 // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
873
874 nonces_t ar_nr_nonces[ATTACK_KEY_COUNT]; // for attack types moebius
875 memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
876 uint8_t moebius_count = 0;
877
878 switch (tagType) {
879 case 1: { // MIFARE Classic 1k
880 response1[0] = 0x04;
881 sak = 0x08;
882 } break;
883 case 2: { // MIFARE Ultralight
884 response1[0] = 0x44;
885 sak = 0x00;
886 } break;
887 case 3: { // MIFARE DESFire
888 response1[0] = 0x04;
889 response1[1] = 0x03;
890 sak = 0x20;
891 } break;
892 case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
893 response1[0] = 0x04;
894 sak = 0x28;
895 } break;
896 case 5: { // MIFARE TNP3XXX
897 response1[0] = 0x01;
898 response1[1] = 0x0f;
899 sak = 0x01;
900 } break;
901 case 6: { // MIFARE Mini 320b
902 response1[0] = 0x44;
903 sak = 0x09;
904 } break;
905 case 7: { // NTAG
906 response1[0] = 0x44;
907 sak = 0x00;
908 // PACK
909 response8[0] = 0x80;
910 response8[1] = 0x80;
911 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
912 // uid not supplied then get from emulator memory
913 if (data[0]==0) {
914 uint16_t start = 4 * (0+12);
915 uint8_t emdata[8];
916 emlGetMemBt( emdata, start, sizeof(emdata));
917 memcpy(data, emdata, 3); // uid bytes 0-2
918 memcpy(data+3, emdata+4, 4); // uid bytes 3-7
919 flags |= FLAG_7B_UID_IN_DATA;
920 }
921 } break;
922 case 8: { // MIFARE Classic 4k
923 response1[0] = 0x02;
924 sak = 0x18;
925 } break;
926 default: {
927 Dbprintf("Error: unkown tagtype (%d)",tagType);
928 return;
929 } break;
930 }
931
932 // The second response contains the (mandatory) first 24 bits of the UID
933 uint8_t response2[5] = {0x00};
934
935 // For UID size 7,
936 uint8_t response2a[5] = {0x00};
937
938 if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
939 response2[0] = 0x88; // Cascade Tag marker
940 response2[1] = data[0];
941 response2[2] = data[1];
942 response2[3] = data[2];
943
944 response2a[0] = data[3];
945 response2a[1] = data[4];
946 response2a[2] = data[5];
947 response2a[3] = data[6]; //??
948 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
949
950 // Configure the ATQA and SAK accordingly
951 response1[0] |= 0x40;
952 sak |= 0x04;
953
954 cuid = bytes_to_num(data+3, 4);
955 } else {
956 memcpy(response2, data, 4);
957 // Configure the ATQA and SAK accordingly
958 response1[0] &= 0xBF;
959 sak &= 0xFB;
960 cuid = bytes_to_num(data, 4);
961 }
962
963 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
964 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
965
966 // Prepare the mandatory SAK (for 4 and 7 byte UID)
967 uint8_t response3[3] = {sak, 0x00, 0x00};
968 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
969
970 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
971 uint8_t response3a[3] = {0x00};
972 response3a[0] = sak & 0xFB;
973 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
974
975 // Tag NONCE.
976 uint8_t response5[4];
977
978 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
979 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
980 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
981 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
982 // TC(1) = 0x02: CID supported, NAD not supported
983 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
984
985 // Prepare GET_VERSION (different for UL EV-1 / NTAG)
986 // uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
987 // uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
988 // Prepare CHK_TEARING
989 // uint8_t response9[] = {0xBD,0x90,0x3f};
990
991 #define TAG_RESPONSE_COUNT 10
992 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
993 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
994 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
995 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
996 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
997 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
998 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
999 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1000
1001 { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response
1002 };
1003 // { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
1004 // { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1005
1006
1007 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1008 // Such a response is less time critical, so we can prepare them on the fly
1009 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1010 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1011 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1012 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1013 tag_response_info_t dynamic_response_info = {
1014 .response = dynamic_response_buffer,
1015 .response_n = 0,
1016 .modulation = dynamic_modulation_buffer,
1017 .modulation_n = 0
1018 };
1019
1020 // We need to listen to the high-frequency, peak-detected path.
1021 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1022
1023 BigBuf_free_keep_EM();
1024 clear_trace();
1025 set_tracing(TRUE);
1026
1027 // allocate buffers:
1028 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1029 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1030 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1031
1032 // Prepare the responses of the anticollision phase
1033 // there will be not enough time to do this at the moment the reader sends it REQA
1034 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
1035 prepare_allocated_tag_modulation(&responses[i]);
1036
1037 int len = 0;
1038
1039 // To control where we are in the protocol
1040 int order = 0;
1041 int lastorder;
1042
1043 // Just to allow some checks
1044 int happened = 0;
1045 int happened2 = 0;
1046 int cmdsRecvd = 0;
1047 tag_response_info_t* p_response;
1048
1049 LED_A_ON();
1050 for(;;) {
1051 WDT_HIT();
1052
1053 // Clean receive command buffer
1054 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1055 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
1056 break;
1057 }
1058 p_response = NULL;
1059
1060 // Okay, look at the command now.
1061 lastorder = order;
1062 if(receivedCmd[0] == ISO14443A_CMD_REQA) { // Received a REQUEST
1063 p_response = &responses[0]; order = 1;
1064 } else if(receivedCmd[0] == ISO14443A_CMD_WUPA) { // Received a WAKEUP
1065 p_response = &responses[0]; order = 6;
1066 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received request for UID (cascade 1)
1067 p_response = &responses[1]; order = 2;
1068 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received request for UID (cascade 2)
1069 p_response = &responses[2]; order = 20;
1070 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT) { // Received a SELECT (cascade 1)
1071 p_response = &responses[3]; order = 3;
1072 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2) { // Received a SELECT (cascade 2)
1073 p_response = &responses[4]; order = 30;
1074 } else if(receivedCmd[0] == ISO14443A_CMD_READBLOCK) { // Received a (plain) READ
1075 uint8_t block = receivedCmd[1];
1076 // if Ultralight or NTAG (4 byte blocks)
1077 if ( tagType == 7 || tagType == 2 ) {
1078 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1079 uint16_t start = 4 * (block+12);
1080 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1081 emlGetMemBt( emdata, start, 16);
1082 AppendCrc14443a(emdata, 16);
1083 EmSendCmdEx(emdata, sizeof(emdata), false);
1084 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1085 p_response = NULL;
1086 } else { // all other tags (16 byte block tags)
1087 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1088 emlGetMemBt( emdata, block, 16);
1089 AppendCrc14443a(emdata, 16);
1090 EmSendCmdEx(emdata, sizeof(emdata), false);
1091 // EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1092 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1093 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1094 p_response = NULL;
1095 }
1096 } else if(receivedCmd[0] == MIFARE_ULEV1_FASTREAD) { // Received a FAST READ (ranged read)
1097 uint8_t emdata[MAX_FRAME_SIZE];
1098 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1099 int start = (receivedCmd[1]+12) * 4;
1100 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1101 emlGetMemBt( emdata, start, len);
1102 AppendCrc14443a(emdata, len);
1103 EmSendCmdEx(emdata, len+2, false);
1104 p_response = NULL;
1105 } else if(receivedCmd[0] == MIFARE_ULEV1_READSIG && tagType == 7) { // Received a READ SIGNATURE --
1106 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1107 uint16_t start = 4 * 4;
1108 uint8_t emdata[34];
1109 emlGetMemBt( emdata, start, 32);
1110 AppendCrc14443a(emdata, 32);
1111 EmSendCmdEx(emdata, sizeof(emdata), false);
1112 p_response = NULL;
1113 } else if (receivedCmd[0] == MIFARE_ULEV1_READ_CNT && tagType == 7) { // Received a READ COUNTER --
1114 uint8_t index = receivedCmd[1];
1115 uint8_t cmd[] = {0x00,0x00,0x00,0x14,0xa5};
1116 if ( counters[index] > 0) {
1117 num_to_bytes(counters[index], 3, cmd);
1118 AppendCrc14443a(cmd, sizeof(cmd)-2);
1119 }
1120 EmSendCmdEx(cmd,sizeof(cmd),false);
1121 p_response = NULL;
1122 } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER --
1123 // number of counter
1124 uint8_t counter = receivedCmd[1];
1125 uint32_t val = bytes_to_num(receivedCmd+2,4);
1126 counters[counter] = val;
1127
1128 // send ACK
1129 uint8_t ack[] = {0x0a};
1130 EmSendCmdEx(ack,sizeof(ack),false);
1131 p_response = NULL;
1132 } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1133 // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1134 uint8_t emdata[3];
1135 uint8_t counter=0;
1136 if (receivedCmd[1]<3) counter = receivedCmd[1];
1137 emlGetMemBt( emdata, 10+counter, 1);
1138 AppendCrc14443a(emdata, sizeof(emdata)-2);
1139 EmSendCmdEx(emdata, sizeof(emdata), false);
1140 p_response = NULL;
1141 } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT
1142 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1143 p_response = NULL;
1144 } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request
1145 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1146 uint8_t emdata[10];
1147 emlGetMemBt( emdata, 0, 8 );
1148 AppendCrc14443a(emdata, sizeof(emdata)-2);
1149 EmSendCmdEx(emdata, sizeof(emdata), false);
1150 p_response = NULL;
1151 } else {
1152
1153 cardAUTHKEY = receivedCmd[0] - 0x60;
1154 cardAUTHSC = receivedCmd[1] / 4; // received block num
1155
1156 // incease nonce at AUTH requests. this is time consuming.
