]>
Commit | Line | Data |
---|---|---|
1 | //-----------------------------------------------------------------------------\r | |
2 | // Routines to support ISO 14443 type A.\r | |
3 | //\r | |
4 | // Gerhard de Koning Gans - May 2008\r | |
5 | //-----------------------------------------------------------------------------\r | |
6 | #include <proxmark3.h>\r | |
7 | #include "apps.h"\r | |
8 | #include "../common/iso14443_crc.c"\r | |
9 | \r | |
10 | static BYTE *trace = (BYTE *) BigBuf;\r | |
11 | static int traceLen = 0;\r | |
12 | static int rsamples = 0;\r | |
13 | \r | |
14 | typedef enum {\r | |
15 | SEC_D = 1,\r | |
16 | SEC_E = 2,\r | |
17 | SEC_F = 3,\r | |
18 | SEC_X = 4,\r | |
19 | SEC_Y = 5,\r | |
20 | SEC_Z = 6\r | |
21 | } SecType;\r | |
22 | \r | |
23 | static const BYTE OddByteParity[256] = {\r | |
24 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
25 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
26 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
27 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
28 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
29 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
30 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
31 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
32 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
33 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
34 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
35 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
36 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,\r | |
37 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
38 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,\r | |
39 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1\r | |
40 | };\r | |
41 | \r | |
42 | //-----------------------------------------------------------------------------\r | |
43 | // Generate the parity value for a byte sequence\r | |
44 | // \r | |
45 | //-----------------------------------------------------------------------------\r | |
46 | DWORD GetParity(const BYTE * pbtCmd, int iLen)\r | |
47 | {\r | |
48 | int i;\r | |
49 | DWORD dwPar = 0;\r | |
50 | \r | |
51 | // Generate the encrypted data\r | |
52 | for (i = 0; i < iLen; i++) {\r | |
53 | // Save the encrypted parity bit\r | |
54 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i);\r | |
55 | }\r | |
56 | return dwPar;\r | |
57 | }\r | |
58 | \r | |
59 | //-----------------------------------------------------------------------------\r | |
60 | // The software UART that receives commands from the reader, and its state\r | |
61 | // variables.\r | |
62 | //-----------------------------------------------------------------------------\r | |
63 | static struct {\r | |
64 | enum {\r | |
65 | STATE_UNSYNCD,\r | |
66 | STATE_START_OF_COMMUNICATION,\r | |
67 | STATE_MILLER_X,\r | |
68 | STATE_MILLER_Y,\r | |
69 | STATE_MILLER_Z,\r | |
70 | STATE_ERROR_WAIT\r | |
71 | } state;\r | |
72 | WORD shiftReg;\r | |
73 | int bitCnt;\r | |
74 | int byteCnt;\r | |
75 | int byteCntMax;\r | |
76 | int posCnt;\r | |
77 | int syncBit;\r | |
78 | int parityBits;\r | |
79 | int samples;\r | |
80 | int highCnt;\r | |
81 | int bitBuffer;\r | |
82 | enum {\r | |
83 | DROP_NONE,\r | |
84 | DROP_FIRST_HALF,\r | |
85 | DROP_SECOND_HALF\r | |
86 | } drop;\r | |
87 | BYTE *output;\r | |
88 | } Uart;\r | |
89 | \r | |
90 | static BOOL MillerDecoding(int bit)\r | |
91 | {\r | |
92 | int error = 0;\r | |
93 | int bitright;\r | |
94 | \r | |
95 | if(!Uart.bitBuffer) {\r | |
96 | Uart.bitBuffer = bit ^ 0xFF0;\r | |
97 | return FALSE;\r | |
98 | }\r | |
99 | else {\r | |
100 | Uart.bitBuffer <<= 4;\r | |
101 | Uart.bitBuffer ^= bit;\r | |
102 | }\r | |
103 | \r | |
104 | BOOL EOC = FALSE;\r | |
105 | \r | |
106 | if(Uart.state != STATE_UNSYNCD) {\r | |
107 | Uart.posCnt++;\r | |
108 | \r | |
109 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r | |
110 | bit = 0x00;\r | |
111 | }\r | |
112 | else {\r | |
113 | bit = 0x01;\r | |
114 | }\r | |
115 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r | |
116 | bitright = 0x00;\r | |
117 | }\r | |
118 | else {\r | |
119 | bitright = 0x01;\r | |
120 | }\r | |
121 | if(bit != bitright) { bit = bitright; }\r | |
122 | \r | |
123 | if(Uart.posCnt == 1) {\r | |
124 | // measurement first half bitperiod\r | |
125 | if(!bit) {\r | |
126 | Uart.drop = DROP_FIRST_HALF;\r | |
127 | }\r | |
128 | }\r | |
129 | else {\r | |
130 | // measurement second half bitperiod\r | |
131 | if(!bit & (Uart.drop == DROP_NONE)) {\r | |
132 | Uart.drop = DROP_SECOND_HALF;\r | |
133 | }\r | |
134 | else if(!bit) {\r | |
135 | // measured a drop in first and second half\r | |
136 | // which should not be possible\r | |
137 | Uart.state = STATE_ERROR_WAIT;\r | |
138 | error = 0x01;\r | |
139 | }\r | |
140 | \r | |
141 | Uart.posCnt = 0;\r | |
142 | \r | |
143 | switch(Uart.state) {\r | |
144 | case STATE_START_OF_COMMUNICATION:\r | |
145 | Uart.shiftReg = 0;\r | |
146 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
147 | // error, should not happen in SOC\r | |
148 | Uart.state = STATE_ERROR_WAIT;\r | |
149 | error = 0x02;\r | |
150 | }\r | |
151 | else {\r | |
152 | // correct SOC\r | |
153 | Uart.state = STATE_MILLER_Z;\r | |
154 | }\r | |
155 | break;\r | |
156 | \r | |
157 | case STATE_MILLER_Z:\r | |
158 | Uart.bitCnt++;\r | |
159 | Uart.shiftReg >>= 1;\r | |
160 | if(Uart.drop == DROP_NONE) {\r | |
161 | // logic '0' followed by sequence Y\r | |
162 | // end of communication\r | |
163 | Uart.state = STATE_UNSYNCD;\r | |
164 | EOC = TRUE;\r | |
165 | }\r | |
166 | // if(Uart.drop == DROP_FIRST_HALF) {\r | |
167 | // Uart.state = STATE_MILLER_Z; stay the same\r | |
168 | // we see a logic '0' }\r | |
169 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
170 | // we see a logic '1'\r | |
171 | Uart.shiftReg |= 0x100;\r | |
172 | Uart.state = STATE_MILLER_X;\r | |
173 | }\r | |
174 | break;\r | |
175 | \r | |
176 | case STATE_MILLER_X:\r | |
177 | Uart.shiftReg >>= 1;\r | |
178 | if(Uart.drop == DROP_NONE) {\r | |
179 | // sequence Y, we see a '0'\r | |
180 | Uart.state = STATE_MILLER_Y;\r | |
181 | Uart.bitCnt++;\r | |
182 | }\r | |
183 | if(Uart.drop == DROP_FIRST_HALF) {\r | |
184 | // Would be STATE_MILLER_Z\r | |
185 | // but Z does not follow X, so error\r | |
186 | Uart.state = STATE_ERROR_WAIT;\r | |
187 | error = 0x03;\r | |
188 | }\r | |
189 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
190 | // We see a '1' and stay in state X\r | |
191 | Uart.shiftReg |= 0x100;\r | |
192 | Uart.bitCnt++;\r | |
193 | }\r | |
194 | break;\r | |
195 | \r | |
196 | case STATE_MILLER_Y:\r | |
197 | Uart.bitCnt++;\r | |
198 | Uart.shiftReg >>= 1;\r | |
199 | if(Uart.drop == DROP_NONE) {\r | |
200 | // logic '0' followed by sequence Y\r | |
201 | // end of communication\r | |
202 | Uart.state = STATE_UNSYNCD;\r | |
203 | EOC = TRUE;\r | |
204 | }\r | |
205 | if(Uart.drop == DROP_FIRST_HALF) {\r | |
206 | // we see a '0'\r | |
207 | Uart.state = STATE_MILLER_Z;\r | |
208 | }\r | |
209 | if(Uart.drop == DROP_SECOND_HALF) {\r | |
210 | // We see a '1' and go to state X\r | |
211 | Uart.shiftReg |= 0x100;\r | |
212 | Uart.state = STATE_MILLER_X;\r | |
213 | }\r | |
214 | break;\r | |
215 | \r | |
216 | case STATE_ERROR_WAIT:\r | |
217 | // That went wrong. Now wait for at least two bit periods\r | |
218 | // and try to sync again\r | |
219 | if(Uart.drop == DROP_NONE) {\r | |
220 | Uart.highCnt = 6;\r | |
221 | Uart.state = STATE_UNSYNCD;\r | |
222 | }\r | |
223 | break;\r | |
224 | \r | |
225 | default:\r | |
226 | Uart.state = STATE_UNSYNCD;\r | |
227 | Uart.highCnt = 0;\r | |
228 | break;\r | |
229 | }\r | |
230 | \r | |
231 | Uart.drop = DROP_NONE;\r | |
232 | \r | |
233 | // should have received at least one whole byte...\r | |
234 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r | |
