]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2015 piwi | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Implements a card only attack based on crypto text (encrypted nonces | |
9 | // received during a nested authentication) only. Unlike other card only | |
10 | // attacks this doesn't rely on implementation errors but only on the | |
11 | // inherent weaknesses of the crypto1 cypher. Described in | |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened | |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on | |
14 | // Computer and Communications Security, 2015 | |
15 | //----------------------------------------------------------------------------- | |
16 | ||
17 | #include <stdio.h> | |
18 | #include <stdlib.h> | |
19 | #include <string.h> | |
20 | #include <pthread.h> | |
21 | #include <math.h> | |
22 | #include "proxmark3.h" | |
23 | #include "cmdmain.h" | |
24 | #include "ui.h" | |
25 | #include "util.h" | |
26 | #include "nonce2key/crapto1.h" | |
27 | #include "parity.h" | |
28 | ||
29 | // uint32_t test_state_odd = 0; | |
30 | // uint32_t test_state_even = 0; | |
31 | ||
32 | #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull | |
33 | #define GOOD_BYTES_REQUIRED 30 | |
34 | ||
35 | ||
36 | static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K | |
37 | 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
38 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
39 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
40 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
41 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
42 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
43 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
44 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
45 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
46 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
47 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
48 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
49 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
50 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
51 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
52 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
53 | 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
54 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
55 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
56 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
57 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
58 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
59 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
60 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
61 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
62 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
63 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
64 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
65 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
66 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
67 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
68 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
69 | 0.0290 }; | |
70 | ||
71 | ||
72 | typedef struct noncelistentry { | |
73 | uint32_t nonce_enc; | |
74 | uint8_t par_enc; | |
75 | void *next; | |
76 | } noncelistentry_t; | |
77 | ||
78 | typedef struct noncelist { | |
79 | uint16_t num; | |
80 | uint16_t Sum; | |
81 | uint16_t Sum8_guess; | |
82 | uint8_t BitFlip[2]; | |
83 | float Sum8_prob; | |
84 | bool updated; | |
85 | noncelistentry_t *first; | |
86 | float score1, score2; | |
87 | } noncelist_t; | |
88 | ||
89 | ||
90 | static uint32_t cuid; | |
91 | static noncelist_t nonces[256]; | |
92 | static uint8_t best_first_bytes[256]; | |
93 | static uint16_t first_byte_Sum = 0; | |
94 | static uint16_t first_byte_num = 0; | |
95 | static uint16_t num_good_first_bytes = 0; | |
96 | static uint64_t maximum_states = 0; | |
97 | static uint64_t known_target_key; | |
98 | ||
99 | ||
100 | ||
101 | typedef enum { | |
102 | EVEN_STATE = 0, | |
103 | ODD_STATE = 1 | |
104 | } odd_even_t; | |
105 | ||
106 | #define STATELIST_INDEX_WIDTH 16 | |
107 | #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH) | |
108 | ||
109 | typedef struct { | |
110 | uint32_t *states[2]; | |
111 | uint32_t len[2]; | |
112 | uint32_t *index[2][STATELIST_INDEX_SIZE]; | |
113 | } partial_indexed_statelist_t; | |
114 | ||
115 | typedef struct { | |
116 | uint32_t *states[2]; | |
117 | uint32_t len[2]; | |
118 | void* next; | |
119 | } statelist_t; | |
120 | ||
121 | ||
122 | static partial_indexed_statelist_t partial_statelist[17]; | |
123 | static partial_indexed_statelist_t statelist_bitflip; | |
124 | ||
125 | static statelist_t *candidates = NULL; | |
126 | ||
127 | ||
128 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) | |
129 | { | |
130 | uint8_t first_byte = nonce_enc >> 24; | |
131 | noncelistentry_t *p1 = nonces[first_byte].first; | |
132 | noncelistentry_t *p2 = NULL; | |
133 | ||
134 | if (p1 == NULL) { // first nonce with this 1st byte | |
135 | first_byte_num++; | |
136 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
137 | // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n", | |
138 | // nonce_enc, | |
139 | // par_enc, | |
140 | // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01, | |
141 | // parity((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
142 | } | |
143 | ||
144 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { | |
145 | p2 = p1; | |
146 | p1 = p1->next; | |
147 | } | |
148 | ||
149 | if (p1 == NULL) { // need to add at the end of the list | |
150 | if (p2 == NULL) { // list is empty yet. Add first entry. | |
151 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
152 | } else { // add new entry at end of existing list. | |
153 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
154 | } | |
155 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. | |
156 | if (p2 == NULL) { // need to insert at start of list | |
157 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