1157 nonce = prand();
1158 //num_to_bytes(nonce, 4, response5);
1159 num_to_bytes(nonce, 4, dynamic_response_info.response);
1160 dynamic_response_info.response_n = 4;
1161
1162 //prepare_tag_modulation(&responses[5], DYNAMIC_MODULATION_BUFFER_SIZE);
1163 prepare_tag_modulation(&dynamic_response_info, DYNAMIC_MODULATION_BUFFER_SIZE);
1164 p_response = &dynamic_response_info;
1165 //p_response = &responses[5];
1166 order = 7;
1167 }
1168 } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request
1169 if (tagType == 1 || tagType == 2) { // RATS not supported
1170 EmSend4bit(CARD_NACK_NA);
1171 p_response = NULL;
1172 } else {
1173 p_response = &responses[6]; order = 70;
1174 }
1175 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1176 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1177 uint32_t nr = bytes_to_num(receivedCmd,4);
1178 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1179
1180 // Collect AR/NR per keytype & sector
1181 if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
1182
1183 int8_t index = -1;
1184 int8_t empty = -1;
1185 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
1186 // find which index to use
1187 if ( (cardAUTHSC == ar_nr_nonces[i].sector) && (cardAUTHKEY == ar_nr_nonces[i].keytype))
1188 index = i;
1189
1190 // keep track of empty slots.
1191 if ( ar_nr_nonces[i].state == EMPTY)
1192 empty = i;
1193 }
1194 // if no empty slots. Choose first and overwrite.
1195 if ( index == -1 ) {
1196 if ( empty == -1 ) {
1197 index = 0;
1198 ar_nr_nonces[index].state = EMPTY;
1199 } else {
1200 index = empty;
1201 }
1202 }
1203
1204 switch(ar_nr_nonces[index].state) {
1205 case EMPTY: {
1206 // first nonce collect
1207 ar_nr_nonces[index].cuid = cuid;
1208 ar_nr_nonces[index].sector = cardAUTHSC;
1209 ar_nr_nonces[index].keytype = cardAUTHKEY;
1210 ar_nr_nonces[index].nonce = nonce;
1211 ar_nr_nonces[index].nr = nr;
1212 ar_nr_nonces[index].ar = ar;
1213 ar_nr_nonces[index].state = FIRST;
1214 break;
1215 }
1216 case FIRST : {
1217 // second nonce collect
1218 ar_nr_nonces[index].nonce2 = nonce;
1219 ar_nr_nonces[index].nr2 = nr;
1220 ar_nr_nonces[index].ar2 = ar;
1221 ar_nr_nonces[index].state = SECOND;
1222
1223 // send to client
1224 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
1225
1226 ar_nr_nonces[index].state = EMPTY;
1227 ar_nr_nonces[index].sector = 0;
1228 ar_nr_nonces[index].keytype = 0;
1229
1230 moebius_count++;
1231 break;
1232 }
1233 default: break;
1234 }
1235 }
1236 p_response = NULL;
1237
1238 } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication
1239 } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication
1240 if ( tagType == 7 ) {
1241 uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
1242 uint8_t emdata[4];
1243 emlGetMemBt( emdata, start, 2);
1244 AppendCrc14443a(emdata, 2);
1245 EmSendCmdEx(emdata, sizeof(emdata), false);
1246 p_response = NULL;
1247 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
1248
1249 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
1250 }
1251 } else {
1252 // Check for ISO 14443A-4 compliant commands, look at left nibble
1253 switch (receivedCmd[0]) {
1254 case 0x02:
1255 case 0x03: { // IBlock (command no CID)
1256 dynamic_response_info.response[0] = receivedCmd[0];
1257 dynamic_response_info.response[1] = 0x90;
1258 dynamic_response_info.response[2] = 0x00;
1259 dynamic_response_info.response_n = 3;
1260 } break;
1261 case 0x0B:
1262 case 0x0A: { // IBlock (command CID)
1263 dynamic_response_info.response[0] = receivedCmd[0];
1264 dynamic_response_info.response[1] = 0x00;
1265 dynamic_response_info.response[2] = 0x90;
1266 dynamic_response_info.response[3] = 0x00;
1267 dynamic_response_info.response_n = 4;
1268 } break;
1269
1270 case 0x1A:
1271 case 0x1B: { // Chaining command
1272 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1273 dynamic_response_info.response_n = 2;
1274 } break;
1275
1276 case 0xAA:
1277 case 0xBB: {
1278 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1279 dynamic_response_info.response_n = 2;
1280 } break;
1281
1282 case 0xBA: { // ping / pong
1283 dynamic_response_info.response[0] = 0xAB;
1284 dynamic_response_info.response[1] = 0x00;
1285 dynamic_response_info.response_n = 2;
1286 } break;
1287
1288 case 0xCA:
1289 case 0xC2: { // Readers sends deselect command
1290 dynamic_response_info.response[0] = 0xCA;
1291 dynamic_response_info.response[1] = 0x00;
1292 dynamic_response_info.response_n = 2;
1293 } break;
1294
1295 default: {
1296 // Never seen this command before
1297 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1298 Dbprintf("Received unknown command (len=%d):",len);
1299 Dbhexdump(len,receivedCmd,false);
1300 // Do not respond
1301 dynamic_response_info.response_n = 0;
1302 } break;
1303 }
1304
1305 if (dynamic_response_info.response_n > 0) {
1306 // Copy the CID from the reader query
1307 dynamic_response_info.response[1] = receivedCmd[1];
1308
1309 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1310 AppendCrc14443a(dynamic_response_info.response, dynamic_response_info.response_n);
1311 dynamic_response_info.response_n += 2;
1312
1313 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1314 DbpString("Error preparing tag response");
1315 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1316 break;
1317 }
1318 p_response = &dynamic_response_info;
1319 }
1320 }
1321
1322 // Count number of wakeups received after a halt
1323 if(order == 6 && lastorder == 5) { happened++; }
1324
1325 // Count number of other messages after a halt
1326 if(order != 6 && lastorder == 5) { happened2++; }
1327
1328 // comment this limit if you want to simulation longer
1329 if (!tracing) {
1330 DbpString("Trace Full. Simulation stopped.");
1331 break;
1332 }
1333 // comment this limit if you want to simulation longer
1334 if(cmdsRecvd > 999) {
1335 DbpString("1000 commands later...");
1336 break;
1337 }
1338 cmdsRecvd++;
1339
1340 if (p_response != NULL) {
1341 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1342 // do the tracing for the previous reader request and this tag answer:
1343 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1344 GetParity(p_response->response, p_response->response_n, par);
1345
1346 EmLogTrace(Uart.output,
1347 Uart.len,
1348 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1349 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1350 Uart.parity,
1351 p_response->response,
1352 p_response->response_n,
1353 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1354 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1355 par);
1356 }
1357 }
1358
1359 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1360 set_tracing(FALSE);
1361 BigBuf_free_keep_EM();
1362 LED_A_OFF();
1363
1364 /*
1365 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
1366
1367 for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
1368 if (ar_nr_collected[i] == 2) {
1369 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
1370 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
1371 ar_nr_resp[i].cuid, //UID
1372 ar_nr_resp[i].nonce, //NT
1373 ar_nr_resp[i].nr, //NR1
1374 ar_nr_resp[i].ar, //AR1
1375 ar_nr_resp[i].nr2, //NR2
1376 ar_nr_resp[i].ar2 //AR2
1377 );
1378 }
1379 }
1380
1381 for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
1382 if (ar_nr_collected[i] == 2) {
1383 Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
1384 Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
1385 ar_nr_resp[i].cuid, //UID
1386 ar_nr_resp[i].nonce, //NT
1387 ar_nr_resp[i].nr, //NR1
1388 ar_nr_resp[i].ar, //AR1
1389 ar_nr_resp[i].nonce2,//NT2
1390 ar_nr_resp[i].nr2, //NR2
1391 ar_nr_resp[i].ar2 //AR2
1392 );
1393 }
1394 }
1395 }
1396 */
1397
1398 if (MF_DBGLEVEL >= 4){
1399 Dbprintf("-[ Wake ups after halt [%d]", happened);
1400 Dbprintf("-[ Messages after halt [%d]", happened2);
1401 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1402 Dbprintf("-[ Num of moebius tries [%d]", moebius_count);
1403 }
1404
1405 cmd_send(CMD_ACK,1,0,0,0,0);
1406}
1407
1408// prepare a delayed transfer. This simply shifts ToSend[] by a number
1409// of bits specified in the delay parameter.