235 | return TRUE;\r | |
236 | }\r | |
237 | \r | |
238 | if(Uart.bitCnt == 9) {\r | |
239 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r | |
240 | Uart.byteCnt++;\r | |
241 | \r | |
242 | Uart.parityBits <<= 1;\r | |
243 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r | |
244 | \r | |
245 | if(EOC) {\r | |
246 | // when End of Communication received and\r | |
247 | // all data bits processed..\r | |
248 | return TRUE;\r | |
249 | }\r | |
250 | Uart.bitCnt = 0;\r | |
251 | }\r | |
252 | \r | |
253 | /*if(error) {\r | |
254 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
255 | Uart.byteCnt++;\r | |
256 | Uart.output[Uart.byteCnt] = error & 0xFF;\r | |
257 | Uart.byteCnt++;\r | |
258 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
259 | Uart.byteCnt++;\r | |
260 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r | |
261 | Uart.byteCnt++;\r | |
262 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r | |
263 | Uart.byteCnt++;\r | |
264 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r | |
265 | Uart.byteCnt++;\r | |
266 | Uart.output[Uart.byteCnt] = 0xAA;\r | |
267 | Uart.byteCnt++;\r | |
268 | return TRUE;\r | |
269 | }*/\r | |
270 | }\r | |
271 | \r | |
272 | }\r | |
273 | else {\r | |
274 | bit = Uart.bitBuffer & 0xf0;\r | |
275 | bit >>= 4;\r | |
276 | bit ^= 0x0F;\r | |
277 | if(bit) {\r | |
278 | // should have been high or at least (4 * 128) / fc\r | |
279 | // according to ISO this should be at least (9 * 128 + 20) / fc\r | |
280 | if(Uart.highCnt == 8) {\r | |
281 | // we went low, so this could be start of communication\r | |
282 | // it turns out to be safer to choose a less significant\r | |
283 | // syncbit... so we check whether the neighbour also represents the drop\r | |
284 | Uart.posCnt = 1; // apparently we are busy with our first half bit period\r | |
285 | Uart.syncBit = bit & 8;\r | |
286 | Uart.samples = 3;\r | |
287 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }\r | |
288 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r | |
289 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }\r | |
290 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r | |
291 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;\r | |
292 | if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r | |
293 | Uart.syncBit = 8;\r | |
294 | \r | |
295 | // the first half bit period is expected in next sample\r | |
296 | Uart.posCnt = 0;\r | |
297 | Uart.samples = 3;\r | |
298 | }\r | |
299 | }\r | |
300 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }\r | |
301 | \r | |
302 | Uart.syncBit <<= 4;\r | |
303 | Uart.state = STATE_START_OF_COMMUNICATION;\r | |
304 | Uart.drop = DROP_FIRST_HALF;\r | |
305 | Uart.bitCnt = 0;\r | |
306 | Uart.byteCnt = 0;\r | |
307 | Uart.parityBits = 0;\r | |
308 | error = 0;\r | |
309 | }\r | |
310 | else {\r | |
311 | Uart.highCnt = 0;\r | |
312 | }\r | |
313 | }\r | |
314 | else {\r | |
315 | if(Uart.highCnt < 8) {\r | |
316 | Uart.highCnt++;\r | |
317 | }\r | |
318 | }\r | |
319 | }\r | |
320 | \r | |
321 | return FALSE;\r | |
322 | }\r | |
323 | \r | |
324 | //=============================================================================\r | |
325 | // ISO 14443 Type A - Manchester\r | |
326 | //=============================================================================\r | |
327 | \r | |
328 | static struct {\r | |
329 | enum {\r | |
330 | DEMOD_UNSYNCD,\r | |
331 | DEMOD_START_OF_COMMUNICATION,\r | |
332 | DEMOD_MANCHESTER_D,\r | |
333 | DEMOD_MANCHESTER_E,\r | |
334 | DEMOD_MANCHESTER_F,\r | |
335 | DEMOD_ERROR_WAIT\r | |
336 | } state;\r | |
337 | int bitCount;\r | |
338 | int posCount;\r | |
339 | int syncBit;\r | |
340 | int parityBits;\r | |
341 | WORD shiftReg;\r | |
342 | int buffer;\r | |
343 | int buff;\r | |
344 | int samples;\r | |
345 | int len;\r | |
346 | enum {\r | |
347 | SUB_NONE,\r | |
348 | SUB_FIRST_HALF,\r | |
349 | SUB_SECOND_HALF\r | |
350 | } sub;\r | |
351 | BYTE *output;\r | |
352 | } Demod;\r | |
353 | \r | |
354 | static BOOL ManchesterDecoding(int v)\r | |
355 | {\r | |
356 | int bit;\r | |
357 | int modulation;\r | |
358 | int error = 0;\r | |
359 | \r | |
360 | if(!Demod.buff) {\r | |
361 | Demod.buff = 1;\r | |
362 | Demod.buffer = v;\r | |
363 | return FALSE;\r | |
364 | }\r | |
365 | else {\r | |
366 | bit = Demod.buffer;\r | |
367 | Demod.buffer = v;\r | |
368 | }\r | |
369 | \r | |
370 | if(Demod.state==DEMOD_UNSYNCD) {\r | |
371 | Demod.output[Demod.len] = 0xfa;\r | |
372 | Demod.syncBit = 0;\r | |
373 | //Demod.samples = 0;\r | |
374 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part\r | |
375 | if(bit & 0x08) { Demod.syncBit = 0x08; }\r | |
376 | if(!Demod.syncBit) {\r | |
377 | if(bit & 0x04) { Demod.syncBit = 0x04; }\r | |
378 | }\r | |
379 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r | |
380 | if(!Demod.syncBit) {\r | |
381 | if(bit & 0x02) { Demod.syncBit = 0x02; }\r | |
382 | }\r | |
383 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r | |
384 | if(!Demod.syncBit) {\r | |
385 | if(bit & 0x01) { Demod.syncBit = 0x01; }\r | |
386 | \r | |
387 | if(Demod.syncBit & (Demod.buffer & 0x08)) {\r | |
388 | Demod.syncBit = 0x08;\r | |
389 | \r | |
390 | // The first half bitperiod is expected in next sample\r | |
391 | Demod.posCount = 0;\r | |
392 | Demod.output[Demod.len] = 0xfb;\r | |
393 | }\r | |
394 | }\r | |
395 | else if(bit & 0x01) { Demod.syncBit = 0x01; }\r | |
396 | \r | |
397 | if(Demod.syncBit) {\r | |
398 | Demod.len = 0;\r | |
399 | Demod.state = DEMOD_START_OF_COMMUNICATION;\r | |
400 | Demod.sub = SUB_FIRST_HALF;\r | |
401 | Demod.bitCount = 0;\r | |
402 | Demod.shiftReg = 0;\r | |
403 | Demod.parityBits = 0;\r | |
404 | Demod.samples = 0;\r | |
405 | if(Demod.posCount) {\r | |
406 | switch(Demod.syncBit) {\r | |
407 | case 0x08: Demod.samples = 3; break;\r | |
408 | case 0x04: Demod.samples = 2; break;\r | |
409 | case 0x02: Demod.samples = 1; break;\r | |
410 | case 0x01: Demod.samples = 0; break;\r | |
411 | }\r | |
412 | }\r | |
413 | error = 0;\r | |
414 | }\r | |
415 | }\r | |
416 | else {\r | |
417 | //modulation = bit & Demod.syncBit;\r | |
418 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r | |
419 | \r | |
420 | Demod.samples += 4;\r | |
421 | \r | |
422 | if(Demod.posCount==0) {\r | |
423 | Demod.posCount = 1;\r | |
424 | if(modulation) {\r | |
425 | Demod.sub = SUB_FIRST_HALF;\r | |
426 | }\r | |
427 | else {\r | |
428 | Demod.sub = SUB_NONE;\r | |
429 | }\r | |
430 | }\r | |
431 | else {\r | |
432 | Demod.posCount = 0;\r | |
433 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r | |
434 | if(Demod.state!=DEMOD_ERROR_WAIT) {\r | |
435 | Demod.state = DEMOD_ERROR_WAIT;\r | |
436 | Demod.output[Demod.len] = 0xaa;\r | |
437 | error = 0x01;\r | |
438 | }\r | |
439 | }\r | |
440 | else if(modulation) {\r | |
441 | Demod.sub = SUB_SECOND_HALF;\r | |
442 | }\r | |
443 | \r | |
444 | switch(Demod.state) {\r | |
445 | case DEMOD_START_OF_COMMUNICATION:\r | |
446 | if(Demod.sub == SUB_FIRST_HALF) {\r | |
447 | Demod.state = DEMOD_MANCHESTER_D;\r | |
448 | }\r | |
449 | else {\r | |
450 | Demod.output[Demod.len] = 0xab;\r | |
451 | Demod.state = DEMOD_ERROR_WAIT;\r | |
452 | error = 0x02;\r | |
453 | }\r | |
454 | break;\r | |
455 | \r | |
456 | case DEMOD_MANCHESTER_D:\r | |
457 | case DEMOD_MANCHESTER_E:\r | |
458 | if(Demod.sub == SUB_FIRST_HALF) {\r | |
459 | Demod.bitCount++;\r | |
460 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r | |
461 | Demod.state = DEMOD_MANCHESTER_D;\r | |
462 | }\r | |
463 | else if(Demod.sub == SUB_SECOND_HALF) {\r | |
464 | Demod.bitCount++;\r | |
465 | Demod.shiftReg >>= 1;\r | |
466 | Demod.state = DEMOD_MANCHESTER_E;\r | |
467 | }\r | |
468 | else {\r | |
469 | Demod.state = DEMOD_MANCHESTER_F;\r | |
470 | }\r | |
471 | break;\r | |
472 | \r | |
473 | case DEMOD_MANCHESTER_F:\r | |