158 | } else { | |
159 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
160 | } | |
161 | } else { // we have seen this 2nd byte before. Nothing to add or insert. | |
162 | return (0); | |
163 | } | |
164 | ||
165 | // add or insert new data | |
166 | p2->next = p1; | |
167 | p2->nonce_enc = nonce_enc; | |
168 | p2->par_enc = par_enc; | |
169 | ||
170 | nonces[first_byte].num++; | |
171 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); | |
172 | nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte | |
173 | ||
174 | return (1); // new nonce added | |
175 | } | |
176 | ||
177 | ||
178 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) | |
179 | { | |
180 | uint16_t sum = 0; | |
181 | for (uint16_t j = 0; j < 16; j++) { | |
182 | uint32_t st = state; | |
183 | uint16_t part_sum = 0; | |
184 | if (odd_even == ODD_STATE) { | |
185 | for (uint16_t i = 0; i < 5; i++) { | |
186 | part_sum ^= filter(st); | |
187 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
188 | } | |
189 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits | |
190 | } else { | |
191 | for (uint16_t i = 0; i < 4; i++) { | |
192 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
193 | part_sum ^= filter(st); | |
194 | } | |
195 | } | |
196 | sum += part_sum; | |
197 | } | |
198 | return sum; | |
199 | } | |
200 | ||
201 | ||
202 | // static uint16_t SumProperty(struct Crypto1State *s) | |
203 | // { | |
204 | // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); | |
205 | // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); | |
206 | // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); | |
207 | // } | |
208 | ||
209 | ||
210 | static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) | |
211 | { | |
212 | // for efficient computation we are using the recursive definition | |
213 | // (K-k+1) * (n-k+1) | |
214 | // P(X=k) = P(X=k-1) * -------------------- | |
215 | // k * (N-K-n+k) | |
216 | // and | |
217 | // (N-K)*(N-K-1)*...*(N-K-n+1) | |
218 | // P(X=0) = ----------------------------- | |
219 | // N*(N-1)*...*(N-n+1) | |
220 | ||
221 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below | |
222 | if (k == 0) { | |
223 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) | |
224 | double log_result = 0.0; | |
225 | for (int16_t i = N-K; i >= N-K-n+1; i--) { | |
226 | log_result += log(i); | |
227 | } | |
228 | for (int16_t i = N; i >= N-n+1; i--) { | |
229 | log_result -= log(i); | |
230 | } | |
231 | return exp(log_result); | |
232 | } else { | |
233 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception | |
234 | double log_result = 0.0; | |
235 | for (int16_t i = k+1; i <= n; i++) { | |
236 | log_result += log(i); | |
237 | } | |
238 | for (int16_t i = K+1; i <= N; i++) { | |
239 | log_result -= log(i); | |
240 | } | |
241 | return exp(log_result); | |
242 | } else { // recursion | |
243 | return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); | |
244 | } | |
245 | } | |
246 | } | |
247 | ||
248 | ||
249 | static float sum_probability(uint16_t K, uint16_t n, uint16_t k) | |
250 | { | |
251 | const uint16_t N = 256; | |
252 | ||
253 | ||
254 | ||
255 | if (k > K || p_K[K] == 0.0) return 0.0; | |
256 | ||
257 | double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); | |
258 | double p_S_is_K = p_K[K]; | |
259 | double p_T_is_k = 0; | |
260 | for (uint16_t i = 0; i <= 256; i++) { | |
261 | if (p_K[i] != 0.0) { | |
262 | p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); | |
263 | } | |
264 | } | |
265 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); | |
266 | } | |
267 | ||
268 | ||
269 | ||
270 | ||
271 | static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) | |
272 | { | |
273 | static const uint_fast8_t common_bits_LUT[256] = { | |
274 | 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
275 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
276 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
277 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
278 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
279 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
280 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
281 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
282 | 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
283 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
284 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
285 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
286 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
287 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
288 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
289 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 | |
290 | }; | |
291 | ||
292 | return common_bits_LUT[bytes_diff]; | |
293 | } | |
294 | ||
295 | ||
296 | static void Tests() | |
297 | { | |
298 | // printf("Tests: Partial Statelist sizes\n"); | |
299 | // for (uint16_t i = 0; i <= 16; i+=2) { | |
300 | // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); | |
301 | // } | |
302 | // for (uint16_t i = 0; i <= 16; i+=2) { | |
303 | // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); | |
304 | // } | |
305 | ||
306 | // #define NUM_STATISTICS 100000 | |
307 | // uint32_t statistics_odd[17]; | |
308 | // uint64_t statistics[257]; | |
309 | // uint32_t statistics_even[17]; | |
310 | // struct Crypto1State cs; | |
311 | // time_t time1 = clock(); | |
312 | ||
313 | // for (uint16_t i = 0; i < 257; i++) { | |
314 | // statistics[i] = 0; | |
315 | // } | |
316 | // for (uint16_t i = 0; i < 17; i++) { | |
317 | // statistics_odd[i] = 0; | |
318 | // statistics_even[i] = 0; | |
319 | // } | |
320 | ||
321 | // for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
322 | // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
323 | // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
324 | // uint16_t sum_property = SumProperty(&cs); | |
325 | // statistics[sum_property] += 1; | |
326 | // sum_property = PartialSumProperty(cs.even, EVEN_STATE); | |
327 | // statistics_even[sum_property]++; | |
