]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011, 2012 | |
3 | // Gerhard de Koning Gans - May 2008 | |
4 | // Hagen Fritsch - June 2010 | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // Routines to support ISO 14443 type A. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "string.h" | |
17 | #include "cmd.h" | |
18 | ||
19 | #include "iso14443crc.h" | |
20 | #include "iso14443a.h" | |
21 | #include "crapto1.h" | |
22 | #include "mifareutil.h" | |
23 | ||
24 | static uint32_t iso14a_timeout; | |
25 | uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; | |
26 | int traceLen = 0; | |
27 | int rsamples = 0; | |
28 | int tracing = TRUE; | |
29 | uint8_t trigger = 0; | |
30 | // the block number for the ISO14443-4 PCB | |
31 | static uint8_t iso14_pcb_blocknum = 0; | |
32 | ||
33 | // CARD TO READER - manchester | |
34 | // Sequence D: 11110000 modulation with subcarrier during first half | |
35 | // Sequence E: 00001111 modulation with subcarrier during second half | |
36 | // Sequence F: 00000000 no modulation with subcarrier | |
37 | // READER TO CARD - miller | |
38 | // Sequence X: 00001100 drop after half a period | |
39 | // Sequence Y: 00000000 no drop | |
40 | // Sequence Z: 11000000 drop at start | |
41 | #define SEC_D 0xf0 | |
42 | #define SEC_E 0x0f | |
43 | #define SEC_F 0x00 | |
44 | #define SEC_X 0x0c | |
45 | #define SEC_Y 0x00 | |
46 | #define SEC_Z 0xc0 | |
47 | ||
48 | const uint8_t OddByteParity[256] = { | |
49 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
50 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
51 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
52 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
53 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
54 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
55 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
56 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
57 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
58 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
59 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
60 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
61 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
62 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
63 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
64 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
65 | }; | |
66 | ||
67 | ||
68 | void iso14a_set_trigger(bool enable) { | |
69 | trigger = enable; | |
70 | } | |
71 | ||
72 | void iso14a_clear_trace() { | |
73 | memset(trace, 0x44, TRACE_SIZE); | |
74 | traceLen = 0; | |
75 | } | |
76 | ||
77 | void iso14a_set_tracing(bool enable) { | |
78 | tracing = enable; | |
79 | } | |
80 | ||
81 | void iso14a_set_timeout(uint32_t timeout) { | |
82 | iso14a_timeout = timeout; | |
83 | } | |
84 | ||
85 | //----------------------------------------------------------------------------- | |
86 | // Generate the parity value for a byte sequence | |
87 | // | |
88 | //----------------------------------------------------------------------------- | |
89 | byte_t oddparity (const byte_t bt) | |
90 | { | |
91 | return OddByteParity[bt]; | |
92 | } | |
93 | ||
94 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) | |
95 | { | |
96 | int i; | |
97 | uint32_t dwPar = 0; | |
98 | ||
99 | // Generate the encrypted data | |
100 | for (i = 0; i < iLen; i++) { | |
101 | // Save the encrypted parity bit | |
102 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); | |
103 | } | |
104 | return dwPar; | |
105 | } | |
106 | ||
107 | void AppendCrc14443a(uint8_t* data, int len) | |
108 | { | |
109 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
110 | } | |
111 | ||
112 | // The function LogTrace() is also used by the iClass implementation in iClass.c | |
113 | int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) | |
114 | { | |
115 | // Return when trace is full | |
116 | if (traceLen >= TRACE_SIZE) return FALSE; | |
117 | ||
118 | // Trace the random, i'm curious | |
119 | rsamples += iSamples; | |
120 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