474 | // Tag response does not need to be a complete byte!\r | |
475 | if(Demod.len > 0 || Demod.bitCount > 0) {\r | |
476 | if(Demod.bitCount > 0) {\r | |
477 | Demod.shiftReg >>= (9 - Demod.bitCount);\r | |
478 | Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r | |
479 | Demod.len++;\r | |
480 | // No parity bit, so just shift a 0\r | |
481 | Demod.parityBits <<= 1;\r | |
482 | }\r | |
483 | \r | |
484 | Demod.state = DEMOD_UNSYNCD;\r | |
485 | return TRUE;\r | |
486 | }\r | |
487 | else {\r | |
488 | Demod.output[Demod.len] = 0xad;\r | |
489 | Demod.state = DEMOD_ERROR_WAIT;\r | |
490 | error = 0x03;\r | |
491 | }\r | |
492 | break;\r | |
493 | \r | |
494 | case DEMOD_ERROR_WAIT:\r | |
495 | Demod.state = DEMOD_UNSYNCD;\r | |
496 | break;\r | |
497 | \r | |
498 | default:\r | |
499 | Demod.output[Demod.len] = 0xdd;\r | |
500 | Demod.state = DEMOD_UNSYNCD;\r | |
501 | break;\r | |
502 | }\r | |
503 | \r | |
504 | if(Demod.bitCount>=9) {\r | |
505 | Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r | |
506 | Demod.len++;\r | |
507 | \r | |
508 | Demod.parityBits <<= 1;\r | |
509 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r | |
510 | \r | |
511 | Demod.bitCount = 0;\r | |
512 | Demod.shiftReg = 0;\r | |
513 | }\r | |
514 | \r | |
515 | /*if(error) {\r | |
516 | Demod.output[Demod.len] = 0xBB;\r | |
517 | Demod.len++;\r | |
518 | Demod.output[Demod.len] = error & 0xFF;\r | |
519 | Demod.len++;\r | |
520 | Demod.output[Demod.len] = 0xBB;\r | |
521 | Demod.len++;\r | |
522 | Demod.output[Demod.len] = bit & 0xFF;\r | |
523 | Demod.len++;\r | |
524 | Demod.output[Demod.len] = Demod.buffer & 0xFF;\r | |
525 | Demod.len++;\r | |
526 | Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r | |
527 | Demod.len++;\r | |
528 | Demod.output[Demod.len] = 0xBB;\r | |
529 | Demod.len++;\r | |
530 | return TRUE;\r | |
531 | }*/\r | |
532 | \r | |
533 | }\r | |
534 | \r | |
535 | } // end (state != UNSYNCED)\r | |
536 | \r | |
537 | return FALSE;\r | |
538 | }\r | |
539 | \r | |
540 | //=============================================================================\r | |
541 | // Finally, a `sniffer' for ISO 14443 Type A\r | |
542 | // Both sides of communication!\r | |
543 | //=============================================================================\r | |
544 | \r | |
545 | //-----------------------------------------------------------------------------\r | |
546 | // Record the sequence of commands sent by the reader to the tag, with\r | |
547 | // triggering so that we start recording at the point that the tag is moved\r | |
548 | // near the reader.\r | |
549 | //-----------------------------------------------------------------------------\r | |
550 | void SnoopIso14443a(void)\r | |
551 | {\r | |
552 | \r | |
553 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r | |
554 | \r | |
555 | #define RECV_CMD_OFFSET 3032\r | |
556 | #define RECV_RES_OFFSET 3096\r | |
557 | #define DMA_BUFFER_OFFSET 3160\r | |
558 | #define DMA_BUFFER_SIZE 4096\r | |
559 | #define TRACE_LENGTH 3000\r | |
560 | \r | |
561 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values\r | |
562 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values\r | |
563 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values\r | |
564 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values\r | |
565 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values\r | |
566 | \r | |
567 | // We won't start recording the frames that we acquire until we trigger;\r | |
568 | // a good trigger condition to get started is probably when we see a\r | |
569 | // response from the tag.\r | |
570 | BOOL triggered = TRUE; // FALSE to wait first for card\r | |
571 | \r | |
572 | // The command (reader -> tag) that we're receiving.\r | |
573 | // The length of a received command will in most cases be no more than 18 bytes.\r | |
574 | // So 32 should be enough!\r | |
575 | BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r | |
576 | // The response (tag -> reader) that we're receiving.\r | |
577 | BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r | |
578 | \r | |
579 | // As we receive stuff, we copy it from receivedCmd or receivedResponse\r | |
580 | // into trace, along with its length and other annotations.\r | |
581 | //BYTE *trace = (BYTE *)BigBuf;\r | |
582 | //int traceLen = 0;\r | |
583 | \r | |
584 | // The DMA buffer, used to stream samples from the FPGA\r | |
585 | SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r | |
586 | int lastRxCounter;\r | |
587 | SBYTE *upTo;\r | |
588 | int smpl;\r | |
589 | int maxBehindBy = 0;\r | |
590 | \r | |
591 | // Count of samples received so far, so that we can include timing\r | |
592 | // information in the trace buffer.\r | |
593 | int samples = 0;\r | |
594 | int rsamples = 0;\r | |
595 | \r | |
596 | memset(trace, 0x44, RECV_CMD_OFFSET);\r | |
597 | \r | |
598 | // Set up the demodulator for tag -> reader responses.\r | |
599 | Demod.output = receivedResponse;\r | |
600 | Demod.len = 0;\r | |
601 | Demod.state = DEMOD_UNSYNCD;\r | |
602 | \r | |
603 | // And the reader -> tag commands\r | |
604 | memset(&Uart, 0, sizeof(Uart));\r | |
605 | Uart.output = receivedCmd;\r | |
606 | Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r | |
607 | Uart.state = STATE_UNSYNCD;\r | |
608 | \r | |
609 | // And put the FPGA in the appropriate mode\r | |
610 | // Signal field is off with the appropriate LED\r | |
611 | LED_D_OFF();\r | |
612 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r | |
613 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
614 | \r | |
615 | // Setup for the DMA.\r | |
616 | FpgaSetupSsc();\r | |
617 | upTo = dmaBuf;\r | |
618 | lastRxCounter = DMA_BUFFER_SIZE;\r | |
619 | FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r | |
620 | \r | |
621 | LED_A_ON();\r | |
622 | \r | |
623 | // And now we loop, receiving samples.\r | |
624 | for(;;) {\r | |
625 | WDT_HIT();\r | |
626 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &\r | |
627 | (DMA_BUFFER_SIZE-1);\r | |
628 | if(behindBy > maxBehindBy) {\r | |
629 | maxBehindBy = behindBy;\r | |
630 | if(behindBy > 400) {\r | |
631 | DbpString("blew circular buffer!");\r | |
632 | goto done;\r | |
633 | }\r | |
634 | }\r | |
635 | if(behindBy < 1) continue;\r | |
636 | \r | |
637 | smpl = upTo[0];\r | |
638 | upTo++;\r | |
639 | lastRxCounter -= 1;\r | |
640 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r | |
641 | upTo -= DMA_BUFFER_SIZE;\r | |
642 | lastRxCounter += DMA_BUFFER_SIZE;\r | |
643 | AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;\r | |
644 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;\r | |
645 | }\r | |
646 | \r | |
647 | samples += 4;\r | |
648 | #define HANDLE_BIT_IF_BODY \\r | |
649 | LED_C_ON(); \\r | |
650 | if(triggered) { \\r | |
651 | trace[traceLen++] = ((rsamples >> 0) & 0xff); \\r | |
652 | trace[traceLen++] = ((rsamples >> 8) & 0xff); \\r | |
653 | trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r | |
654 | trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r | |
655 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \\r | |
656 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \\r | |
657 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r | |
658 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r | |
659 | trace[traceLen++] = Uart.byteCnt; \\r | |
660 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r | |
661 | traceLen += Uart.byteCnt; \\r | |
662 | if(traceLen > TRACE_LENGTH) break; \\r | |
663 | } \\r | |
664 | /* And ready to receive another command. */ \\r | |
665 | Uart.state = STATE_UNSYNCD; \\r | |
666 | /* And also reset the demod code, which might have been */ \\r | |
667 | /* false-triggered by the commands from the reader. */ \\r | |
668 | Demod.state = DEMOD_UNSYNCD; \\r | |
669 | LED_B_OFF(); \\r | |
670 | \r | |