1410void PrepareDelayedTransfer(uint16_t delay) {
1411 delay &= 0x07;
1412 if (!delay) return;
1413
1414 uint8_t bitmask = 0;
1415 uint8_t bits_to_shift = 0;
1416 uint8_t bits_shifted = 0;
1417 uint16_t i = 0;
1418
1419 for (i = 0; i < delay; ++i)
1420 bitmask |= (0x01 << i);
1421
1422 ToSend[++ToSendMax] = 0x00;
1423
1424 for (i = 0; i < ToSendMax; ++i) {
1425 bits_to_shift = ToSend[i] & bitmask;
1426 ToSend[i] = ToSend[i] >> delay;
1427 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1428 bits_shifted = bits_to_shift;
1429 }
1430 }
1431
1432
1433//-------------------------------------------------------------------------------------
1434// Transmit the command (to the tag) that was placed in ToSend[].
1435// Parameter timing:
1436// if NULL: transfer at next possible time, taking into account
1437// request guard time and frame delay time
1438// if == 0: transfer immediately and return time of transfer
1439// if != 0: delay transfer until time specified
1440//-------------------------------------------------------------------------------------
1441static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
1442 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1443
1444 uint32_t ThisTransferTime = 0;
1445
1446 if (timing) {
1447 if(*timing == 0) { // Measure time
1448 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1449 } else {
1450 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1451 }
1452 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1453 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1454 LastTimeProxToAirStart = *timing;
1455 } else {
1456 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1457
1458 while(GetCountSspClk() < ThisTransferTime);
1459
1460 LastTimeProxToAirStart = ThisTransferTime;
1461 }
1462
1463 // clear TXRDY
1464 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1465
1466 uint16_t c = 0;
1467 for(;;) {
1468 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1469 AT91C_BASE_SSC->SSC_THR = cmd[c];
1470 ++c;
1471 if(c >= len)
1472 break;
1473 }
1474 }
1475
1476 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1477}
1478
1479//-----------------------------------------------------------------------------
1480// Prepare reader command (in bits, support short frames) to send to FPGA
1481//-----------------------------------------------------------------------------
1482void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
1483 int i, j;
1484 int last = 0;
1485 uint8_t b;
1486
1487 ToSendReset();
1488
1489 // Start of Communication (Seq. Z)
1490 ToSend[++ToSendMax] = SEC_Z;
1491 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1492
1493 size_t bytecount = nbytes(bits);
1494 // Generate send structure for the data bits
1495 for (i = 0; i < bytecount; i++) {
1496 // Get the current byte to send
1497 b = cmd[i];
1498 size_t bitsleft = MIN((bits-(i*8)),8);
1499
1500 for (j = 0; j < bitsleft; j++) {
1501 if (b & 1) {
1502 // Sequence X
1503 ToSend[++ToSendMax] = SEC_X;
1504 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1505 last = 1;
1506 } else {
1507 if (last == 0) {
1508 // Sequence Z
1509 ToSend[++ToSendMax] = SEC_Z;
1510 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1511 } else {
1512 // Sequence Y
1513 ToSend[++ToSendMax] = SEC_Y;
1514 last = 0;
1515 }
1516 }
1517 b >>= 1;
1518 }
1519
1520 // Only transmit parity bit if we transmitted a complete byte
1521 if (j == 8 && parity != NULL) {
1522 // Get the parity bit
1523 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1524 // Sequence X
1525 ToSend[++ToSendMax] = SEC_X;
1526 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1527 last = 1;
1528 } else {
1529 if (last == 0) {
1530 // Sequence Z
1531 ToSend[++ToSendMax] = SEC_Z;
1532 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1533 } else {
1534 // Sequence Y
1535 ToSend[++ToSendMax] = SEC_Y;
1536 last = 0;
1537 }
1538 }
1539 }
1540 }
1541
1542 // End of Communication: Logic 0 followed by Sequence Y
1543 if (last == 0) {
1544 // Sequence Z
1545 ToSend[++ToSendMax] = SEC_Z;
1546 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1547 } else {
1548 // Sequence Y
1549 ToSend[++ToSendMax] = SEC_Y;
1550 last = 0;
1551 }
1552 ToSend[++ToSendMax] = SEC_Y;
1553
1554 // Convert to length of command:
1555 ++ToSendMax;
1556}
1557
1558//-----------------------------------------------------------------------------
1559// Prepare reader command to send to FPGA
1560//-----------------------------------------------------------------------------
1561void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) {
1562 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1563}
1564
1565//-----------------------------------------------------------------------------
1566// Wait for commands from reader
1567// Stop when button is pressed (return 1) or field was gone (return 2)
1568// Or return 0 when command is captured
1569//-----------------------------------------------------------------------------
1570static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
1571 *len = 0;
1572
1573 uint32_t timer = 0, vtime = 0;
1574 int analogCnt = 0;
1575 int analogAVG = 0;
1576
1577 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1578 // only, since we are receiving, not transmitting).
1579 // Signal field is off with the appropriate LED
1580 LED_D_OFF();
1581 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1582
1583 // Set ADC to read field strength
1584 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1585 AT91C_BASE_ADC->ADC_MR =
1586 ADC_MODE_PRESCALE(63) |
1587 ADC_MODE_STARTUP_TIME(1) |
1588 ADC_MODE_SAMPLE_HOLD_TIME(15);
1589 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1590 // start ADC
1591 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1592
1593 // Now run a 'software UART' on the stream of incoming samples.
1594 UartInit(received, parity);
1595
1596 // Clear RXRDY:
1597 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1598
1599 for(;;) {
1600 WDT_HIT();
1601
1602 if (BUTTON_PRESS()) return 1;
1603
1604 // test if the field exists
1605 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1606 analogCnt++;
1607 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1608 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1609 if (analogCnt >= 32) {
1610 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1611 vtime = GetTickCount();
1612 if (!timer) timer = vtime;
1613 // 50ms no field --> card to idle state
1614 if (vtime - timer > 50) return 2;
1615 } else
1616 if (timer) timer = 0;
1617 analogCnt = 0;
1618 analogAVG = 0;
1619 }
1620 }
1621
1622 // receive and test the miller decoding
1623 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1624 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1625 if(MillerDecoding(b, 0)) {
1626 *len = Uart.len;
1627 return 0;
1628 }
1629 }
1630 }
1631}
1632
1633int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) {
1634 uint8_t b;
1635 uint16_t i = 0;
1636 uint32_t ThisTransferTime;
1637
1638 // Modulate Manchester
1639 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1640
1641 // include correction bit if necessary
1642 if (Uart.parityBits & 0x01) {
1643 correctionNeeded = TRUE;
1644 }
1645 // 1236, so correction bit needed
1646 i = (correctionNeeded) ? 0 : 1;
1647
1648 // clear receiving shift register and holding register
1649 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1650 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1651 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1652 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1653
1654 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1655 for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
1656 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1657 if (AT91C_BASE_SSC->SSC_RHR) break;
1658 }
1659
1660 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1661
1662 // Clear TXRDY:
1663 AT91C_BASE_SSC->SSC_THR = SEC_F;
1664
1665 // send cycle
1666 for(; i < respLen; ) {
1667 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1668 AT91C_BASE_SSC->SSC_THR = resp[i++];
1669 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1670 }
1671
1672 if(BUTTON_PRESS()) break;
1673 }
1674
1675 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1676 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3,
1677 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1678 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1679 AT91C_BASE_SSC->SSC_THR = SEC_F;
1680 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1681 i++;
1682 }
1683 }
1684 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1685 return 0;
1686}
1687
1688int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1689 Code4bitAnswerAsTag(resp);
1690 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1691 // do the tracing for the previous reader request and this tag answer:
1692 uint8_t par[1] = {0x00};
1693 GetParity(&resp, 1, par);
1694 EmLogTrace(Uart.output,
1695 Uart.len,
1696 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1697 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1698 Uart.parity,
1699 &resp,
1700 1,
1701 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1702 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1703 par);
1704 return res;
1705}
1706
1707int EmSend4bit(uint8_t resp){
1708 return EmSend4bitEx(resp, false);
1709}
1710
1711int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1712 CodeIso14443aAsTagPar(resp, respLen, par);
1713 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1714 // do the tracing for the previous reader request and this tag answer:
1715 EmLogTrace(Uart.output,
1716 Uart.len,
1717 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1718 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1719 Uart.parity,
1720 resp,
1721 respLen,
1722 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1723 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1724 par);
1725 return res;
1726}
1727
1728int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1729 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1730 GetParity(resp, respLen, par);
1731 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1732}
1733
1734int EmSendCmd(uint8_t *resp, uint16_t respLen){
1735 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1736 GetParity(resp, respLen, par);
1737 return EmSendCmdExPar(resp, respLen, false, par);
1738}
1739
1740int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1741 return EmSendCmdExPar(resp, respLen, false, par);
1742}
1743
1744bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1745 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1746{
1747 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1748 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1749 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1750 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1751 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1752 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1753 reader_EndTime = tag_StartTime - exact_fdt;
1754 reader_StartTime = reader_EndTime - reader_modlen;
1755
1756 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE))
1757 return FALSE;
1758 else
1759 return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1760
1761}
1762
1763//-----------------------------------------------------------------------------
1764// Wait a certain time for tag response
1765// If a response is captured return TRUE
1766// If it takes too long return FALSE
1767//-----------------------------------------------------------------------------
1768static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
1769 uint32_t c = 0x00;
1770
1771 // Set FPGA mode to "reader listen mode", no modulation (listen
1772 // only, since we are receiving, not transmitting).