121 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
122 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
123 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
124 | if (!bReader) { | |
125 | trace[traceLen - 1] |= 0x80; | |
126 | } | |
127 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
128 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
129 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
130 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
131 | trace[traceLen++] = iLen; | |
132 | memcpy(trace + traceLen, btBytes, iLen); | |
133 | traceLen += iLen; | |
134 | return TRUE; | |
135 | } | |
136 | ||
137 | //----------------------------------------------------------------------------- | |
138 | // The software UART that receives commands from the reader, and its state | |
139 | // variables. | |
140 | //----------------------------------------------------------------------------- | |
141 | static tUart Uart; | |
142 | ||
143 | static RAMFUNC int MillerDecoding(int bit) | |
144 | { | |
145 | //int error = 0; | |
146 | int bitright; | |
147 | ||
148 | if(!Uart.bitBuffer) { | |
149 | Uart.bitBuffer = bit ^ 0xFF0; | |
150 | return FALSE; | |
151 | } | |
152 | else { | |
153 | Uart.bitBuffer <<= 4; | |
154 | Uart.bitBuffer ^= bit; | |
155 | } | |
156 | ||
157 | int EOC = FALSE; | |
158 | ||
159 | if(Uart.state != STATE_UNSYNCD) { | |
160 | Uart.posCnt++; | |
161 | ||
162 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
163 | bit = 0x00; | |
164 | } | |
165 | else { | |
166 | bit = 0x01; | |
167 | } | |
168 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
169 | bitright = 0x00; | |
170 | } | |
171 | else { | |
172 | bitright = 0x01; | |
173 | } | |
174 | if(bit != bitright) { bit = bitright; } | |
175 | ||
176 | if(Uart.posCnt == 1) { | |
177 | // measurement first half bitperiod | |
178 | if(!bit) { | |
179 | Uart.drop = DROP_FIRST_HALF; | |
180 | } | |
181 | } | |
182 | else { | |
183 | // measurement second half bitperiod | |
184 | if(!bit & (Uart.drop == DROP_NONE)) { | |
185 | Uart.drop = DROP_SECOND_HALF; | |
186 | } | |
187 | else if(!bit) { | |
188 | // measured a drop in first and second half | |
189 | // which should not be possible | |
190 | Uart.state = STATE_ERROR_WAIT; | |
191 | //error = 0x01; | |
192 | } | |
193 | ||
194 | Uart.posCnt = 0; | |
195 | ||
196 | switch(Uart.state) { | |
197 | case STATE_START_OF_COMMUNICATION: | |
198 | Uart.shiftReg = 0; | |
199 | if(Uart.drop == DROP_SECOND_HALF) { | |
200 | // error, should not happen in SOC | |
201 | Uart.state = STATE_ERROR_WAIT; | |
202 | //error = 0x02; | |
203 | } | |
204 | else { | |
205 | // correct SOC | |
206 | Uart.state = STATE_MILLER_Z; | |
207 | } | |
208 | break; | |
209 | ||
210 | case STATE_MILLER_Z: | |
211 | Uart.bitCnt++; | |
212 | Uart.shiftReg >>= 1; | |
213 | if(Uart.drop == DROP_NONE) { | |
214 | // logic '0' followed by sequence Y | |
215 | // end of communication | |
216 | Uart.state = STATE_UNSYNCD; | |
217 | EOC = TRUE; | |
218 | } | |
219 | // if(Uart.drop == DROP_FIRST_HALF) { | |
220 | // Uart.state = STATE_MILLER_Z; stay the same | |
221 | // we see a logic '0' } | |
222 | if(Uart.drop == DROP_SECOND_HALF) { | |
223 | // we see a logic '1' | |
224 | Uart.shiftReg |= 0x100; | |
225 | Uart.state = STATE_MILLER_X; | |
226 | } | |
227 | break; | |
228 | ||
229 | case STATE_MILLER_X: | |
230 | Uart.shiftReg >>= 1; | |
231 | if(Uart.drop == DROP_NONE) { | |
232 | // sequence Y, we see a '0' | |
233 | Uart.state = STATE_MILLER_Y; | |
234 | Uart.bitCnt++; | |
235 | } | |
236 | if(Uart.drop == DROP_FIRST_HALF) { | |
237 | // Would be STATE_MILLER_Z | |
238 | // but Z does not follow X, so error | |
239 | Uart.state = STATE_ERROR_WAIT; | |
240 | //error = 0x03; | |
241 | } | |
242 | if(Uart.drop == DROP_SECOND_HALF) { | |
243 | // We see a '1' and stay in state X | |
244 | Uart.shiftReg |= 0x100; | |
245 | Uart.bitCnt++; | |
246 | } | |
247 | break; | |
248 | ||
249 | case STATE_MILLER_Y: | |
250 | Uart.bitCnt++; | |
251 | Uart.shiftReg >>= 1; | |
252 | if(Uart.drop == DROP_NONE) { | |