671 | if(MillerDecoding((smpl & 0xF0) >> 4)) {\r | |
672 | rsamples = samples - Uart.samples;\r | |
673 | HANDLE_BIT_IF_BODY\r | |
674 | }\r | |
675 | if(ManchesterDecoding(smpl & 0x0F)) {\r | |
676 | rsamples = samples - Demod.samples;\r | |
677 | LED_B_ON();\r | |
678 | \r | |
679 | // timestamp, as a count of samples\r | |
680 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
681 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
682 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
683 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r | |
684 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r | |
685 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r | |
686 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r | |
687 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r | |
688 | // length\r | |
689 | trace[traceLen++] = Demod.len;\r | |
690 | memcpy(trace+traceLen, receivedResponse, Demod.len);\r | |
691 | traceLen += Demod.len;\r | |
692 | if(traceLen > TRACE_LENGTH) break;\r | |
693 | \r | |
694 | triggered = TRUE;\r | |
695 | \r | |
696 | // And ready to receive another response.\r | |
697 | memset(&Demod, 0, sizeof(Demod));\r | |
698 | Demod.output = receivedResponse;\r | |
699 | Demod.state = DEMOD_UNSYNCD;\r | |
700 | LED_C_OFF();\r | |
701 | }\r | |
702 | \r | |
703 | if(BUTTON_PRESS()) {\r | |
704 | DbpString("cancelled_a");\r | |
705 | goto done;\r | |
706 | }\r | |
707 | }\r | |
708 | \r | |
709 | DbpString("COMMAND FINISHED");\r | |
710 | \r | |
711 | DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r | |
712 | DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r | |
713 | \r | |
714 | done:\r | |
715 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;\r | |
716 | DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r | |
717 | DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r | |
718 | LED_A_OFF();\r | |
719 | LED_B_OFF();\r | |
720 | LED_C_OFF();\r | |
721 | LED_D_OFF();\r | |
722 | }\r | |
723 | \r | |
724 | // Prepare communication bits to send to FPGA\r | |
725 | void Sequence(SecType seq)\r | |
726 | {\r | |
727 | ToSendMax++;\r | |
728 | switch(seq) {\r | |
729 | // CARD TO READER\r | |
730 | case SEC_D:\r | |
731 | // Sequence D: 11110000\r | |
732 | // modulation with subcarrier during first half\r | |
733 | ToSend[ToSendMax] = 0xf0;\r | |
734 | break;\r | |
735 | case SEC_E:\r | |
736 | // Sequence E: 00001111\r | |
737 | // modulation with subcarrier during second half\r | |
738 | ToSend[ToSendMax] = 0x0f;\r | |
739 | break;\r | |
740 | case SEC_F:\r | |
741 | // Sequence F: 00000000\r | |
742 | // no modulation with subcarrier\r | |
743 | ToSend[ToSendMax] = 0x00;\r | |
744 | break;\r | |
745 | // READER TO CARD\r | |
746 | case SEC_X:\r | |
747 | // Sequence X: 00001100\r | |
748 | // drop after half a period\r | |
749 | ToSend[ToSendMax] = 0x0c;\r | |
750 | break;\r | |
751 | case SEC_Y:\r | |
752 | default:\r | |
753 | // Sequence Y: 00000000\r | |
754 | // no drop\r | |
755 | ToSend[ToSendMax] = 0x00;\r | |
756 | break;\r | |
757 | case SEC_Z:\r | |
758 | // Sequence Z: 11000000\r | |
759 | // drop at start\r | |
760 | ToSend[ToSendMax] = 0xc0;\r | |
761 | break;\r | |
762 | }\r | |
763 | }\r | |
764 | \r | |
765 | //-----------------------------------------------------------------------------\r | |
766 | // Prepare tag messages\r | |
767 | //-----------------------------------------------------------------------------\r | |
768 | static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r | |
769 | {\r | |
770 | int i;\r | |
771 | int oddparity;\r | |
772 | \r | |
773 | ToSendReset();\r | |
774 | \r | |
775 | // Correction bit, might be removed when not needed\r | |
776 | ToSendStuffBit(0);\r | |
777 | ToSendStuffBit(0);\r | |
778 | ToSendStuffBit(0);\r | |
779 | ToSendStuffBit(0);\r | |
780 | ToSendStuffBit(1); // 1\r | |
781 | ToSendStuffBit(0);\r | |
782 | ToSendStuffBit(0);\r | |
783 | ToSendStuffBit(0);\r | |
784 | \r | |
785 | // Send startbit\r | |
786 | Sequence(SEC_D);\r | |
787 | \r | |
788 | for(i = 0; i < len; i++) {\r | |
789 | int j;\r | |
790 | BYTE b = cmd[i];\r | |
791 | \r | |
792 | // Data bits\r | |
793 | oddparity = 0x01;\r | |
794 | for(j = 0; j < 8; j++) {\r | |
795 | oddparity ^= (b & 1);\r | |
796 | if(b & 1) {\r | |
797 | Sequence(SEC_D);\r | |
798 | } else {\r | |
799 | Sequence(SEC_E);\r | |
800 | }\r | |
801 | b >>= 1;\r | |
802 | }\r | |
803 | \r | |
804 | // Parity bit\r | |
805 | if(oddparity) {\r | |
806 | Sequence(SEC_D);\r | |
807 | } else {\r | |
808 | Sequence(SEC_E);\r | |
809 | }\r | |
810 | }\r | |
811 | \r | |
812 | // Send stopbit\r | |
813 | Sequence(SEC_F);\r | |
814 | \r | |
815 | // Flush the buffer in FPGA!!\r | |
816 | for(i = 0; i < 5; i++) {\r | |
817 | Sequence(SEC_F);\r | |
818 | }\r | |
819 | \r | |
820 | // Convert from last byte pos to length\r | |
821 | ToSendMax++;\r | |
822 | \r | |
823 | // Add a few more for slop\r | |
824 | ToSend[ToSendMax++] = 0x00;\r | |
825 | ToSend[ToSendMax++] = 0x00;\r | |
826 | //ToSendMax += 2;\r | |
827 | }\r | |
828 | \r | |
829 | //-----------------------------------------------------------------------------\r | |
830 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r | |
831 | //-----------------------------------------------------------------------------\r | |
832 | static void CodeStrangeAnswer()\r | |
833 | {\r | |
834 | int i;\r | |
835 | \r | |
836 | ToSendReset();\r | |
837 | \r | |
838 | // Correction bit, might be removed when not needed\r | |
839 | ToSendStuffBit(0);\r | |
840 | ToSendStuffBit(0);\r | |
841 | ToSendStuffBit(0);\r | |
842 | ToSendStuffBit(0);\r | |
843 | ToSendStuffBit(1); // 1\r | |
844 | ToSendStuffBit(0);\r | |
845 | ToSendStuffBit(0);\r | |
846 | ToSendStuffBit(0);\r | |
847 | \r | |
848 | // Send startbit\r | |
849 | Sequence(SEC_D);\r | |
850 | \r | |
851 | // 0\r | |
852 | Sequence(SEC_E);\r | |
853 | \r | |
854 | // 0\r | |
855 | Sequence(SEC_E);\r | |
856 | \r | |
857 | // 1\r | |
858 | Sequence(SEC_D);\r | |
859 | \r | |
860 | // Send stopbit\r | |
861 | Sequence(SEC_F);\r | |
862 | \r | |
863 | // Flush the buffer in FPGA!!\r | |
864 | for(i = 0; i < 5; i++) {\r | |
865 | Sequence(SEC_F);\r | |
866 | }\r | |
867 | \r | |
868 | // Convert from last byte pos to length\r | |
869 | ToSendMax++;\r | |
870 | \r | |
871 | // Add a few more for slop\r | |
872 | ToSend[ToSendMax++] = 0x00;\r | |
873 | ToSend[ToSendMax++] = 0x00;\r | |
874 | //ToSendMax += 2;\r | |
875 | }\r | |
876 | \r | |
877 | int LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader)\r | |
878 | {\r | |
879 | // Trace the random, i'm curious\r | |
880 | rsamples += iSamples;\r | |
881 | trace[traceLen++] = ((rsamples >> 0) & 0xff);\r | |
882 | trace[traceLen++] = ((rsamples >> 8) & 0xff);\r | |
883 | trace[traceLen++] = ((rsamples >> 16) & 0xff);\r | |
884 | trace[traceLen++] = ((rsamples >> 24) & 0xff);\r | |
885 | if (!bReader) {\r | |
886 | trace[traceLen - 1] |= 0x80;\r | |
887 | }\r | |
888 | trace[traceLen++] = ((dwParity >> 0) & 0xff);\r | |
889 | trace[traceLen++] = ((dwParity >> 8) & 0xff);\r | |
890 | trace[traceLen++] = ((dwParity >> 16) & 0xff);\r | |
891 | trace[traceLen++] = ((dwParity >> 24) & 0xff);\r | |
892 | trace[traceLen++] = iLen;\r | |
893 | memcpy(trace + traceLen, btBytes, iLen);\r | |
894 | traceLen += iLen;\r | |
895 | return (traceLen < TRACE_LENGTH);\r | |
896 | }\r | |
897 | \r | |
898 | //-----------------------------------------------------------------------------\r | |
899 | // Wait for commands from reader\r | |
900 | // Stop when button is pressed\r | |
901 | // Or return TRUE when command is captured\r | |
902 | //-----------------------------------------------------------------------------\r | |
903 | static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r | |
904 | {\r | |