1773 // Signal field is on with the appropriate LED
1774 LED_D_ON();
1775 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1776
1777 // Now get the answer from the card
1778 DemodInit(receivedResponse, receivedResponsePar);
1779
1780 // clear RXRDY:
1781 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1782
1783 for(;;) {
1784 WDT_HIT();
1785
1786 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1787 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1788 if(ManchesterDecoding(b, offset, 0)) {
1789 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1790 return TRUE;
1791 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1792 return FALSE;
1793 }
1794 }
1795 }
1796}
1797
1798void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
1799
1800 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1801 // Send command to tag
1802 TransmitFor14443a(ToSend, ToSendMax, timing);
1803 if(trigger) LED_A_ON();
1804
1805 LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE);
1806}
1807
1808void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
1809 ReaderTransmitBitsPar(frame, len*8, par, timing);
1810}
1811
1812void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
1813 // Generate parity and redirect
1814 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1815 GetParity(frame, len/8, par);
1816 ReaderTransmitBitsPar(frame, len, par, timing);
1817}
1818
1819void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
1820 // Generate parity and redirect
1821 uint8_t par[MAX_PARITY_SIZE] = {0x00};
1822 GetParity(frame, len, par);
1823 ReaderTransmitBitsPar(frame, len*8, par, timing);
1824}
1825
1826int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
1827 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset))
1828 return FALSE;
1829 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1830 return Demod.len;
1831}
1832
1833int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
1834 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0))
1835 return FALSE;
1836 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1837 return Demod.len;
1838}
1839
1840// performs iso14443a anticollision (optional) and card select procedure
1841// fills the uid and cuid pointer unless NULL
1842// fills the card info record unless NULL
1843// if anticollision is false, then the UID must be provided in uid_ptr[]
1844// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1845int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
1846 uint8_t wupa[] = { ISO14443A_CMD_WUPA }; // 0x26 - ISO14443A_CMD_REQA 0x52 - ISO14443A_CMD_WUPA
1847 uint8_t sel_all[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x20 };
1848 uint8_t sel_uid[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1849 uint8_t rats[] = { ISO14443A_CMD_RATS,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1850 uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller
1851 uint8_t resp_par[MAX_PARITY_SIZE] = {0};
1852 byte_t uid_resp[4] = {0};
1853 size_t uid_resp_len = 0;
1854
1855 uint8_t sak = 0x04; // cascade uid
1856 int cascade_level = 0;
1857 int len;
1858
1859 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1860 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
1861
1862 // Receive the ATQA
1863 if(!ReaderReceive(resp, resp_par)) return 0;
1864
1865 if(p_hi14a_card) {
1866 memcpy(p_hi14a_card->atqa, resp, 2);
1867 p_hi14a_card->uidlen = 0;
1868 memset(p_hi14a_card->uid,0,10);
1869 }
1870
1871 if (anticollision) {
1872 // clear uid
1873 if (uid_ptr)
1874 memset(uid_ptr,0,10);
1875 }
1876
1877 // reset the PCB block number
1878 iso14_pcb_blocknum = 0;
1879
1880 // check for proprietary anticollision:
1881 if ((resp[0] & 0x1F) == 0) return 3;
1882
1883 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1884 // which case we need to make a cascade 2 request and select - this is a long UID
1885 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1886 for(; sak & 0x04; cascade_level++) {
1887 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1888 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1889
1890 if (anticollision) {
1891 // SELECT_ALL
1892 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1893 if (!ReaderReceive(resp, resp_par)) return 0;
1894
1895 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1896 memset(uid_resp, 0, 4);
1897 uint16_t uid_resp_bits = 0;
1898 uint16_t collision_answer_offset = 0;
1899 // anti-collision-loop:
1900 while (Demod.collisionPos) {
1901 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1902 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1903 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1904 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1905 }
1906 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1907 uid_resp_bits++;
1908 // construct anticollosion command:
1909 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1910 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1911 sel_uid[2+i] = uid_resp[i];
1912 }
1913 collision_answer_offset = uid_resp_bits%8;
1914 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1915 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1916 }
1917 // finally, add the last bits and BCC of the UID
1918 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1919 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1920 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1921 }
1922
1923 } else { // no collision, use the response to SELECT_ALL as current uid
1924 memcpy(uid_resp, resp, 4);
1925 }
1926
1927 } else {
1928 if (cascade_level < num_cascades - 1) {
1929 uid_resp[0] = 0x88;
1930 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1931 } else {
1932 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1933 }
1934 }
1935 uid_resp_len = 4;
1936
1937 // calculate crypto UID. Always use last 4 Bytes.
1938 if(cuid_ptr)
1939 *cuid_ptr = bytes_to_num(uid_resp, 4);
1940
1941 // Construct SELECT UID command
1942 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1943 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
1944 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1945 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1946 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1947
1948 // Receive the SAK
1949 if (!ReaderReceive(resp, resp_par)) return 0;
1950
1951 sak = resp[0];
1952
1953 // Test if more parts of the uid are coming
1954 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1955 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1956 // http://www.nxp.com/documents/application_note/AN10927.pdf
1957 uid_resp[0] = uid_resp[1];
1958 uid_resp[1] = uid_resp[2];
1959 uid_resp[2] = uid_resp[3];
1960 uid_resp_len = 3;
1961 }
1962
1963 if(uid_ptr && anticollision)
1964 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1965
1966 if(p_hi14a_card) {
1967 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1968 p_hi14a_card->uidlen += uid_resp_len;
1969 }
1970 }
1971
1972 if(p_hi14a_card) {
1973 p_hi14a_card->sak = sak;
1974 p_hi14a_card->ats_len = 0;
1975 }
1976
1977 // non iso14443a compliant tag
1978 if( (sak & 0x20) == 0) return 2;
1979
1980 // Request for answer to select
1981 AppendCrc14443a(rats, 2);
1982 ReaderTransmit(rats, sizeof(rats), NULL);
1983
1984 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1985
1986 if(p_hi14a_card) {
1987 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1988 p_hi14a_card->ats_len = len;
1989 }
1990
1991 // set default timeout based on ATS
1992 iso14a_set_ATS_timeout(resp);
1993 return 1;
1994}
1995
1996void iso14443a_setup(uint8_t fpga_minor_mode) {
1997
1998 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1999 // Set up the synchronous serial port
2000 FpgaSetupSsc();
2001 // connect Demodulated Signal to ADC:
2002 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2003
2004 LED_D_OFF();
2005 // Signal field is on with the appropriate LED
2006 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD ||
2007 fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN)
2008 LED_D_ON();
2009
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2011
2012 SpinDelay(20);
2013
2014 // Start the timer
2015 StartCountSspClk();
2016
2017 // Prepare the demodulation functions
2018 DemodReset();
2019 UartReset();
2020 NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
2021 iso14a_set_timeout(10*106); // 20ms default
2022}
2023
2024int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2025 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
2026 uint8_t real_cmd[cmd_len+4];
2027 real_cmd[0] = 0x0a; //I-Block
2028 // put block number into the PCB
2029 real_cmd[0] |= iso14_pcb_blocknum;
2030 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2031 memcpy(real_cmd+2, cmd, cmd_len);
2032 AppendCrc14443a(real_cmd,cmd_len+2);
2033
2034 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2035 size_t len = ReaderReceive(data, parity);
2036 //DATA LINK ERROR
2037 if (!len) return 0;
2038
2039 uint8_t *data_bytes = (uint8_t *) data;
2040
2041 // if we received an I- or R(ACK)-Block with a block number equal to the
2042 // current block number, toggle the current block number
2043 if (len >= 4 // PCB+CID+CRC = 4 bytes
2044 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2045 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2046 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2047 {
2048 iso14_pcb_blocknum ^= 1;
2049 }
2050
2051 return len;
2052}
2053
2054
2055//-----------------------------------------------------------------------------
2056// Read an ISO 14443a tag. Send out commands and store answers.