253 | // logic '0' followed by sequence Y | |
254 | // end of communication | |
255 | Uart.state = STATE_UNSYNCD; | |
256 | EOC = TRUE; | |
257 | } | |
258 | if(Uart.drop == DROP_FIRST_HALF) { | |
259 | // we see a '0' | |
260 | Uart.state = STATE_MILLER_Z; | |
261 | } | |
262 | if(Uart.drop == DROP_SECOND_HALF) { | |
263 | // We see a '1' and go to state X | |
264 | Uart.shiftReg |= 0x100; | |
265 | Uart.state = STATE_MILLER_X; | |
266 | } | |
267 | break; | |
268 | ||
269 | case STATE_ERROR_WAIT: | |
270 | // That went wrong. Now wait for at least two bit periods | |
271 | // and try to sync again | |
272 | if(Uart.drop == DROP_NONE) { | |
273 | Uart.highCnt = 6; | |
274 | Uart.state = STATE_UNSYNCD; | |
275 | } | |
276 | break; | |
277 | ||
278 | default: | |
279 | Uart.state = STATE_UNSYNCD; | |
280 | Uart.highCnt = 0; | |
281 | break; | |
282 | } | |
283 | ||
284 | Uart.drop = DROP_NONE; | |
285 | ||
286 | // should have received at least one whole byte... | |
287 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { | |
288 | return TRUE; | |
289 | } | |
290 | ||
291 | if(Uart.bitCnt == 9) { | |
292 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
293 | Uart.byteCnt++; | |
294 | ||
295 | Uart.parityBits <<= 1; | |
296 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); | |
297 | ||
298 | if(EOC) { | |
299 | // when End of Communication received and | |
300 | // all data bits processed.. | |
301 | return TRUE; | |
302 | } | |
303 | Uart.bitCnt = 0; | |
304 | } | |
305 | ||
306 | /*if(error) { | |
307 | Uart.output[Uart.byteCnt] = 0xAA; | |
308 | Uart.byteCnt++; | |
309 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
310 | Uart.byteCnt++; | |
311 | Uart.output[Uart.byteCnt] = 0xAA; | |
312 | Uart.byteCnt++; | |
313 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
314 | Uart.byteCnt++; | |
315 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
316 | Uart.byteCnt++; | |
317 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
318 | Uart.byteCnt++; | |
319 | Uart.output[Uart.byteCnt] = 0xAA; | |
320 | Uart.byteCnt++; | |
321 | return TRUE; | |
322 | }*/ | |
323 | } | |
324 | ||
325 | } | |
326 | else { | |
327 | bit = Uart.bitBuffer & 0xf0; | |
328 | bit >>= 4; | |
329 | bit ^= 0x0F; | |
330 | if(bit) { | |
331 | // should have been high or at least (4 * 128) / fc | |
332 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
333 | if(Uart.highCnt == 8) { | |
334 | // we went low, so this could be start of communication | |
335 | // it turns out to be safer to choose a less significant | |
336 | // syncbit... so we check whether the neighbour also represents the drop | |
337 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
338 | Uart.syncBit = bit & 8; | |
339 | Uart.samples = 3; | |
340 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
341 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
342 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
343 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
344 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
345 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
346 | Uart.syncBit = 8; | |
347 | ||
348 | // the first half bit period is expected in next sample | |
349 | Uart.posCnt = 0; | |
350 | Uart.samples = 3; | |
351 | } | |
352 | } | |
353 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
354 | ||
355 | Uart.syncBit <<= 4; | |
356 | Uart.state = STATE_START_OF_COMMUNICATION; | |
357 | Uart.drop = DROP_FIRST_HALF; | |
358 | Uart.bitCnt = 0; | |
359 | Uart.byteCnt = 0; | |
360 | Uart.parityBits = 0; | |
361 | //error = 0; | |
362 | } | |
363 | else { | |
364 | Uart.highCnt = 0; | |
365 | } | |
366 | } | |
367 | else { | |
368 | if(Uart.highCnt < 8) { | |
369 | Uart.highCnt++; | |
370 | } | |
371 | } | |
372 | } | |
373 | ||
374 | return FALSE; | |
375 | } | |
376 | ||
377 | //============================================================================= | |
378 | // ISO 14443 Type A - Manchester | |
379 | //============================================================================= | |
380 | static tDemod Demod; | |