905 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r | |
906 | // only, since we are receiving, not transmitting).\r | |
907 | // Signal field is off with the appropriate LED\r | |
908 | LED_D_OFF();\r | |
909 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r | |
910 | \r | |
911 | // Now run a `software UART' on the stream of incoming samples.\r | |
912 | Uart.output = received;\r | |
913 | Uart.byteCntMax = maxLen;\r | |
914 | Uart.state = STATE_UNSYNCD;\r | |
915 | \r | |
916 | for(;;) {\r | |
917 | WDT_HIT();\r | |
918 | \r | |
919 | if(BUTTON_PRESS()) return FALSE;\r | |
920 | \r | |
921 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r | |
922 | AT91C_BASE_SSC->SSC_THR = 0x00;\r | |
923 | }\r | |
924 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r | |
925 | BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r | |
926 | if(MillerDecoding((b & 0xf0) >> 4)) {\r | |
927 | *len = Uart.byteCnt;\r | |
928 | return TRUE;\r | |
929 | }\r | |
930 | if(MillerDecoding(b & 0x0f)) {\r | |
931 | *len = Uart.byteCnt;\r | |
932 | return TRUE;\r | |
933 | }\r | |
934 | }\r | |
935 | }\r | |
936 | }\r | |
937 | \r | |
938 | //-----------------------------------------------------------------------------\r | |
939 | // Main loop of simulated tag: receive commands from reader, decide what\r | |
940 | // response to send, and send it.\r | |
941 | //-----------------------------------------------------------------------------\r | |
942 | void SimulateIso14443aTag(int tagType, int TagUid)\r | |
943 | {\r | |
944 | // This function contains the tag emulation\r | |
945 | \r | |
946 | // Prepare protocol messages\r | |
947 | // static const BYTE cmd1[] = { 0x26 };\r | |
948 | // static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r | |
949 | //\r | |
950 | static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r | |
951 | // static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r | |
952 | \r | |
953 | // UID response\r | |
954 | // static const BYTE cmd2[] = { 0x93, 0x20 };\r | |
955 | //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r | |
956 | \r | |
957 | \r | |
958 | \r | |
959 | // my desfire\r | |
960 | static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r | |
961 | \r | |
962 | \r | |
963 | // When reader selects us during cascade1 it will send cmd3\r | |
964 | //BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r | |
965 | BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r | |
966 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r | |
967 | \r | |
968 | // send cascade2 2nd half of UID\r | |
969 | static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r | |
970 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r | |
971 | \r | |
972 | \r | |
973 | // When reader selects us during cascade2 it will send cmd3a\r | |
974 | //BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r | |
975 | BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r | |
976 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r | |
977 | \r | |
978 | static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r | |
979 | \r | |
980 | BYTE *resp;\r | |
981 | int respLen;\r | |
982 | \r | |
983 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r | |
984 | // This will need\r | |
985 | // 144 data bits (18 * 8)\r | |
986 | // 18 parity bits\r | |
987 | // 2 Start and stop\r | |
988 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r | |
989 | // 1 just for the case\r | |
990 | // ----------- +\r | |
991 | // 166\r | |
992 | //\r | |
993 | // 166 bytes, since every bit that needs to be send costs us a byte\r | |
994 | //\r | |
995 | \r | |
996 | \r | |
997 | // Respond with card type\r | |
998 | BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r | |
999 | int resp1Len;\r | |
1000 | \r | |
1001 | // Anticollision cascade1 - respond with uid\r | |
1002 | BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r | |
1003 | int resp2Len;\r | |
1004 | \r | |
1005 | // Anticollision cascade2 - respond with 2nd half of uid if asked\r | |
1006 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r | |
1007 | BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r | |
1008 | int resp2aLen;\r | |
1009 | \r | |
1010 | // Acknowledge select - cascade 1\r | |
1011 | BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r | |
1012 | int resp3Len;\r | |
1013 | \r | |
1014 | // Acknowledge select - cascade 2\r | |
1015 | BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r | |
1016 | int resp3aLen;\r | |
1017 | \r | |
1018 | // Response to a read request - not implemented atm\r | |
1019 | BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r | |
1020 | int resp4Len;\r | |
1021 | \r | |
1022 | // Authenticate response - nonce\r | |
1023 | BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r | |
1024 | int resp5Len;\r | |
1025 | \r | |
1026 | BYTE *receivedCmd = (BYTE *)BigBuf;\r | |
1027 | int len;\r | |
1028 | \r | |
1029 | int i;\r | |
1030 | int u;\r | |
1031 | BYTE b;\r | |
1032 | \r | |
1033 | // To control where we are in the protocol\r | |
1034 | int order = 0;\r | |
1035 | int lastorder;\r | |
1036 | \r | |
1037 | // Just to allow some checks\r | |
1038 | int happened = 0;\r | |
1039 | int happened2 = 0;\r | |
1040 | \r | |
1041 | int cmdsRecvd = 0;\r | |
1042 | \r | |
1043 | BOOL fdt_indicator;\r | |
1044 | \r | |
1045 | memset(receivedCmd, 0x44, 400);\r | |
1046 | \r | |
1047 | // Prepare the responses of the anticollision phase\r | |
1048 | // there will be not enough time to do this at the moment the reader sends it REQA\r | |
1049 | \r | |
1050 | // Answer to request\r | |
1051 | CodeIso14443aAsTag(response1, sizeof(response1));\r | |
1052 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r | |
1053 | \r | |
1054 | // Send our UID (cascade 1)\r | |
1055 | CodeIso14443aAsTag(response2, sizeof(response2));\r | |
1056 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r | |
1057 | \r | |
1058 | // Answer to select (cascade1)\r | |
1059 | CodeIso14443aAsTag(response3, sizeof(response3));\r | |
1060 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r | |
1061 | \r | |
1062 | // Send the cascade 2 2nd part of the uid\r | |
1063 | CodeIso14443aAsTag(response2a, sizeof(response2a));\r | |
1064 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r | |
1065 | \r | |
1066 | // Answer to select (cascade 2)\r | |
1067 | CodeIso14443aAsTag(response3a, sizeof(response3a));\r | |
1068 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r | |
1069 | \r | |
1070 | // Strange answer is an example of rare message size (3 bits)\r | |
1071 | CodeStrangeAnswer();\r | |
1072 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r | |
1073 | \r | |
1074 | // Authentication answer (random nonce)\r | |
1075 | CodeIso14443aAsTag(response5, sizeof(response5));\r | |
1076 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r | |
1077 | \r | |
1078 | // We need to listen to the high-frequency, peak-detected path.\r | |
1079 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
1080 | FpgaSetupSsc();\r | |
1081 | \r | |
1082 | cmdsRecvd = 0;\r | |
1083 | \r | |
1084 | LED_A_ON();\r | |
1085 | for(;;) {\r | |
1086 | \r | |
1087 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r | |
1088 | DbpString("button press");\r | |
1089 | break;\r | |
1090 | }\r | |
1091 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r | |
1092 | // Okay, look at the command now.\r | |
1093 | lastorder = order;\r | |
1094 | i = 1; // first byte transmitted\r | |
1095 | if(receivedCmd[0] == 0x26) {\r | |
1096 | // Received a REQUEST\r | |
1097 | resp = resp1; respLen = resp1Len; order = 1;\r | |
1098 | //DbpString("Hello request from reader:");\r | |
1099 | } else if(receivedCmd[0] == 0x52) {\r | |
1100 | // Received a WAKEUP\r | |
1101 | resp = resp1; respLen = resp1Len; order = 6;\r | |