328 | // sum_property = PartialSumProperty(cs.odd, ODD_STATE); | |
329 | // statistics_odd[sum_property]++; | |
330 | // if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
331 | // } | |
332 | ||
333 | // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC); | |
334 | // for (uint16_t i = 0; i < 257; i++) { | |
335 | // if (statistics[i] != 0) { | |
336 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); | |
337 | // } | |
338 | // } | |
339 | // for (uint16_t i = 0; i <= 16; i++) { | |
340 | // if (statistics_odd[i] != 0) { | |
341 | // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); | |
342 | // } | |
343 | // } | |
344 | // for (uint16_t i = 0; i <= 16; i++) { | |
345 | // if (statistics_odd[i] != 0) { | |
346 | // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); | |
347 | // } | |
348 | // } | |
349 | ||
350 | // printf("Tests: Sum Probabilities based on Partial Sums\n"); | |
351 | // for (uint16_t i = 0; i < 257; i++) { | |
352 | // statistics[i] = 0; | |
353 | // } | |
354 | // uint64_t num_states = 0; | |
355 | // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { | |
356 | // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { | |
357 | // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; | |
358 | // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
359 | // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
360 | // } | |
361 | // } | |
362 | // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48)); | |
363 | // for (uint16_t i = 0; i < 257; i++) { | |
364 | // if (statistics[i] != 0) { | |
365 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); | |
366 | // } | |
367 | // } | |
368 | ||
369 | // printf("\nTests: Hypergeometric Probability for selected parameters\n"); | |
370 | // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206)); | |
371 | // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205)); | |
372 | // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1)); | |
373 | // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0)); | |
374 | // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); | |
375 | // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); | |
376 | ||
377 | // struct Crypto1State *pcs; | |
378 | // pcs = crypto1_create(0xffffffffffff); | |
379 | // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
380 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
381 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
382 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
383 | // best_first_bytes[0], | |
384 | // SumProperty(pcs), | |
385 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
386 | // //test_state_odd = pcs->odd & 0x00ffffff; | |
387 | // //test_state_even = pcs->even & 0x00ffffff; | |
388 | // crypto1_destroy(pcs); | |
389 | // pcs = crypto1_create(0xa0a1a2a3a4a5); | |
390 | // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
391 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
392 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
393 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
394 | // best_first_bytes[0], | |
395 | // SumProperty(pcs), | |
396 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
397 | // //test_state_odd = pcs->odd & 0x00ffffff; | |
398 | // //test_state_even = pcs->even & 0x00ffffff; | |
399 | // crypto1_destroy(pcs); | |
400 | // pcs = crypto1_create(0xa6b9aa97b955); | |
401 | // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
402 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
403 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
404 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
405 | // best_first_bytes[0], | |
406 | // SumProperty(pcs), | |
407 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
408 | //test_state_odd = pcs->odd & 0x00ffffff; | |
409 | //test_state_even = pcs->even & 0x00ffffff; | |
410 | // crypto1_destroy(pcs); | |
411 | ||
412 | ||
413 | ||
414 | // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); | |
415 | ||
416 | printf("\nTests: Actual BitFlipProperties odd/even:\n"); | |
417 | for (uint16_t i = 0; i < 256; i++) { | |
418 | printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); | |
419 | if (i % 8 == 7) { | |
420 | printf("\n"); | |
421 | } | |
422 | } | |
423 | ||
424 | printf("\nTests: Sorted First Bytes:\n"); | |
425 | for (uint16_t i = 0; i < 256; i++) { | |
426 | uint8_t best_byte = best_first_bytes[i]; | |
427 | printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", | |
428 | //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", | |
429 | i, best_byte, | |
430 | nonces[best_byte].num, | |
431 | nonces[best_byte].Sum, | |
432 | nonces[best_byte].Sum8_guess, | |
433 | nonces[best_byte].Sum8_prob * 100, | |
434 | nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' | |
435 | //nonces[best_byte].score1, | |
436 | //nonces[best_byte].score2 | |
437 | ); | |
438 | } | |
439 | ||
440 | // printf("\nTests: parity performance\n"); | |
441 | // time_t time1p = clock(); | |
442 | // uint32_t par_sum = 0; | |
443 | // for (uint32_t i = 0; i < 100000000; i++) { | |
444 | // par_sum += parity(i); | |
445 | // } | |
446 | // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); | |
447 | ||
448 | // time1p = clock(); | |
449 | // par_sum = 0; | |
450 | // for (uint32_t i = 0; i < 100000000; i++) { | |
451 | // par_sum += evenparity32(i); | |
452 | // } | |
453 | // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); | |
454 | ||
455 | ||
456 | } | |
457 | ||
458 | ||
459 | static void sort_best_first_bytes(void) | |
460 | { | |
461 | // sort based on probability for correct guess | |
462 | for (uint16_t i = 0; i < 256; i++ ) { | |
463 | uint16_t j = 0; | |
464 | float prob1 = nonces[i].Sum8_prob; | |
465 | float prob2 = nonces[best_first_bytes[0]].Sum8_prob; | |
466 | while (prob1 < prob2 && j < i) { | |
467 | prob2 = nonces[best_first_bytes[++j]].Sum8_prob; | |
468 | } | |
469 | if (j < i) { | |
470 | for (uint16_t k = i; k > j; k--) { | |
471 | best_first_bytes[k] = best_first_bytes[k-1]; | |