2057//-----------------------------------------------------------------------------
2058void ReaderIso14443a(UsbCommand *c) {
2059 iso14a_command_t param = c->arg[0];
2060 size_t len = c->arg[1] & 0xffff;
2061 size_t lenbits = c->arg[1] >> 16;
2062 uint32_t timeout = c->arg[2];
2063 uint8_t *cmd = c->d.asBytes;
2064 uint32_t arg0 = 0;
2065 byte_t buf[USB_CMD_DATA_SIZE] = {0x00};
2066 uint8_t par[MAX_PARITY_SIZE] = {0x00};
2067
2068 if (param & ISO14A_CONNECT)
2069 clear_trace();
2070
2071 set_tracing(TRUE);
2072
2073 if (param & ISO14A_REQUEST_TRIGGER)
2074 iso14a_set_trigger(TRUE);
2075
2076 if (param & ISO14A_CONNECT) {
2077 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2078 if(!(param & ISO14A_NO_SELECT)) {
2079 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2080 arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
2081 cmd_send(CMD_ACK, arg0, card->uidlen, 0, buf, sizeof(iso14a_card_select_t));
2082 // if it fails, the cmdhf14a.c client quites.. however this one still executes.
2083 if ( arg0 == 0 ) return;
2084 }
2085 }
2086
2087 if (param & ISO14A_SET_TIMEOUT)
2088 iso14a_set_timeout(timeout);
2089
2090 if (param & ISO14A_APDU) {
2091 arg0 = iso14_apdu(cmd, len, buf);
2092 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2093 }
2094
2095 if (param & ISO14A_RAW) {
2096 if (param & ISO14A_APPEND_CRC) {
2097 if (param & ISO14A_TOPAZMODE)
2098 AppendCrc14443b(cmd,len);
2099 else
2100 AppendCrc14443a(cmd,len);
2101
2102 len += 2;
2103 if (lenbits) lenbits += 16;
2104 }
2105 if (lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2106 if (param & ISO14A_TOPAZMODE) {
2107 int bits_to_send = lenbits;
2108 uint16_t i = 0;
2109 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2110 bits_to_send -= 7;
2111 while (bits_to_send > 0) {
2112 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2113 bits_to_send -= 8;
2114 }
2115 } else {
2116 GetParity(cmd, lenbits/8, par);
2117 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2118 }
2119 } else { // want to send complete bytes only
2120 if (param & ISO14A_TOPAZMODE) {
2121 uint16_t i = 0;
2122 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2123 while (i < len) {
2124 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2125 }
2126 } else {
2127 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2128 }
2129 }
2130 arg0 = ReaderReceive(buf, par);
2131 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2132 }
2133
2134 if (param & ISO14A_REQUEST_TRIGGER)
2135 iso14a_set_trigger(FALSE);
2136
2137 if (param & ISO14A_NO_DISCONNECT)
2138 return;
2139
2140 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2141 set_tracing(FALSE);
2142 LEDsoff();
2143}
2144
2145// Determine the distance between two nonces.
2146// Assume that the difference is small, but we don't know which is first.
2147// Therefore try in alternating directions.
2148int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2149
2150 if (nt1 == nt2) return 0;
2151
2152 uint32_t nttmp1 = nt1;
2153 uint32_t nttmp2 = nt2;
2154
2155 // 0xFFFF -- Half up and half down to find distance between nonces
2156 for (uint16_t i = 1; i < 32768/8; i += 8) {
2157 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
2158 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
2159 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2;
2160 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3;
2161 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4;
2162 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5;
2163 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6;
2164 nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7;
2165
2166 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
2167 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
2168 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2);
2169 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3);
2170 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4);
2171 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5);
2172 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6);
2173 nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7);
2174 }
2175 // either nt1 or nt2 are invalid nonces
2176 return(-99999);
2177}
2178
2179//-----------------------------------------------------------------------------
2180// Recover several bits of the cypher stream. This implements (first stages of)
2181// the algorithm described in "The Dark Side of Security by Obscurity and
2182// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2183// (article by Nicolas T. Courtois, 2009)
2184//-----------------------------------------------------------------------------
2185
2186void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) {
2187
2188 uint8_t mf_auth[] = { keytype, block, 0x00, 0x00 };
2189 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2190 uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
2191 uint8_t par_list[8] = {0,0,0,0,0,0,0,0};
2192 uint8_t ks_list[8] = {0,0,0,0,0,0,0,0};
2193 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
2194 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
2195 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2196 byte_t nt_diff = 0;
2197 uint32_t nt = 0;
2198 uint32_t previous_nt = 0;
2199 uint32_t cuid = 0;
2200
2201 int32_t catch_up_cycles = 0;
2202 int32_t last_catch_up = 0;
2203 int32_t isOK = 0;
2204 int32_t nt_distance = 0;
2205
2206 uint16_t elapsed_prng_sequences = 1;
2207 uint16_t consecutive_resyncs = 0;
2208 uint16_t unexpected_random = 0;
2209 uint16_t sync_tries = 0;
2210
2211 // static variables here, is re-used in the next call
2212 static uint32_t nt_attacked = 0;
2213 static uint32_t sync_time = 0;
2214 static uint32_t sync_cycles = 0;
2215 static uint8_t par_low = 0;
2216 static uint8_t mf_nr_ar3 = 0;
2217
2218 #define PRNG_SEQUENCE_LENGTH (1 << 16)
2219 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2220 #define MAX_SYNC_TRIES 32
2221
2222 AppendCrc14443a(mf_auth, 2);
2223
2224 BigBuf_free(); BigBuf_Clear_ext(false);
2225 clear_trace();
2226 set_tracing(FALSE);
2227 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2228
2229 sync_time = GetCountSspClk() & 0xfffffff8;
2230 sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2231 nt_attacked = 0;
2232
2233 if (MF_DBGLEVEL >= 4) Dbprintf("Mifare::Sync %u", sync_time);
2234
2235 if (first_try) {
2236 mf_nr_ar3 = 0;
2237 par_low = 0;
2238 } else {
2239 // we were unsuccessful on a previous call.
2240 // Try another READER nonce (first 3 parity bits remain the same)
2241 ++mf_nr_ar3;
2242 mf_nr_ar[3] = mf_nr_ar3;
2243 par[0] = par_low;
2244 }
2245
2246 bool have_uid = FALSE;
2247 uint8_t cascade_levels = 0;
2248
2249 LED_C_ON();
2250 uint16_t i;
2251 for(i = 0; TRUE; ++i) {
2252
2253 WDT_HIT();
2254
2255 // Test if the action was cancelled
2256 if(BUTTON_PRESS()) {
2257 isOK = -1;
2258 break;
2259 }
2260
2261 // this part is from Piwi's faster nonce collecting part in Hardnested.
2262 if (!have_uid) { // need a full select cycle to get the uid first
2263 iso14a_card_select_t card_info;
2264 if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0)) {
2265 if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (ALL)");
2266 break;
2267 }
2268 switch (card_info.uidlen) {
2269 case 4 : cascade_levels = 1; break;
2270 case 7 : cascade_levels = 2; break;
2271 case 10: cascade_levels = 3; break;
2272 default: break;
2273 }
2274 have_uid = TRUE;
2275 } else { // no need for anticollision. We can directly select the card
2276 if(!iso14443a_select_card(uid, NULL, &cuid, false, cascade_levels)) {
2277 if (MF_DBGLEVEL >= 4) Dbprintf("Mifare: Can't select card (UID)");
2278 continue;
2279 }
2280 }
2281
2282 // Sending timeslot of ISO14443a frame
2283 sync_time = (sync_time & 0xfffffff8 ) + sync_cycles + catch_up_cycles;
2284 catch_up_cycles = 0;
2285
2286 // if we missed the sync time already, advance to the next nonce repeat
2287 while( GetCountSspClk() > sync_time) {
2288 ++elapsed_prng_sequences;
2289 sync_time = (sync_time & 0xfffffff8 ) + sync_cycles;
2290 }
2291
2292 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2293 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2294
2295 // Receive the (4 Byte) "random" nonce from TAG
2296 if (!ReaderReceive(receivedAnswer, receivedAnswerPar))
2297 continue;
2298
2299 previous_nt = nt;
2300 nt = bytes_to_num(receivedAnswer, 4);
2301
2302 // Transmit reader nonce with fake par
2303 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2304
2305 // we didn't calibrate our clock yet,
2306 // iceman: has to be calibrated every time.