1102 | // //DbpString("Wakeup request from reader:");\r | |
1103 | \r | |
1104 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision\r | |
1105 | // Received request for UID (cascade 1)\r | |
1106 | resp = resp2; respLen = resp2Len; order = 2;\r | |
1107 | // DbpString("UID (cascade 1) request from reader:");\r | |
1108 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1109 | \r | |
1110 | \r | |
1111 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision\r | |
1112 | // Received request for UID (cascade 2)\r | |
1113 | resp = resp2a; respLen = resp2aLen; order = 20;\r | |
1114 | // DbpString("UID (cascade 2) request from reader:");\r | |
1115 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1116 | \r | |
1117 | \r | |
1118 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select\r | |
1119 | // Received a SELECT\r | |
1120 | resp = resp3; respLen = resp3Len; order = 3;\r | |
1121 | // DbpString("Select (cascade 1) request from reader:");\r | |
1122 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1123 | \r | |
1124 | \r | |
1125 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select\r | |
1126 | // Received a SELECT\r | |
1127 | resp = resp3a; respLen = resp3aLen; order = 30;\r | |
1128 | // DbpString("Select (cascade 2) request from reader:");\r | |
1129 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1130 | \r | |
1131 | \r | |
1132 | } else if(receivedCmd[0] == 0x30) {\r | |
1133 | // Received a READ\r | |
1134 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r | |
1135 | DbpString("Read request from reader:");\r | |
1136 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1137 | \r | |
1138 | \r | |
1139 | } else if(receivedCmd[0] == 0x50) {\r | |
1140 | // Received a HALT\r | |
1141 | resp = resp1; respLen = 0; order = 5; // Do nothing\r | |
1142 | DbpString("Reader requested we HALT!:");\r | |
1143 | \r | |
1144 | } else if(receivedCmd[0] == 0x60) {\r | |
1145 | // Received an authentication request\r | |
1146 | resp = resp5; respLen = resp5Len; order = 7;\r | |
1147 | DbpString("Authenticate request from reader:");\r | |
1148 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1149 | \r | |
1150 | } else if(receivedCmd[0] == 0xE0) {\r | |
1151 | // Received a RATS request\r | |
1152 | resp = resp1; respLen = 0;order = 70;\r | |
1153 | DbpString("RATS request from reader:");\r | |
1154 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1155 | } else {\r | |
1156 | // Never seen this command before\r | |
1157 | DbpString("Unknown command received from reader:");\r | |
1158 | DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r | |
1159 | DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r | |
1160 | DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r | |
1161 | \r | |
1162 | // Do not respond\r | |
1163 | resp = resp1; respLen = 0; order = 0;\r | |
1164 | }\r | |
1165 | \r | |
1166 | // Count number of wakeups received after a halt\r | |
1167 | if(order == 6 && lastorder == 5) { happened++; }\r | |
1168 | \r | |
1169 | // Count number of other messages after a halt\r | |
1170 | if(order != 6 && lastorder == 5) { happened2++; }\r | |
1171 | \r | |
1172 | // Look at last parity bit to determine timing of answer\r | |
1173 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r | |
1174 | // 1236, so correction bit needed\r | |
1175 | i = 0;\r | |
1176 | }\r | |
1177 | \r | |
1178 | memset(receivedCmd, 0x44, 32);\r | |
1179 | \r | |
1180 | if(cmdsRecvd > 999) {\r | |
1181 | DbpString("1000 commands later...");\r | |
1182 | break;\r | |
1183 | }\r | |
1184 | else {\r | |
1185 | cmdsRecvd++;\r | |
1186 | }\r | |
1187 | \r | |
1188 | if(respLen <= 0) continue;\r | |
1189 | \r | |
1190 | // Modulate Manchester\r | |
1191 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r | |
1192 | AT91C_BASE_SSC->SSC_THR = 0x00;\r | |
1193 | FpgaSetupSsc();\r | |
1194 | \r | |
1195 | // ### Transmit the response ###\r | |
1196 | u = 0;\r | |
1197 | b = 0x00;\r | |
1198 | fdt_indicator = FALSE;\r | |
1199 | for(;;) {\r | |
1200 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r | |
1201 | volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r | |
1202 | (void)b;\r | |
1203 | }\r | |
1204 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r | |
1205 | if(i > respLen) {\r | |
1206 | b = 0x00;\r | |
1207 | u++;\r | |
1208 | } else {\r | |
1209 | b = resp[i];\r | |
1210 | i++;\r | |
1211 | }\r | |
1212 | AT91C_BASE_SSC->SSC_THR = b;\r | |
1213 | \r | |
1214 | if(u > 4) {\r | |
1215 | break;\r | |
1216 | }\r | |
1217 | }\r | |
1218 | if(BUTTON_PRESS()) {\r | |
1219 | break;\r | |
1220 | }\r | |
1221 | }\r | |
1222 | \r | |
1223 | }\r | |
1224 | \r | |
1225 | DbpIntegers(happened, happened2, cmdsRecvd);\r | |
1226 | LED_A_OFF();\r | |
1227 | }\r | |
1228 | \r | |
1229 | //-----------------------------------------------------------------------------\r | |
1230 | // Transmit the command (to the tag) that was placed in ToSend[].\r | |
1231 | //-----------------------------------------------------------------------------\r | |
1232 | static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r | |
1233 | {\r | |
1234 | int c;\r | |
1235 | \r | |
1236 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r | |
1237 | \r | |
1238 | if(*wait < 10) { *wait = 10; }\r | |
1239 | \r | |
1240 | for(c = 0; c < *wait;) {\r | |
1241 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r | |
1242 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!\r | |
1243 | c++;\r | |
1244 | }\r | |
1245 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r | |
1246 | volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r | |
1247 | (void)r;\r | |
1248 | }\r | |
1249 | WDT_HIT();\r | |
1250 | }\r | |
1251 | \r | |
1252 | c = 0;\r | |
1253 | for(;;) {\r | |
1254 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r | |
1255 | AT91C_BASE_SSC->SSC_THR = cmd[c];\r | |
1256 | c++;\r | |
1257 | if(c >= len) {\r | |
1258 | break;\r | |
1259 | }\r | |
1260 | }\r | |
1261 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r | |
1262 | volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;\r | |
1263 | (void)r;\r | |
1264 | }\r | |
1265 | WDT_HIT();\r | |
1266 | }\r | |
1267 | *samples = (c + *wait) << 3;\r | |
1268 | }\r | |
1269 | \r | |
1270 | //-----------------------------------------------------------------------------\r | |
1271 | // To generate an arbitrary stream from reader\r | |
1272 | //\r | |
1273 | //-----------------------------------------------------------------------------\r | |
1274 | void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r | |
1275 | {\r | |
1276 | int i;\r | |
1277 | int j;\r | |
1278 | int last;\r | |
1279 | BYTE b;\r | |
1280 | \r | |
1281 | ToSendReset();\r | |
1282 | \r | |
1283 | // Start of Communication (Seq. Z)\r | |
1284 | Sequence(SEC_Z);\r | |
1285 | last = 0;\r | |
1286 | \r | |
1287 | for(i = 0; i < len; i++) {\r | |
1288 | // Data bits\r | |
1289 | b = cmd[i];\r | |
1290 | for(j = 0; j < 8; j++) {\r | |
1291 | if(b & 1) {\r | |
1292 | // Sequence X\r | |
1293 | Sequence(SEC_X);\r | |
1294 | last = 1;\r | |
1295 | } else {\r | |
1296 | if(last == 0) {\r | |
1297 | // Sequence Z\r | |
1298 | Sequence(SEC_Z);\r | |
1299 | }\r | |
1300 | else {\r | |
1301 | // Sequence Y\r | |
1302 | Sequence(SEC_Y);\r | |
1303 | last = 0;\r | |
1304 | }\r | |
1305 | }\r | |
1306 | b >>= 1;\r | |
1307 | \r | |
1308 | }\r | |
1309 | \r | |
1310 | // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r | |
1311 | if(((parity >> (len - i - 1)) & 1)) {\r | |
1312 | // Sequence X\r | |
1313 | Sequence(SEC_X);\r | |
1314 | last = 1;\r | |
1315 | } else {\r | |
1316 | if(last == 0) {\r | |
1317 | // Sequence Z\r | |
1318 | Sequence(SEC_Z);\r | |
1319 | }\r | |
1320 | else {\r | |
1321 | // Sequence Y\r | |
1322 | Sequence(SEC_Y);\r | |
1323 | last = 0;\r | |
1324 | }\r | |
1325 | }\r | |