472 | } | |
473 | } | |
474 | best_first_bytes[j] = i; | |
475 | } | |
476 | ||
477 | // determine how many are above the CONFIDENCE_THRESHOLD | |
478 | uint16_t num_good_nonces = 0; | |
479 | for (uint16_t i = 0; i < 256; i++) { | |
480 | if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { | |
481 | ++num_good_nonces; | |
482 | } | |
483 | } | |
484 | ||
485 | uint16_t best_first_byte = 0; | |
486 | ||
487 | // select the best possible first byte based on number of common bits with all {b'} | |
488 | // uint16_t max_common_bits = 0; | |
489 | // for (uint16_t i = 0; i < num_good_nonces; i++) { | |
490 | // uint16_t sum_common_bits = 0; | |
491 | // for (uint16_t j = 0; j < num_good_nonces; j++) { | |
492 | // if (i != j) { | |
493 | // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]); | |
494 | // } | |
495 | // } | |
496 | // if (sum_common_bits > max_common_bits) { | |
497 | // max_common_bits = sum_common_bits; | |
498 | // best_first_byte = i; | |
499 | // } | |
500 | // } | |
501 | ||
502 | // select best possible first byte {b} based on least likely sum/bitflip property | |
503 | float min_p_K = 1.0; | |
504 | for (uint16_t i = 0; i < num_good_nonces; i++ ) { | |
505 | uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess; | |
506 | float bitflip_prob = 1.0; | |
507 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { | |
508 | bitflip_prob = 0.09375; | |
509 | } | |
510 | nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; | |
511 | if (p_K[sum8] * bitflip_prob <= min_p_K) { | |
512 | min_p_K = p_K[sum8] * bitflip_prob; | |
513 | } | |
514 | } | |
515 | ||
516 | ||
517 | // use number of commmon bits as a tie breaker | |
518 | uint16_t max_common_bits = 0; | |
519 | for (uint16_t i = 0; i < num_good_nonces; i++) { | |
520 | float bitflip_prob = 1.0; | |
521 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { | |
522 | bitflip_prob = 0.09375; | |
523 | } | |
524 | if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { | |
525 | uint16_t sum_common_bits = 0; | |
526 | for (uint16_t j = 0; j < num_good_nonces; j++) { | |
527 | sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); | |
528 | } | |
529 | nonces[best_first_bytes[i]].score2 = sum_common_bits; | |
530 | if (sum_common_bits > max_common_bits) { | |
531 | max_common_bits = sum_common_bits; | |
532 | best_first_byte = i; | |
533 | } | |
534 | } | |
535 | } | |
536 | ||
537 | // swap best possible first byte to the pole position | |
538 | uint16_t temp = best_first_bytes[0]; | |
539 | best_first_bytes[0] = best_first_bytes[best_first_byte]; | |
540 | best_first_bytes[best_first_byte] = temp; | |
541 | ||
542 | } | |
543 | ||
544 | ||
545 | static uint16_t estimate_second_byte_sum(void) | |
546 | { | |
547 | ||
548 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { | |
549 | float Sum8_prob = 0.0; | |
550 | uint16_t Sum8 = 0; | |
551 | if (nonces[first_byte].updated) { | |
552 | for (uint16_t sum = 0; sum <= 256; sum++) { | |
553 | float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum); | |
554 | if (prob > Sum8_prob) { | |
555 | Sum8_prob = prob; | |
556 | Sum8 = sum; | |
557 | } | |
558 | } | |
559 | nonces[first_byte].Sum8_guess = Sum8; | |
560 | nonces[first_byte].Sum8_prob = Sum8_prob; | |
561 | nonces[first_byte].updated = false; | |
562 | } | |
563 | } | |
564 | ||
565 | sort_best_first_bytes(); | |
566 | ||
567 | uint16_t num_good_nonces = 0; | |
568 | for (uint16_t i = 0; i < 256; i++) { | |
569 | if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) { | |
570 | ++num_good_nonces; | |
571 | } | |
572 | } | |
573 | ||
574 | return num_good_nonces; | |
575 | } | |
576 | ||
577 | ||
578 | static int read_nonce_file(void) | |
579 | { | |
580 | FILE *fnonces = NULL; | |
581 | uint8_t trgBlockNo; | |
582 | uint8_t trgKeyType; | |
583 | uint8_t read_buf[9]; | |
584 | uint32_t nt_enc1, nt_enc2; | |
585 | uint8_t par_enc; | |
586 | int total_num_nonces = 0; | |
587 | ||
588 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { | |
589 | PrintAndLog("Could not open file nonces.bin"); | |
590 | return 1; | |
591 | } | |
592 | ||
593 | PrintAndLog("Reading nonces from file nonces.bin..."); | |
594 | if (fread(read_buf, 1, 6, fnonces) == 0) { | |
595 | PrintAndLog("File reading error."); | |
596 | fclose(fnonces); | |
597 | return 1; | |
598 | } | |
599 | cuid = bytes_to_num(read_buf, 4); | |
600 | trgBlockNo = bytes_to_num(read_buf+4, 1); | |
601 | trgKeyType = bytes_to_num(read_buf+5, 1); | |
602 | ||
603 | while (fread(read_buf, 1, 9, fnonces) == 9) { | |
604 | nt_enc1 = bytes_to_num(read_buf, 4); | |
605 | nt_enc2 = bytes_to_num(read_buf+4, 4); | |
606 | par_enc = bytes_to_num(read_buf+8, 1); | |
607 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
608 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
609 | add_nonce(nt_enc1, par_enc >> 4); | |
610 | add_nonce(nt_enc2, par_enc & 0x0f); | |
611 | total_num_nonces += 2; | |
612 | } | |
613 | fclose(fnonces); | |
614 | PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); | |
615 | ||
616 | return 0; | |
617 | } | |
618 | ||
619 | ||
620 | static void Check_for_FilterFlipProperties(void) | |
621 | { | |
622 | printf("Checking for Filter Flip Properties...\n"); | |
623 | ||
624 | for (uint16_t i = 0; i < 256; i++) { | |
625 | nonces[i].BitFlip[ODD_STATE] = false; | |
626 | nonces[i].BitFlip[EVEN_STATE] = false; | |
627 | } | |
628 | ||
629 | for (uint16_t i = 0; i < 256; i++) { | |
630 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte | |
631 | uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped | |
632 | uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped | |
633 | ||
634 | if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits | |
635 | nonces[i].BitFlip[ODD_STATE] = true; | |
636 | } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits | |
637 | nonces[i].BitFlip[EVEN_STATE] = true; | |
638 | } | |
639 | } | |
640 | } | |
641 | ||
642 | ||
643 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) | |
644 | { | |
645 | clock_t time1 = clock(); | |