2307 if (previous_nt && !nt_attacked) {
2308
2309 nt_distance = dist_nt(previous_nt, nt);
2310
2311 // if no distance between, then we are in sync.
2312 if (nt_distance == 0) {
2313 nt_attacked = nt;
2314 } else {
2315 if (nt_distance == -99999) { // invalid nonce received
2316 ++unexpected_random;
2317 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2318 isOK = -3; // Card has an unpredictable PRNG. Give up
2319 break;
2320 } else {
2321 if (sync_cycles <= 0) sync_cycles += PRNG_SEQUENCE_LENGTH;
2322 LED_B_OFF();
2323 continue; // continue trying...
2324 }
2325 }
2326
2327 if (++sync_tries > MAX_SYNC_TRIES) {
2328 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2329 break;
2330 }
2331
2332 sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences;
2333
2334 if (sync_cycles <= 0)
2335 sync_cycles += PRNG_SEQUENCE_LENGTH;
2336
2337 if (MF_DBGLEVEL >= 4)
2338 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2339
2340 LED_B_OFF();
2341 continue;
2342 }
2343 }
2344 LED_B_OFF();
2345
2346 if ( (nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2347
2348 catch_up_cycles = ABS(dist_nt(nt_attacked, nt));
2349 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2350 catch_up_cycles = 0;
2351 continue;
2352 }
2353 // average?
2354 catch_up_cycles /= elapsed_prng_sequences;
2355
2356 if (catch_up_cycles == last_catch_up) {
2357 ++consecutive_resyncs;
2358 } else {
2359 last_catch_up = catch_up_cycles;
2360 consecutive_resyncs = 0;
2361 }
2362
2363 if (consecutive_resyncs < 3) {
2364 if (MF_DBGLEVEL >= 4)
2365 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, catch_up_cycles, consecutive_resyncs);
2366 } else {
2367 sync_cycles += catch_up_cycles;
2368
2369 if (MF_DBGLEVEL >= 4)
2370 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, catch_up_cycles, sync_cycles);
2371
2372 last_catch_up = 0;
2373 catch_up_cycles = 0;
2374 consecutive_resyncs = 0;
2375 }
2376 continue;
2377 }
2378
2379 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2380 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2381 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2382
2383 if (nt_diff == 0)
2384 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2385
2386 par_list[nt_diff] = SwapBits(par[0], 8);
2387 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // xor with NACK value to get keystream
2388
2389 // Test if the information is complete
2390 if (nt_diff == 0x07) {
2391 isOK = 1;
2392 break;
2393 }
2394
2395 nt_diff = (nt_diff + 1) & 0x07;
2396 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2397 par[0] = par_low;
2398
2399 } else {
2400 // No NACK.
2401 if (nt_diff == 0 && first_try) {
2402 par[0]++;
2403 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2404 isOK = -2;
2405 break;
2406 }
2407 } else {
2408 // Why this?
2409 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2410 }
2411 }
2412
2413 // reset the resyncs since we got a complete transaction on right time.
2414 consecutive_resyncs = 0;
2415 } // end for loop
2416
2417 mf_nr_ar[3] &= 0x1F;
2418
2419 if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
2420
2421 uint8_t buf[28] = {0x00};
2422 memset(buf, 0x00, sizeof(buf));
2423 num_to_bytes(cuid, 4, buf);
2424 num_to_bytes(nt, 4, buf + 4);
2425 memcpy(buf + 8, par_list, 8);
2426 memcpy(buf + 16, ks_list, 8);
2427 memcpy(buf + 24, mf_nr_ar, 4);
2428
2429 cmd_send(CMD_ACK, isOK, 0, 0, buf, sizeof(buf) );
2430
2431 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2432 LEDsoff();
2433 set_tracing(FALSE);
2434}
2435
2436
2437/**
2438 *MIFARE 1K simulate.
2439 *
2440 *@param flags :
2441 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2442 * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
2443 * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
2444 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
2445 * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
2446 * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
2447 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2448 */
2449void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) {
2450
2451 // init pseudorand
2452 fast_prand( GetTickCount() );
2453
2454 int cardSTATE = MFEMUL_NOFIELD;
2455 int _UID_LEN = 0; // 4, 7, 10
2456 int vHf = 0; // in mV
2457 int res = 0;
2458 uint32_t selTimer = 0;
2459 uint32_t authTimer = 0;
2460 uint16_t len = 0;
2461 uint8_t cardWRBL = 0;
2462 uint8_t cardAUTHSC = 0;
2463 uint8_t cardAUTHKEY = 0xff; // no authentication
2464 uint32_t cuid = 0;
2465 uint32_t ans = 0;
2466 uint32_t cardINTREG = 0;
2467 uint8_t cardINTBLOCK = 0;
2468 struct Crypto1State mpcs = {0, 0};
2469 struct Crypto1State *pcs;
2470 pcs = &mpcs;
2471 uint32_t numReads = 0; // Counts numer of times reader read a block
2472 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
2473 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
2474 uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
2475 uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
2476
2477 uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k
2478 uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
2479 uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
2480 uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
2481 // uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2482
2483 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2484 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2485 uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2486
2487 // TAG Nonce - Authenticate response
2488 uint8_t rAUTH_NT[4];
2489 uint32_t nonce = prand();
2490 num_to_bytes(nonce, 4, rAUTH_NT);
2491
2492 // uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
2493 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2494
2495 // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
2496 // This can be used in a reader-only attack.
2497 nonces_t ar_nr_nonces[ATTACK_KEY_COUNT];
2498 memset(ar_nr_nonces, 0x00, sizeof(ar_nr_nonces));
2499
2500 // -- Determine the UID
2501 // Can be set from emulator memory or incoming data
2502 // Length: 4,7,or 10 bytes
2503 if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
2504 emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
2505
2506 if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
2507 memcpy(rUIDBCC1, datain, 4);
2508 _UID_LEN = 4;
2509 } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
2510 memcpy(&rUIDBCC1[1], datain, 3);
2511 memcpy( rUIDBCC2, datain+3, 4);
2512 _UID_LEN = 7;
2513 } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
2514 memcpy(&rUIDBCC1[1], datain, 3);
2515 memcpy(&rUIDBCC2[1], datain+3, 3);
2516 memcpy( rUIDBCC3, datain+6, 4);
2517 _UID_LEN = 10;
2518 }
2519
2520 switch (_UID_LEN) {
2521 case 4:
2522 sak_4[0] &= 0xFB;
2523 // save CUID
2524 cuid = bytes_to_num(rUIDBCC1, 4);
2525 // BCC
2526 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2527 if (MF_DBGLEVEL >= 2) {
2528 Dbprintf("4B UID: %02x%02x%02x%02x",
2529 rUIDBCC1[0],
2530 rUIDBCC1[1],
2531 rUIDBCC1[2],
2532 rUIDBCC1[3]
2533 );
2534 }
2535 break;
2536 case 7:
2537 atqa[0] |= 0x40;
2538 sak_7[0] &= 0xFB;
2539 // save CUID
2540 cuid = bytes_to_num(rUIDBCC2, 4);
2541 // CascadeTag, CT
2542 rUIDBCC1[0] = 0x88;
2543 // BCC
2544 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2545 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2546 if (MF_DBGLEVEL >= 2) {
2547 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
2548 rUIDBCC1[1],
2549 rUIDBCC1[2],
2550 rUIDBCC1[3],
2551 rUIDBCC2[0],
2552 rUIDBCC2[1],
2553 rUIDBCC2[2],
2554 rUIDBCC2[3]
2555 );
2556 }
2557 break;
2558 case 10:
2559 atqa[0] |= 0x80;
2560 sak_10[0] &= 0xFB;
2561 // save CUID
2562 cuid = bytes_to_num(rUIDBCC3, 4);
2563 // CascadeTag, CT
2564 rUIDBCC1[0] = 0x88;
2565 rUIDBCC2[0] = 0x88;
2566 // BCC
2567 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2568 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2569 rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
2570
2571 if (MF_DBGLEVEL >= 2) {
2572 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
2573 rUIDBCC1[1],
2574 rUIDBCC1[2],
2575 rUIDBCC1[3],
2576 rUIDBCC2[1],
2577 rUIDBCC2[2],
2578 rUIDBCC2[3],
2579 rUIDBCC3[0],
2580 rUIDBCC3[1],
2581 rUIDBCC3[2],
2582 rUIDBCC3[3]
2583 );
2584 }
2585 break;
2586 default:
2587 break;
2588 }
2589 // calc some crcs
2590 ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
2591 ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
2592 ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
2593
2594 // We need to listen to the high-frequency, peak-detected path.