1326 | }\r | |
1327 | \r | |
1328 | // End of Communication\r | |
1329 | if(last == 0) {\r | |
1330 | // Sequence Z\r | |
1331 | Sequence(SEC_Z);\r | |
1332 | }\r | |
1333 | else {\r | |
1334 | // Sequence Y\r | |
1335 | Sequence(SEC_Y);\r | |
1336 | last = 0;\r | |
1337 | }\r | |
1338 | // Sequence Y\r | |
1339 | Sequence(SEC_Y);\r | |
1340 | \r | |
1341 | // Just to be sure!\r | |
1342 | Sequence(SEC_Y);\r | |
1343 | Sequence(SEC_Y);\r | |
1344 | Sequence(SEC_Y);\r | |
1345 | \r | |
1346 | // Convert from last character reference to length\r | |
1347 | ToSendMax++;\r | |
1348 | }\r | |
1349 | \r | |
1350 | //-----------------------------------------------------------------------------\r | |
1351 | // Code a 7-bit command without parity bit\r | |
1352 | // This is especially for 0x26 and 0x52 (REQA and WUPA)\r | |
1353 | //-----------------------------------------------------------------------------\r | |
1354 | void ShortFrameFromReader(const BYTE *cmd)\r | |
1355 | {\r | |
1356 | int j;\r | |
1357 | int last;\r | |
1358 | BYTE b;\r | |
1359 | \r | |
1360 | ToSendReset();\r | |
1361 | \r | |
1362 | // Start of Communication (Seq. Z)\r | |
1363 | Sequence(SEC_Z);\r | |
1364 | last = 0;\r | |
1365 | \r | |
1366 | b = cmd[0];\r | |
1367 | for(j = 0; j < 7; j++) {\r | |
1368 | if(b & 1) {\r | |
1369 | // Sequence X\r | |
1370 | Sequence(SEC_X);\r | |
1371 | last = 1;\r | |
1372 | } else {\r | |
1373 | if(last == 0) {\r | |
1374 | // Sequence Z\r | |
1375 | Sequence(SEC_Z);\r | |
1376 | }\r | |
1377 | else {\r | |
1378 | // Sequence Y\r | |
1379 | Sequence(SEC_Y);\r | |
1380 | last = 0;\r | |
1381 | }\r | |
1382 | }\r | |
1383 | b >>= 1;\r | |
1384 | }\r | |
1385 | \r | |
1386 | // End of Communication\r | |
1387 | if(last == 0) {\r | |
1388 | // Sequence Z\r | |
1389 | Sequence(SEC_Z);\r | |
1390 | }\r | |
1391 | else {\r | |
1392 | // Sequence Y\r | |
1393 | Sequence(SEC_Y);\r | |
1394 | last = 0;\r | |
1395 | }\r | |
1396 | // Sequence Y\r | |
1397 | Sequence(SEC_Y);\r | |
1398 | \r | |
1399 | // Just to be sure!\r | |
1400 | Sequence(SEC_Y);\r | |
1401 | Sequence(SEC_Y);\r | |
1402 | Sequence(SEC_Y);\r | |
1403 | \r | |
1404 | // Convert from last character reference to length\r | |
1405 | ToSendMax++;\r | |
1406 | }\r | |
1407 | \r | |
1408 | //-----------------------------------------------------------------------------\r | |
1409 | // Prepare reader command to send to FPGA\r | |
1410 | //\r | |
1411 | //-----------------------------------------------------------------------------\r | |
1412 | void CodeIso14443aAsReader(const BYTE *cmd, int len)\r | |
1413 | {\r | |
1414 | int i, j;\r | |
1415 | int last;\r | |
1416 | int oddparity;\r | |
1417 | BYTE b;\r | |
1418 | \r | |
1419 | ToSendReset();\r | |
1420 | \r | |
1421 | // Start of Communication (Seq. Z)\r | |
1422 | Sequence(SEC_Z);\r | |
1423 | last = 0;\r | |
1424 | \r | |
1425 | for(i = 0; i < len; i++) {\r | |
1426 | // Data bits\r | |
1427 | b = cmd[i];\r | |
1428 | oddparity = 0x01;\r | |
1429 | for(j = 0; j < 8; j++) {\r | |
1430 | oddparity ^= (b & 1);\r | |
1431 | if(b & 1) {\r | |
1432 | // Sequence X\r | |
1433 | Sequence(SEC_X);\r | |
1434 | last = 1;\r | |
1435 | } else {\r | |
1436 | if(last == 0) {\r | |
1437 | // Sequence Z\r | |
1438 | Sequence(SEC_Z);\r | |
1439 | }\r | |
1440 | else {\r | |
1441 | // Sequence Y\r | |
1442 | Sequence(SEC_Y);\r | |
1443 | last = 0;\r | |
1444 | }\r | |
1445 | }\r | |
1446 | b >>= 1;\r | |
1447 | }\r | |
1448 | \r | |
1449 | // Parity bit\r | |
1450 | if(oddparity) {\r | |
1451 | // Sequence X\r | |
1452 | Sequence(SEC_X);\r | |
1453 | last = 1;\r | |
1454 | } else {\r | |
1455 | if(last == 0) {\r | |
1456 | // Sequence Z\r | |
1457 | Sequence(SEC_Z);\r | |
1458 | }\r | |
1459 | else {\r | |
1460 | // Sequence Y\r | |
1461 | Sequence(SEC_Y);\r | |
1462 | last = 0;\r | |
1463 | }\r | |
1464 | }\r | |
1465 | }\r | |
1466 | \r | |
1467 | // End of Communication\r | |
1468 | if(last == 0) {\r | |
1469 | // Sequence Z\r | |
1470 | Sequence(SEC_Z);\r | |
1471 | }\r | |
1472 | else {\r | |
1473 | // Sequence Y\r | |
1474 | Sequence(SEC_Y);\r | |
1475 | last = 0;\r | |
1476 | }\r | |
1477 | // Sequence Y\r | |
1478 | Sequence(SEC_Y);\r | |
1479 | \r | |
1480 | // Just to be sure!\r | |
1481 | Sequence(SEC_Y);\r | |
1482 | Sequence(SEC_Y);\r | |
1483 | Sequence(SEC_Y);\r | |
1484 | \r | |
1485 | // Convert from last character reference to length\r | |
1486 | ToSendMax++;\r | |
1487 | }\r | |
1488 | \r | |
1489 | \r | |
1490 | //-----------------------------------------------------------------------------\r | |
1491 | // Wait a certain time for tag response\r | |
1492 | // If a response is captured return TRUE\r | |
1493 | // If it takes to long return FALSE\r | |
1494 | //-----------------------------------------------------------------------------\r | |
1495 | static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r | |
1496 | {\r | |
1497 | // buffer needs to be 512 bytes\r | |
1498 | int c;\r | |
1499 | \r | |
1500 | // Set FPGA mode to "reader listen mode", no modulation (listen\r | |
1501 | // only, since we are receiving, not transmitting).\r | |
1502 | // Signal field is on with the appropriate LED\r | |
1503 | LED_D_ON();\r | |
1504 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r | |
1505 | \r | |
1506 | // Now get the answer from the card\r | |
1507 | Demod.output = receivedResponse;\r | |
1508 | Demod.len = 0;\r | |
1509 | Demod.state = DEMOD_UNSYNCD;\r | |
1510 | \r | |
1511 | BYTE b;\r | |
1512 | *elapsed = 0;\r | |
1513 | \r | |
1514 | c = 0;\r | |
1515 | for(;;) {\r | |
1516 | WDT_HIT();\r | |
1517 | \r | |
1518 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r | |
1519 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!\r | |
1520 | (*elapsed)++;\r | |
1521 | }\r | |
1522 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r | |
1523 | if(c < 512) { c++; } else { return FALSE; }\r | |
1524 | b = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r | |
1525 | if(ManchesterDecoding((b & 0xf0) >> 4)) {\r | |
1526 | *samples = ((c - 1) << 3) + 4;\r | |
1527 | return TRUE;\r | |
1528 | }\r | |
1529 | if(ManchesterDecoding(b & 0x0f)) {\r | |
1530 | *samples = c << 3;\r | |
1531 | return TRUE;\r | |
1532 | }\r | |
1533 | }\r | |
1534 | }\r | |
1535 | }\r | |
1536 | \r | |
1537 | \r | |
1538 | \r | |
1539 | //-----------------------------------------------------------------------------\r | |
1540 | // Read an ISO 14443a tag. Send out commands and store answers.\r | |
1541 | //\r | |
1542 | //-----------------------------------------------------------------------------\r | |
1543 | void ReaderIso14443a(DWORD parameter)\r | |
1544 | {\r | |
1545 | // Anticollision\r | |
1546 | static const BYTE cmd1[] = { 0x52 }; // or 0x26\r | |
1547 | static const BYTE cmd2[] = { 0x93,0x20 };\r | |
1548 | // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes\r | |
1549 | BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1550 | \r | |
1551 | // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70\r | |
1552 | \r | |
1553 | // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall...\r | |
1554 | BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select\r | |
1555 | // 95 20\r | |
1556 | //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1557 | // 95 70\r | |
1558 | \r | |
1559 | // cascade 2 select\r | |
1560 | BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r | |
1561 | \r | |
1562 | \r | |
1563 | // RATS (request for answer to select)\r | |
1564 | //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS\r | |
1565 | BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS\r | |
1566 | \r | |
1567 | // Mifare AUTH\r | |
1568 | BYTE cmd7[] = { 0x60, 0x00, 0x00, 0x00 };\r | |
1569 | \r | |
1570 | int reqaddr = 2024; // was 2024 - tied to other size changes\r | |
1571 | int reqsize = 60;\r | |