646 | bool initialize = true; | |
647 | bool field_off = false; | |
648 | bool finished = false; | |
649 | bool filter_flip_checked = false; | |
650 | uint32_t flags = 0; | |
651 | uint8_t write_buf[9]; | |
652 | uint32_t total_num_nonces = 0; | |
653 | uint32_t next_fivehundred = 500; | |
654 | uint32_t total_added_nonces = 0; | |
655 | FILE *fnonces = NULL; | |
656 | UsbCommand resp; | |
657 | ||
658 | printf("Acquiring nonces...\n"); | |
659 | ||
660 | clearCommandBuffer(); | |
661 | ||
662 | do { | |
663 | flags = 0; | |
664 | flags |= initialize ? 0x0001 : 0; | |
665 | flags |= slow ? 0x0002 : 0; | |
666 | flags |= field_off ? 0x0004 : 0; | |
667 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; | |
668 | memcpy(c.d.asBytes, key, 6); | |
669 | ||
670 | SendCommand(&c); | |
671 | ||
672 | if (field_off) finished = true; | |
673 | ||
674 | if (initialize) { | |
675 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; | |
676 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard | |
677 | ||
678 | cuid = resp.arg[1]; | |
679 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); | |
680 | if (nonce_file_write && fnonces == NULL) { | |
681 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { | |
682 | PrintAndLog("Could not create file nonces.bin"); | |
683 | return 3; | |
684 | } | |
685 | PrintAndLog("Writing acquired nonces to binary file nonces.bin"); | |
686 | num_to_bytes(cuid, 4, write_buf); | |
687 | fwrite(write_buf, 1, 4, fnonces); | |
688 | fwrite(&trgBlockNo, 1, 1, fnonces); | |
689 | fwrite(&trgKeyType, 1, 1, fnonces); | |
690 | } | |
691 | } | |
692 | ||
693 | if (!initialize) { | |
694 | uint32_t nt_enc1, nt_enc2; | |
695 | uint8_t par_enc; | |
696 | uint16_t num_acquired_nonces = resp.arg[2]; | |
697 | uint8_t *bufp = resp.d.asBytes; | |
698 | for (uint16_t i = 0; i < num_acquired_nonces; i+=2) { | |
699 | nt_enc1 = bytes_to_num(bufp, 4); | |
700 | nt_enc2 = bytes_to_num(bufp+4, 4); | |
701 | par_enc = bytes_to_num(bufp+8, 1); | |
702 | ||
703 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
704 | total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); | |
705 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
706 | total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); | |
707 | ||
708 | ||
709 | if (nonce_file_write) { | |
710 | fwrite(bufp, 1, 9, fnonces); | |
711 | } | |
712 | ||
713 | bufp += 9; | |
714 | } | |
715 | ||
716 | total_num_nonces += num_acquired_nonces; | |
717 | } | |
718 | ||
719 | if (first_byte_num == 256 ) { | |
720 | // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); | |
721 | if (!filter_flip_checked) { | |
722 | Check_for_FilterFlipProperties(); | |
723 | filter_flip_checked = true; | |
724 | } | |
725 | num_good_first_bytes = estimate_second_byte_sum(); | |
726 | if (total_num_nonces > next_fivehundred) { | |
727 | next_fivehundred = (total_num_nonces/500+1) * 500; | |
728 | printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", | |
729 | total_num_nonces, | |
730 | total_added_nonces, | |
731 | CONFIDENCE_THRESHOLD * 100.0, | |
732 | num_good_first_bytes); | |
733 | } | |
734 | if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) { | |
735 | field_off = true; // switch off field with next SendCommand and then finish | |
736 | } | |
737 | } | |
738 | ||
739 | if (!initialize) { | |
740 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; | |
741 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard | |
742 | } | |
743 | ||
744 | initialize = false; | |
745 | ||
746 | } while (!finished); | |
747 | ||
748 | ||
749 | if (nonce_file_write) { | |
750 | fclose(fnonces); | |
751 | } | |
752 | ||
753 | PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", | |
754 | total_num_nonces, | |
755 | ((float)clock()-time1)/CLOCKS_PER_SEC, | |
756 | total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1)); | |
757 | ||
758 | return 0; | |
759 | } | |
760 | ||
761 | ||
762 | static int init_partial_statelists(void) | |
763 | { | |
764 | const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; | |
765 | const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; | |
766 | ||
767 | printf("Allocating memory for partial statelists...\n"); | |
768 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
769 | for (uint16_t i = 0; i <= 16; i+=2) { | |
770 | partial_statelist[i].len[odd_even] = 0; | |
771 | uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i]; | |
772 | partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states); | |
773 | if (partial_statelist[i].states[odd_even] == NULL) { | |
774 | PrintAndLog("Cannot allocate enough memory. Aborting"); | |
775 | return 4; | |
776 | } | |
777 | for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) { | |
778 | partial_statelist[i].index[odd_even][j] = NULL; | |
779 | } | |
780 | } | |
781 | } | |
782 | ||
783 | printf("Generating partial statelists...\n"); | |
784 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
785 | uint32_t index = -1; | |
786 | uint32_t num_of_states = 1<<20; | |
787 | for (uint32_t state = 0; state < num_of_states; state++) { | |
788 | uint16_t sum_property = PartialSumProperty(state, odd_even); | |
789 | uint32_t *p = partial_statelist[sum_property].states[odd_even]; | |
790 | p += partial_statelist[sum_property].len[odd_even]; | |
791 | *p = state; | |
792 | partial_statelist[sum_property].len[odd_even]++; | |
793 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); | |
794 | if ((state & index_mask) != index) { | |
795 | index = state & index_mask; | |
796 | } | |
797 | if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { | |
798 | partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p; | |
799 | } | |
800 | } | |
801 | // add End Of List markers | |
802 | for (uint16_t i = 0; i <= 16; i += 2) { | |
803 | uint32_t *p = partial_statelist[i].states[odd_even]; | |
804 | p += partial_statelist[i].len[odd_even]; | |
805 | *p = 0xffffffff; | |
806 | } | |
807 | } | |
808 | ||
809 | return 0; | |
810 | } | |
811 | ||
812 | ||
813 | static void init_BitFlip_statelist(void) | |