2595 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2596
2597 // free eventually allocated BigBuf memory but keep Emulator Memory
2598 BigBuf_free_keep_EM();
2599 clear_trace();
2600 set_tracing(TRUE);
2601
2602 bool finished = FALSE;
2603 while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) {
2604 WDT_HIT();
2605
2606 // find reader field
2607 if (cardSTATE == MFEMUL_NOFIELD) {
2608 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2609 if (vHf > MF_MINFIELDV) {
2610 cardSTATE_TO_IDLE();
2611 LED_A_ON();
2612 }
2613 }
2614 if (cardSTATE == MFEMUL_NOFIELD) continue;
2615
2616 // Now, get data
2617 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2618 if (res == 2) { //Field is off!
2619 cardSTATE = MFEMUL_NOFIELD;
2620 LEDsoff();
2621 continue;
2622 } else if (res == 1) {
2623 break; // return value 1 means button press
2624 }
2625
2626 // REQ or WUP request in ANY state and WUP in HALTED state
2627 // this if-statement doesn't match the specification above. (iceman)
2628 if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
2629 selTimer = GetTickCount();
2630 EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA));
2631 cardSTATE = MFEMUL_SELECT1;
2632 crypto1_destroy(pcs);
2633 cardAUTHKEY = 0xff;
2634 LEDsoff();
2635 nonce = prand();
2636 continue;
2637 }
2638
2639 switch (cardSTATE) {
2640 case MFEMUL_NOFIELD:
2641 case MFEMUL_HALTED:
2642 case MFEMUL_IDLE:{
2643 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2644 break;
2645 }
2646 case MFEMUL_SELECT1:{
2647 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
2648 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2649 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2650 break;
2651 }
2652 // select card
2653 if (len == 9 &&
2654 ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT &&
2655 receivedCmd[1] == 0x70 &&
2656 memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2657
2658 // SAK 4b
2659 EmSendCmd(sak_4, sizeof(sak_4));
2660 switch(_UID_LEN){
2661 case 4:
2662 cardSTATE = MFEMUL_WORK;
2663 LED_B_ON();
2664 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2665 continue;
2666 case 7:
2667 case 10:
2668 cardSTATE = MFEMUL_SELECT2;
2669 continue;
2670 default:break;
2671 }
2672 } else {
2673 cardSTATE_TO_IDLE();
2674 }
2675 break;
2676 }
2677 case MFEMUL_SELECT2:{
2678 if (!len) {
2679 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2680 break;
2681 }
2682 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
2683 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2684 break;
2685 }
2686 if (len == 9 &&
2687 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 &&
2688 receivedCmd[1] == 0x70 &&
2689 memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) {
2690
2691 EmSendCmd(sak_7, sizeof(sak_7));
2692 switch(_UID_LEN){
2693 case 7:
2694 cardSTATE = MFEMUL_WORK;
2695 LED_B_ON();
2696 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2697 continue;
2698 case 10:
2699 cardSTATE = MFEMUL_SELECT3;
2700 continue;
2701 default:break;
2702 }
2703 }
2704 cardSTATE_TO_IDLE();
2705 break;
2706 }
2707 case MFEMUL_SELECT3:{
2708 if (!len) {
2709 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2710 break;
2711 }
2712 if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
2713 EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
2714 break;
2715 }
2716 if (len == 9 &&
2717 (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
2718 receivedCmd[1] == 0x70 &&
2719 memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
2720
2721 EmSendCmd(sak_10, sizeof(sak_10));
2722 cardSTATE = MFEMUL_WORK;
2723 LED_B_ON();
2724 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
2725 break;
2726 }
2727 cardSTATE_TO_IDLE();
2728 break;
2729 }
2730 case MFEMUL_AUTH1:{
2731 if( len != 8) {
2732 cardSTATE_TO_IDLE();
2733 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2734 break;
2735 }
2736
2737 uint32_t nr = bytes_to_num(receivedCmd, 4);
2738 uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
2739
2740 // Collect AR/NR per keytype & sector
2741 if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
2742
2743 int8_t index = -1;
2744 int8_t empty = -1;
2745 for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
2746 // find which index to use
2747 if ( (cardAUTHSC == ar_nr_nonces[i].sector) && (cardAUTHKEY == ar_nr_nonces[i].keytype))
2748 index = i;
2749
2750 // keep track of empty slots.
2751 if ( ar_nr_nonces[i].state == EMPTY)
2752 empty = i;
2753 }
2754 // if no empty slots. Choose first and overwrite.
2755 if ( index == -1 ) {
2756 if ( empty == -1 ) {
2757 index = 0;
2758 ar_nr_nonces[index].state = EMPTY;
2759 } else {
2760 index = empty;
2761 }
2762 }
2763
2764 switch(ar_nr_nonces[index].state) {
2765 case EMPTY: {
2766 // first nonce collect
2767 ar_nr_nonces[index].cuid = cuid;
2768 ar_nr_nonces[index].sector = cardAUTHSC;
2769 ar_nr_nonces[index].keytype = cardAUTHKEY;
2770 ar_nr_nonces[index].nonce = nonce;
2771 ar_nr_nonces[index].nr = nr;
2772 ar_nr_nonces[index].ar = ar;
2773 ar_nr_nonces[index].state = FIRST;
2774 break;
2775 }
2776 case FIRST : {
2777 // second nonce collect
2778 ar_nr_nonces[index].nonce2 = nonce;
2779 ar_nr_nonces[index].nr2 = nr;
2780 ar_nr_nonces[index].ar2 = ar;
2781 ar_nr_nonces[index].state = SECOND;
2782
2783 // send to client
2784 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, 0, 0, &ar_nr_nonces[index], sizeof(nonces_t));
2785
2786 ar_nr_nonces[index].state = EMPTY;
2787 ar_nr_nonces[index].sector = 0;
2788 ar_nr_nonces[index].keytype = 0;
2789 break;
2790 }
2791 default: break;
2792 }
2793 }
2794
2795 /*
2796 // Interactive mode flag, means we need to send ACK
2797
2798 crypto1_word(pcs, ar , 1);
2799 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2800
2801 test if auth OK
2802 if (cardRr != prng_successor(nonce, 64)){
2803
2804 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2805 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2806 cardRr, prng_successor(nonce, 64));