1572 | \r | |
1573 | BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);\r | |
1574 | int req1Len;\r | |
1575 | \r | |
1576 | BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);\r | |
1577 | int req2Len;\r | |
1578 | \r | |
1579 | BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));\r | |
1580 | int req3Len;\r | |
1581 | \r | |
1582 | // greg added req 4 & 5 to deal with cascade 2 section\r | |
1583 | BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));\r | |
1584 | int req4Len;\r | |
1585 | \r | |
1586 | BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));\r | |
1587 | int req5Len;\r | |
1588 | \r | |
1589 | BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));\r | |
1590 | int req6Len;\r | |
1591 | \r | |
1592 | BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));\r | |
1593 | int req7Len;\r | |
1594 | \r | |
1595 | BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes\r | |
1596 | \r | |
1597 | //BYTE *trace = (BYTE *)BigBuf;\r | |
1598 | //int traceLen = 0;\r | |
1599 | //int rsamples = 0;\r | |
1600 | traceLen = 0;\r | |
1601 | \r | |
1602 | memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages\r | |
1603 | // setting it to 3000 causes no tag responses to be detected (2900 is ok)\r | |
1604 | // setting it to 1000 causes no tag responses to be detected\r | |
1605 | \r | |
1606 | // Prepare some commands!\r | |
1607 | ShortFrameFromReader(cmd1);\r | |
1608 | memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;\r | |
1609 | \r | |
1610 | CodeIso14443aAsReader(cmd2, sizeof(cmd2));\r | |
1611 | memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;\r | |
1612 | \r | |
1613 | CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r | |
1614 | memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r | |
1615 | \r | |
1616 | \r | |
1617 | CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request\r | |
1618 | memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;\r | |
1619 | \r | |
1620 | \r | |
1621 | CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select\r | |
1622 | memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r | |
1623 | \r | |
1624 | \r | |
1625 | CodeIso14443aAsReader(cmd6, sizeof(cmd6));\r | |
1626 | memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;\r | |
1627 | \r | |
1628 | // Setup SSC\r | |
1629 | FpgaSetupSsc();\r | |
1630 | \r | |
1631 | // Start from off (no field generated)\r | |
1632 | // Signal field is off with the appropriate LED\r | |
1633 | LED_D_OFF();\r | |
1634 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r | |
1635 | SpinDelay(200);\r | |
1636 | \r | |
1637 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r | |
1638 | FpgaSetupSsc();\r | |
1639 | \r | |
1640 | // Now give it time to spin up.\r | |
1641 | // Signal field is on with the appropriate LED\r | |
1642 | LED_D_ON();\r | |
1643 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r | |
1644 | SpinDelay(200);\r | |
1645 | \r | |
1646 | LED_A_ON();\r | |
1647 | LED_B_OFF();\r | |
1648 | LED_C_OFF();\r | |
1649 | \r | |
1650 | int samples = 0;\r | |
1651 | int tsamples = 0;\r | |
1652 | int wait = 0;\r | |
1653 | int elapsed = 0;\r | |
1654 | \r | |
1655 | while(1) {\r | |
1656 | // Send WUPA (or REQA)\r | |
1657 | TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r | |
1658 | \r | |
1659 | // Store reader command in buffer\r | |
1660 | if (!LogTrace(cmd1,1,0,GetParity(cmd1,1),TRUE)) break;\r | |
1661 | \r | |
1662 | // Test if the action was cancelled\r | |
1663 | if(BUTTON_PRESS()) {\r | |
1664 | break;\r | |
1665 | }\r | |
1666 | \r | |
1667 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1668 | \r | |
1669 | // Log the ATQA\r | |
1670 | if (!LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE)) break;\r | |
1671 | \r | |
1672 | // Store reader command in buffer\r | |
1673 | if (!LogTrace(cmd2,2,0,GetParity(cmd2,2),TRUE)) break;\r | |
1674 | TransmitFor14443a(req2, req2Len, &samples, &wait);\r | |
1675 | \r | |
1676 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1677 | \r | |
1678 | // Log the uid\r | |
1679 | if (!LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE)) break;\r | |
1680 | \r | |
1681 | // Construct SELECT UID command\r | |
1682 | // First copy the 5 bytes (Mifare Classic) after the 93 70\r | |
1683 | memcpy(cmd3+2,receivedAnswer,5);\r | |
1684 | // Secondly compute the two CRC bytes at the end\r | |
1685 | ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);\r | |
1686 | \r | |
1687 | // Store reader command in buffer\r | |
1688 | if (!LogTrace(cmd3,9,0,GetParity(cmd5,9),TRUE)) break;\r | |
1689 | \r | |
1690 | CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r | |
1691 | memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r | |
1692 | \r | |
1693 | // Select the card\r | |
1694 | TransmitFor14443a(req3, req3Len, &samples, &wait);\r | |
1695 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1696 | \r | |
1697 | // Log the SAK\r | |
1698 | if (!LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE)) break;\r | |
1699 | \r | |
1700 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in\r | |
1701 | // which case we need to make a cascade 2 request and select - this is a long UID\r | |
1702 | if (receivedAnswer[0] == 0x88)\r | |
1703 | {\r | |
1704 | // Do cascade level 2 stuff\r | |
1705 | ///////////////////////////////////////////////////////////////////\r | |
1706 | // First issue a '95 20' identify request\r | |
1707 | // Ask for card UID (part 2)\r | |
1708 | TransmitFor14443a(req4, req4Len, &tsamples, &wait);\r | |
1709 | \r | |
1710 | // Store reader command in buffer\r | |
1711 | if (!LogTrace(cmd4,2,0,GetParity(cmd4,2),TRUE)) break;\r | |
1712 | \r | |
1713 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1714 | \r | |
1715 | //////////////////////////////////////////////////////////////////\r | |
1716 | // Then Construct SELECT UID (cascasde 2) command\r | |
1717 | DbpString("Just about to copy the UID out of the cascade 2 id req");\r | |
1718 | // First copy the 5 bytes (Mifare Classic) after the 95 70\r | |
1719 | memcpy(cmd5+2,receivedAnswer,5);\r | |
1720 | // Secondly compute the two CRC bytes at the end\r | |
1721 | ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);\r | |
1722 | \r | |
1723 | // Store reader command in buffer\r | |
1724 | if (!LogTrace(cmd5,9,0,GetParity(cmd5,9),TRUE)) break;\r | |
1725 | \r | |
1726 | CodeIso14443aAsReader(cmd5, sizeof(cmd5));\r | |
1727 | memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r | |
1728 | \r | |
1729 | // Select the card\r | |
1730 | TransmitFor14443a(req4, req4Len, &samples, &wait);\r | |
1731 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1732 | \r | |
1733 | // Log the SAK\r | |
1734 | if (!LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE)) break;\r | |
1735 | }\r | |
1736 | \r | |
1737 | // Secondly compute the two CRC bytes at the end\r | |
1738 | ComputeCrc14443(CRC_14443_A, cmd7, 2, &cmd7[2], &cmd7[3]);\r | |
1739 | CodeIso14443aAsReader(cmd7, sizeof(cmd7));\r | |
1740 | memcpy(req7, ToSend, ToSendMax); req7Len = ToSendMax;\r | |
1741 | \r | |
1742 | // Send authentication request (Mifare Classic)\r | |
1743 | TransmitFor14443a(req7, req7Len, &samples, &wait);\r | |
1744 | // Store reader command in buffer\r | |
1745 | if (!LogTrace(cmd7,4,0,GetParity(cmd7,4),TRUE)) break;\r | |
1746 | \r | |
1747 | if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) continue;\r | |
1748 | \r | |
1749 | // We received probably a random, continue and trace!\r | |
1750 | if (!LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE)) break;\r | |
1751 | }\r | |
1752 | \r | |
1753 | // Thats it...\r | |
1754 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r | |
1755 | LEDsoff();\r | |
1756 | DbpIntegers(rsamples, 0xCC, 0xCC);\r | |
1757 | DbpString("ready..");\r | |
1758 | }\r |