814 | { | |
815 | printf("Generating bitflip statelist...\n"); | |
816 | uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20); | |
817 | uint32_t index = -1; | |
818 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); | |
819 | for (uint32_t state = 0; state < (1 << 20); state++) { | |
820 | if (filter(state) != filter(state^1)) { | |
821 | if ((state & index_mask) != index) { | |
822 | index = state & index_mask; | |
823 | } | |
824 | if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { | |
825 | statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p; | |
826 | } | |
827 | *p++ = state; | |
828 | } | |
829 | } | |
830 | // set len and add End Of List marker | |
831 | statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; | |
832 | *p = 0xffffffff; | |
833 | statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); | |
834 | } | |
835 | ||
836 | ||
837 | static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) | |
838 | { | |
839 | uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index | |
840 | ||
841 | if (p == NULL) return NULL; | |
842 | while (*p < (state & mask)) p++; | |
843 | if (*p == 0xffffffff) return NULL; // reached end of list, no match | |
844 | if ((*p & mask) == (state & mask)) return p; // found a match. | |
845 | return NULL; // no match | |
846 | } | |
847 | ||
848 | ||
849 | static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
850 | { | |
851 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); | |
852 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit | |
853 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function | |
854 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; | |
855 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 | |
856 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits | |
857 | return !all_diff; | |
858 | } | |
859 | ||
860 | ||
861 | static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
862 | { | |
863 | uint_fast8_t j_bit_mask = 0x01 << bit; | |
864 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit | |
865 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; | |
866 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 | |
867 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits | |
868 | return all_diff; | |
869 | } | |
870 | ||
871 | ||
872 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) | |
873 | { | |
874 | if (odd_even) { | |
875 | // odd bits | |
876 | switch (num_common_bits) { | |
877 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; | |
878 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; | |
879 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; | |
880 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; | |
881 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; | |
882 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; | |
883 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; | |
884 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; | |
885 | } | |
886 | } else { | |
887 | // even bits | |
888 | switch (num_common_bits) { | |
889 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; | |
890 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; | |
891 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; | |
892 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; | |
893 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; | |
894 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; | |
895 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; | |
896 | } | |
897 | } | |
898 | ||
899 | return true; // valid state | |
900 | } | |
901 | ||
902 | ||
903 | static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) | |
904 | { | |
905 | for (uint16_t i = 1; i < num_good_first_bytes; i++) { | |
906 | uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; | |
907 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i]; | |
908 | uint_fast8_t j = common_bits(bytes_diff); | |
909 | uint32_t mask = 0xfffffff0; | |
910 | if (odd_even == ODD_STATE) { | |
911 | mask >>= j/2; | |
912 | } else { | |
913 | mask >>= (j+1)/2; | |
914 | } | |
915 | mask &= 0x000fffff; | |
916 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); | |
917 | bool found_match = false; | |
918 | for (uint16_t r = 0; r <= 16 && !found_match; r += 2) { | |
919 | for (uint16_t s = 0; s <= 16 && !found_match; s += 2) { | |
920 | if (r*(16-s) + (16-r)*s == sum_a8) { | |
921 | //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s); | |
922 | uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; | |
923 | uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); | |
924 | if (p != NULL) { | |
925 | while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { | |
926 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { | |
927 | found_match = true; | |
928 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
929 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
930 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
931 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
932 | // } | |
933 | break; | |
934 | } else { | |
935 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
936 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
937 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
938 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
939 | // } | |
940 | } | |
941 | p++; | |
942 | } | |
943 | } else { | |
944 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
945 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
946 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
947 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
948 | // } | |
949 | } | |
950 | } | |
951 | } | |
952 | } | |
953 | ||
954 | if (!found_match) { | |
955 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
956 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
957 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); | |
958 | // } | |
959 | return false; | |
960 | } | |
961 | } | |
962 | ||
963 | return true; | |
964 | } | |
965 | ||
966 | ||