2807 Shouldn't we respond anything here?
2808 Right now, we don't nack or anything, which causes the
2809 reader to do a WUPA after a while. /Martin
2810 -- which is the correct response. /piwi
2811 cardSTATE_TO_IDLE();
2812 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2813 break;
2814 }
2815 */
2816
2817 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2818 num_to_bytes(ans, 4, rAUTH_AT);
2819 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2820 LED_C_ON();
2821
2822 if (MF_DBGLEVEL >= 4) {
2823 Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2824 cardAUTHSC,
2825 cardAUTHKEY == 0 ? 'A' : 'B',
2826 GetTickCount() - authTimer
2827 );
2828 }
2829 cardSTATE = MFEMUL_WORK;
2830 break;
2831 }
2832 case MFEMUL_WORK:{
2833 if (len == 0) {
2834 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2835 break;
2836 }
2837 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2838
2839 if(encrypted_data)
2840 mf_crypto1_decrypt(pcs, receivedCmd, len);
2841
2842 if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA ||
2843 receivedCmd[0] == MIFARE_AUTH_KEYB) ) {
2844
2845 authTimer = GetTickCount();
2846 cardAUTHSC = receivedCmd[1] / 4; // received block num
2847 cardAUTHKEY = receivedCmd[0] - 0x60; // & 1
2848 crypto1_destroy(pcs);
2849 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2850
2851 if (!encrypted_data) {
2852 // first authentication
2853 crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state
2854 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2855
2856 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2857
2858 } else {
2859 // nested authentication
2860 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2861 num_to_bytes(ans, 4, rAUTH_AT);
2862
2863 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2864 }
2865
2866 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2867 cardSTATE = MFEMUL_AUTH1;
2868 break;
2869 }
2870
2871 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2872 // BUT... ACK --> NACK
2873 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2874 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2875 break;
2876 }
2877
2878 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2879 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2880 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2881 break;
2882 }
2883
2884 if(len != 4) {
2885 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2886 break;
2887 }
2888
2889 if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK ||
2890 receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK ||
2891 receivedCmd[0] == MIFARE_CMD_INC ||
2892 receivedCmd[0] == MIFARE_CMD_DEC ||
2893 receivedCmd[0] == MIFARE_CMD_RESTORE ||
2894 receivedCmd[0] == MIFARE_CMD_TRANSFER ) {
2895
2896 if (receivedCmd[1] >= 16 * 4) {
2897 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2898 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2899 break;
2900 }
2901
2902 if (receivedCmd[1] / 4 != cardAUTHSC) {
2903 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2904 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2905 break;
2906 }
2907 }
2908 // read block
2909 if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) {
2910 if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]);
2911
2912 emlGetMem(response, receivedCmd[1], 1);
2913 AppendCrc14443a(response, 16);
2914 mf_crypto1_encrypt(pcs, response, 18, response_par);
2915 EmSendCmdPar(response, 18, response_par);
2916 numReads++;
2917 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2918 Dbprintf("%d reads done, exiting", numReads);
2919 finished = true;
2920 }
2921 break;
2922 }
2923 // write block
2924 if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) {
2925 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]);
2926 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2927 cardSTATE = MFEMUL_WRITEBL2;
2928 cardWRBL = receivedCmd[1];
2929 break;
2930 }
2931 // increment, decrement, restore
2932 if ( receivedCmd[0] == MIFARE_CMD_INC ||
2933 receivedCmd[0] == MIFARE_CMD_DEC ||
2934 receivedCmd[0] == MIFARE_CMD_RESTORE) {
2935
2936 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]);
2937
2938 if (emlCheckValBl(receivedCmd[1])) {
2939 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2940 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2941 break;
2942 }
2943 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2944 if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC;
2945 if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC;
2946 if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST;
2947 cardWRBL = receivedCmd[1];
2948 break;
2949 }
2950 // transfer
2951 if (receivedCmd[0] == MIFARE_CMD_TRANSFER) {
2952 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]);
2953 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2954 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2955 else
2956 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2957 break;
2958 }
2959 // halt
2960 if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) {
2961 LED_B_OFF();
2962 LED_C_OFF();
2963 cardSTATE = MFEMUL_HALTED;
2964 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2965 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2966 break;
2967 }
2968 // RATS
2969 if (receivedCmd[0] == ISO14443A_CMD_RATS) {
2970 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2971 break;
2972 }
2973 // command not allowed
2974 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2975 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2976 break;
2977 }
2978 case MFEMUL_WRITEBL2:{
2979 if (len == 18) {
2980 mf_crypto1_decrypt(pcs, receivedCmd, len);
2981 emlSetMem(receivedCmd, cardWRBL, 1);
2982 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2983 cardSTATE = MFEMUL_WORK;
2984 } else {
2985 cardSTATE_TO_IDLE();
2986 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2987 }
2988 break;
2989 }
2990 case MFEMUL_INTREG_INC:{
2991 mf_crypto1_decrypt(pcs, receivedCmd, len);
2992 memcpy(&ans, receivedCmd, 4);
2993 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2994 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2995 cardSTATE_TO_IDLE();
2996 break;
2997 }
2998 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2999 cardINTREG = cardINTREG + ans;
3000 cardSTATE = MFEMUL_WORK;
3001 break;
3002 }
3003 case MFEMUL_INTREG_DEC:{
3004 mf_crypto1_decrypt(pcs, receivedCmd, len);
3005 memcpy(&ans, receivedCmd, 4);
3006 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
3007 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
3008 cardSTATE_TO_IDLE();
3009 break;
3010 }
3011 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
3012 cardINTREG = cardINTREG - ans;
3013 cardSTATE = MFEMUL_WORK;
3014 break;
3015 }
3016 case MFEMUL_INTREG_REST:{
3017 mf_crypto1_decrypt(pcs, receivedCmd, len);
3018 memcpy(&ans, receivedCmd, 4);
3019 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
3020 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
3021 cardSTATE_TO_IDLE();
3022 break;
3023 }
3024 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
3025 cardSTATE = MFEMUL_WORK;
3026 break;
3027 }
3028 }
3029 }
3030
3031 if (MF_DBGLEVEL >= 1)
3032 Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
3033
3034 cmd_send(CMD_ACK,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
3035 LEDsoff();
3036 set_tracing(FALSE);
3037}
3038
3039
3040//-----------------------------------------------------------------------------
3041// MIFARE sniffer.
3042//
3043// if no activity for 2sec, it sends the collected data to the client.
3044//-----------------------------------------------------------------------------
3045// "hf mf sniff"
3046void RAMFUNC SniffMifare(uint8_t param) {
3047
3048 LEDsoff();
3049
3050 // free eventually allocated BigBuf memory
3051 BigBuf_free(); BigBuf_Clear_ext(false);
3052 clear_trace();
3053 set_tracing(TRUE);
3054
3055 // The command (reader -> tag) that we're receiving.
3056 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
3057 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
3058
3059 // The response (tag -> reader) that we're receiving.
3060 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00};
3061 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00};
3062
3063 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3064
3065 // allocate the DMA buffer, used to stream samples from the FPGA
3066 // [iceman] is this sniffed data unsigned?
3067 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
3068 uint8_t *data = dmaBuf;
3069 uint8_t previous_data = 0;
3070 int maxDataLen = 0;
3071 int dataLen = 0;
3072 bool ReaderIsActive = FALSE;
3073 bool TagIsActive = FALSE;
3074
3075 // Set up the demodulator for tag -> reader responses.
3076 DemodInit(receivedResponse, receivedResponsePar);
3077
3078 // Set up the demodulator for the reader -> tag commands
3079 UartInit(receivedCmd, receivedCmdPar);
3080
3081 // Setup and start DMA.
3082 // set transfer address and number of bytes. Start transfer.
3083 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
3084 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3085 return;
3086 }
3087
3088 LED_D_OFF();
3089
3090 MfSniffInit();
3091
3092 // And now we loop, receiving samples.
3093 for(uint32_t sniffCounter = 0;; ) {
3094
3095 LED_A_ON();
3096 WDT_HIT();
3097
3098 if(BUTTON_PRESS()) {
3099 DbpString("cancelled by button");
3100 break;
3101 }
3102
3103 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3104 // check if a transaction is completed (timeout after 2000ms).
3105 // if yes, stop the DMA transfer and send what we have so far to the client
3106 if (MfSniffSend(2000)) {
3107 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3108 sniffCounter = 0;
3109 data = dmaBuf;
3110 maxDataLen = 0;
3111 ReaderIsActive = FALSE;
3112 TagIsActive = FALSE;
3113 // Setup and start DMA. set transfer address and number of bytes. Start transfer.
3114 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){
3115 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3116 return;
3117 }
3118 }
3119 }
3120
3121 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3122 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3123
3124 if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
3125 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3126 else
3127 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3128
3129 // test for length of buffer
3130 if(dataLen > maxDataLen) { // we are more behind than ever...
3131 maxDataLen = dataLen;
3132 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3133 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3134 break;
3135 }
3136 }
3137 if(dataLen < 1) continue;
3138
3139 // primary buffer was stopped ( <-- we lost data!
3140 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3141 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3142 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3143 Dbprintf("RxEmpty ERROR, data length:%d", dataLen); // temporary
3144 }
3145 // secondary buffer sets as primary, secondary buffer was stopped
3146 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3147 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3148 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3149 }
3150
3151 LED_A_OFF();
3152
3153 if (sniffCounter & 0x01) {
3154
3155 // no need to try decoding tag data if the reader is sending
3156 if(!TagIsActive) {
3157 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3158 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3159 LED_C_INV();
3160
3161 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3162
3163 UartInit(receivedCmd, receivedCmdPar);
3164 DemodReset();
3165 }
3166 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3167 }
3168
3169 // no need to try decoding tag data if the reader is sending
3170 if(!ReaderIsActive) {
3171 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3172 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3173 LED_C_INV();
3174
3175 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3176
3177 DemodReset();
3178 UartInit(receivedCmd, receivedCmdPar);
3179 }
3180 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3181 }
3182 }
3183
3184 previous_data = *data;
3185 sniffCounter++;
3186 data++;
3187
3188 if(data == dmaBuf + DMA_BUFFER_SIZE)
3189 data = dmaBuf;
3190
3191 } // main cycle
3192
3193 if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3194
3195 FpgaDisableSscDma();
3196 MfSniffEnd();
3197 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
3198 LEDsoff();
3199 set_tracing(FALSE);
3200}
Impressum, Datenschutz