967 | static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) | |
968 | { | |
969 | for (uint16_t i = 0; i < 256; i++) { | |
970 | if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) { | |
971 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ i; | |
972 | uint_fast8_t j = common_bits(bytes_diff); | |
973 | uint32_t mask = 0xfffffff0; | |
974 | if (odd_even == ODD_STATE) { | |
975 | mask >>= j/2; | |
976 | } else { | |
977 | mask >>= (j+1)/2; | |
978 | } | |
979 | mask &= 0x000fffff; | |
980 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); | |
981 | bool found_match = false; | |
982 | uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0); | |
983 | if (p != NULL) { | |
984 | while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { | |
985 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { | |
986 | found_match = true; | |
987 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
988 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
989 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
990 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
991 | // } | |
992 | break; | |
993 | } else { | |
994 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
995 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
996 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
997 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
998 | // } | |
999 | } | |
1000 | p++; | |
1001 | } | |
1002 | } else { | |
1003 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1004 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1005 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1006 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1007 | // } | |
1008 | } | |
1009 | if (!found_match) { | |
1010 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1011 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1012 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); | |
1013 | // } | |
1014 | return false; | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | } | |
1019 | ||
1020 | return true; | |
1021 | } | |
1022 | ||
1023 | ||
1024 | static struct sl_cache_entry { | |
1025 | uint32_t *sl; | |
1026 | uint32_t len; | |
1027 | } sl_cache[17][17][2]; | |
1028 | ||
1029 | ||
1030 | static void init_statelist_cache(void) | |
1031 | { | |
1032 | ||
1033 | for (uint16_t i = 0; i < 17; i+=2) { | |
1034 | for (uint16_t j = 0; j < 17; j+=2) { | |
1035 | for (uint16_t k = 0; k < 2; k++) { | |
1036 | sl_cache[i][j][k].sl = NULL; | |
1037 | sl_cache[i][j][k].len = 0; | |
1038 | } | |
1039 | } | |
1040 | } | |
1041 | } | |
1042 | ||
1043 | ||
1044 | static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) | |
1045 | { | |
1046 | uint32_t worstcase_size = 1<<20; | |
1047 | ||
1048 | // check cache for existing results | |
1049 | if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) { | |
1050 | candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl; | |
1051 | candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len; | |
1052 | return 0; | |
1053 | } | |
1054 | ||
1055 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1056 | if (candidates->states[odd_even] == NULL) { | |
1057 | PrintAndLog("Out of memory error.\n"); | |
1058 | return 4; | |
1059 | } | |
1060 | uint32_t *add_p = candidates->states[odd_even]; | |
1061 | for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) { | |
1062 | uint32_t search_mask = 0x000ffff0; | |
1063 | uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); | |
1064 | if (p2 != NULL) { | |
1065 | while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) { | |
1066 | if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) | |
1067 | || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { | |
1068 | if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { | |
1069 | if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) { | |
1070 | *add_p++ = (*p1 << 4) | *p2; | |
1071 | } | |
1072 | } | |
1073 | } | |
1074 | p2++; | |
1075 | } | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | // set end of list marker and len | |
1080 | *add_p = 0xffffffff; | |
1081 | candidates->len[odd_even] = add_p - candidates->states[odd_even]; | |
1082 | ||
1083 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1084 | ||
1085 | sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even]; | |
1086 | sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even]; | |
1087 | ||
1088 | return 0; | |
1089 | } | |
1090 | ||
1091 | ||
1092 | static statelist_t *add_more_candidates(statelist_t *current_candidates) | |
1093 | { | |
1094 | statelist_t *new_candidates = NULL; | |
1095 | if (current_candidates == NULL) { | |
1096 | if (candidates == NULL) { | |
1097 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); | |
1098 | } | |
1099 | new_candidates = candidates; | |
1100 | } else { | |
1101 | new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); | |
1102 | } | |
1103 | new_candidates->next = NULL; | |
1104 | new_candidates->len[ODD_STATE] = 0; | |
1105 | new_candidates->len[EVEN_STATE] = 0; | |
1106 | new_candidates->states[ODD_STATE] = NULL; | |
1107 | new_candidates->states[EVEN_STATE] = NULL; | |
1108 | return new_candidates; | |
1109 | } | |
1110 | ||
1111 | ||
1112 | static void TestIfKeyExists(uint64_t key) | |
1113 | { | |
1114 | struct Crypto1State *pcs; | |
1115 | pcs = crypto1_create(key); | |
1116 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
1117 | ||
1118 | uint32_t state_odd = pcs->odd & 0x00ffffff; | |
1119 | uint32_t state_even = pcs->even & 0x00ffffff; | |
1120 | //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); | |
1121 | ||
1122 | uint64_t count = 0; | |
1123 | for (statelist_t *p = candidates; p != NULL; p = p->next) { | |
1124 | bool found_odd = false; | |
1125 | bool found_even = false; | |
1126 | uint32_t *p_odd = p->states[ODD_STATE]; | |
1127 | uint32_t *p_even = p->states[EVEN_STATE]; | |
1128 | while (*p_odd != 0xffffffff) { | |
1129 | if ((*p_odd & 0x00ffffff) == state_odd) { | |
1130 | found_odd = true; | |
1131 | break; | |
1132 | } | |
1133 | p_odd++; | |
1134 | } | |
1135 | while (*p_even != 0xffffffff) { | |
1136 | if ((*p_even & 0x00ffffff) == state_even) { | |
1137 | found_even = true; | |
1138 | } | |
1139 | p_even++; | |
1140 | } | |
1141 | count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); | |
1142 | if (found_odd && found_even) { | |
1143 | PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", | |
1144 | count, log(count)/log(2), | |
1145 | maximum_states, log(maximum_states)/log(2), | |
1146 | (count>>23)/60); | |
1147 | crypto1_destroy(pcs); | |
1148 | return; | |
1149 | } | |
1150 | } | |
1151 | ||
1152 | printf("Key NOT found!\n"); | |
1153 | crypto1_destroy(pcs); | |
1154 | } | |
1155 | ||
1156 | ||
1157 | static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) | |
1158 | { | |
1159 | printf("Generating crypto1 state candidates... \n"); | |
1160 | ||
1161 | statelist_t *current_candidates = NULL; | |
1162 | // estimate maximum candidate states | |
1163 | maximum_states = 0; | |
1164 | for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { | |
1165 | for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { | |
1166 | if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { | |
1167 | maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8); | |
1168 | } | |
1169 | } | |
1170 | } | |
1171 | printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); | |
1172 | ||
1173 | init_statelist_cache(); | |
1174 | ||
1175 | for (uint16_t p = 0; p <= 16; p += 2) { | |
1176 | for (uint16_t q = 0; q <= 16; q += 2) { | |
1177 | if (p*(16-q) + (16-p)*q == sum_a0) { | |
1178 | printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", | |
1179 | p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); | |
1180 | for (uint16_t r = 0; r <= 16; r += 2) { | |
1181 | for (uint16_t s = 0; s <= 16; s += 2) { | |
1182 | if (r*(16-s) + (16-r)*s == sum_a8) { | |
1183 | current_candidates = add_more_candidates(current_candidates); | |
1184 | // check for the smallest partial statelist. Try this first - it might give 0 candidates | |
1185 | // and eliminate the need to calculate the other part | |
1186 | if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) | |
1187 | < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { | |
1188 | add_matching_states(current_candidates, p, r, ODD_STATE); | |
1189 | if(current_candidates->len[ODD_STATE]) { | |
1190 | add_matching_states(current_candidates, q, s, EVEN_STATE); | |
1191 | } else { | |
1192 | current_candidates->len[EVEN_STATE] = 0; | |
1193 | uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); | |
1194 | *p = 0xffffffff; | |
1195 | } | |
1196 | } else { | |
1197 | add_matching_states(current_candidates, q, s, EVEN_STATE); | |
1198 | if(current_candidates->len[EVEN_STATE]) { | |
1199 | add_matching_states(current_candidates, p, r, ODD_STATE); | |
1200 | } else { | |
1201 | current_candidates->len[ODD_STATE] = 0; | |
1202 | uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t)); | |
1203 | *p = 0xffffffff; | |
1204 | } | |
1205 | } | |
1206 | printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); | |
1207 | printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); | |
1208 | } | |
1209 | } | |
1210 | } | |
1211 | } | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | ||
1216 | maximum_states = 0; | |
1217 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
1218 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
1219 | } | |
1220 | printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
1221 | ||
1222 | } | |
1223 | ||
1224 | ||
1225 | static void brute_force(void) | |
1226 | { | |
1227 | if (known_target_key != -1) { | |
1228 | PrintAndLog("Looking for known target key in remaining key space..."); | |
1229 | TestIfKeyExists(known_target_key); | |
1230 | } else { | |
1231 | PrintAndLog("Brute Force phase is not implemented."); | |
1232 | } | |
1233 | ||
1234 | } | |
1235 | ||
1236 | ||
1237 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow) | |
1238 | { | |
1239 | if (trgkey != NULL) { | |
1240 | known_target_key = bytes_to_num(trgkey, 6); | |
1241 | } else { | |
1242 | known_target_key = -1; | |
1243 | } | |
1244 | ||
1245 | // initialize the list of nonces | |
1246 | for (uint16_t i = 0; i < 256; i++) { | |
1247 | nonces[i].num = 0; | |
1248 | nonces[i].Sum = 0; | |
1249 | nonces[i].Sum8_guess = 0; | |
1250 | nonces[i].Sum8_prob = 0.0; | |
1251 | nonces[i].updated = true; | |
1252 | nonces[i].first = NULL; | |
1253 | } | |
1254 | first_byte_num = 0; | |
1255 | first_byte_Sum = 0; | |
1256 | num_good_first_bytes = 0; | |
1257 | ||
1258 | init_partial_statelists(); | |
1259 | init_BitFlip_statelist(); | |
1260 | ||
1261 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin | |
1262 | if (read_nonce_file() != 0) { | |
1263 | return 3; | |
1264 | } | |
1265 | Check_for_FilterFlipProperties(); | |
1266 | num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); | |
1267 | } else { // acquire nonces. | |
1268 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); | |
1269 | if (is_OK != 0) { | |
1270 | return is_OK; | |
1271 | } | |
1272 | } | |
1273 | ||
1274 | ||
1275 | Tests(); | |
1276 | ||
1277 | PrintAndLog(""); | |
1278 | PrintAndLog("Sum(a0) = %d", first_byte_Sum); | |
1279 | // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", | |
1280 | // best_first_bytes[0], | |
1281 | // best_first_bytes[1], | |
1282 | // best_first_bytes[2], | |
1283 | // best_first_bytes[3], | |
1284 | // best_first_bytes[4], | |
1285 | // best_first_bytes[5], | |
1286 | // best_first_bytes[6], | |
1287 | // best_first_bytes[7], | |
1288 | // best_first_bytes[8], | |
1289 | // best_first_bytes[9] ); | |
1290 | PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); | |
1291 | ||
1292 | time_t start_time = clock(); | |
1293 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); | |
1294 | PrintAndLog("Time for generating key candidates list: %1.0f seconds", (float)(clock() - start_time)/CLOCKS_PER_SEC); | |
1295 | ||
1296 | brute_force(); | |
1297 | ||
1298 | return 0; | |
1299 | } | |
1300 | ||
1301 |