381 | ||
382 | static RAMFUNC int ManchesterDecoding(int v) | |
383 | { | |
384 | int bit; | |
385 | int modulation; | |
386 | //int error = 0; | |
387 | ||
388 | if(!Demod.buff) { | |
389 | Demod.buff = 1; | |
390 | Demod.buffer = v; | |
391 | return FALSE; | |
392 | } | |
393 | else { | |
394 | bit = Demod.buffer; | |
395 | Demod.buffer = v; | |
396 | } | |
397 | ||
398 | if(Demod.state==DEMOD_UNSYNCD) { | |
399 | Demod.output[Demod.len] = 0xfa; | |
400 | Demod.syncBit = 0; | |
401 | //Demod.samples = 0; | |
402 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
403 | ||
404 | if(bit & 0x08) { | |
405 | Demod.syncBit = 0x08; | |
406 | } | |
407 | ||
408 | if(bit & 0x04) { | |
409 | if(Demod.syncBit) { | |
410 | bit <<= 4; | |
411 | } | |
412 | Demod.syncBit = 0x04; | |
413 | } | |
414 | ||
415 | if(bit & 0x02) { | |
416 | if(Demod.syncBit) { | |
417 | bit <<= 2; | |
418 | } | |
419 | Demod.syncBit = 0x02; | |
420 | } | |
421 | ||
422 | if(bit & 0x01 && Demod.syncBit) { | |
423 | Demod.syncBit = 0x01; | |
424 | } | |
425 | ||
426 | if(Demod.syncBit) { | |
427 | Demod.len = 0; | |
428 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
429 | Demod.sub = SUB_FIRST_HALF; | |
430 | Demod.bitCount = 0; | |
431 | Demod.shiftReg = 0; | |
432 | Demod.parityBits = 0; | |
433 | Demod.samples = 0; | |
434 | if(Demod.posCount) { | |
435 | if(trigger) LED_A_OFF(); | |
436 | switch(Demod.syncBit) { | |
437 | case 0x08: Demod.samples = 3; break; | |
438 | case 0x04: Demod.samples = 2; break; | |
439 | case 0x02: Demod.samples = 1; break; | |
440 | case 0x01: Demod.samples = 0; break; | |
441 | } | |
442 | } | |
443 | //error = 0; | |
444 | } | |
445 | } | |
446 | else { | |
447 | //modulation = bit & Demod.syncBit; | |
448 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
449 | ||
450 | Demod.samples += 4; | |
451 | ||
452 | if(Demod.posCount==0) { | |
453 | Demod.posCount = 1; | |
454 | if(modulation) { | |
455 | Demod.sub = SUB_FIRST_HALF; | |
456 | } | |
457 | else { | |
458 | Demod.sub = SUB_NONE; | |
459 | } | |
460 | } | |
461 | else { | |
462 | Demod.posCount = 0; | |
463 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
464 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
465 | Demod.state = DEMOD_ERROR_WAIT; | |
466 | Demod.output[Demod.len] = 0xaa; | |
467 | //error = 0x01; | |
468 | } | |
469 | } | |
470 | else if(modulation) { | |
471 | Demod.sub = SUB_SECOND_HALF; | |
472 | } | |
473 | ||
474 | switch(Demod.state) { | |
475 | case DEMOD_START_OF_COMMUNICATION: | |
476 | if(Demod.sub == SUB_FIRST_HALF) { | |
477 | Demod.state = DEMOD_MANCHESTER_D; | |
478 | } | |
479 | else { | |
480 | Demod.output[Demod.len] = 0xab; | |
481 | Demod.state = DEMOD_ERROR_WAIT; | |
482 | //error = 0x02; | |
483 | } | |
484 | break; | |
485 | ||
486 | case DEMOD_MANCHESTER_D: | |
487 | case DEMOD_MANCHESTER_E: | |
488 | if(Demod.sub == SUB_FIRST_HALF) { | |
489 | Demod.bitCount++; | |
490 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
491 | Demod.state = DEMOD_MANCHESTER_D; | |
492 | } | |
493 | else if(Demod.sub == SUB_SECOND_HALF) { | |
494 | Demod.bitCount++; | |
495 | Demod.shiftReg >>= 1; | |
496 | Demod.state = DEMOD_MANCHESTER_E; | |
497 | } | |
498 | else { | |
499 | Demod.state = DEMOD_MANCHESTER_F; | |
500 | } | |
501 | break; | |
502 | ||
503 | case DEMOD_MANCHESTER_F: | |
504 | // Tag response does not need to be a complete byte! | |
505 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
506 | if(Demod.bitCount > 0) { | |
507 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
508 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
509 | Demod.len++; | |
510 | // No parity bit, so just shift a 0 | |
511 | Demod.parityBits <<= 1; | |
512 | } | |
513 | ||
514 | Demod.state = DEMOD_UNSYNCD; | |
515 | return TRUE; | |
516 | } | |
517 | else { | |
518 | Demod.output[Demod.len] = 0xad; | |
519 | Demod.state = DEMOD_ERROR_WAIT; | |
520 | //error = 0x03; | |
521 | } | |
522 | break; | |
523 | ||
524 | case DEMOD_ERROR_WAIT: | |
525 | Demod.state = DEMOD_UNSYNCD; | |
526 | break; | |
527 | ||
528 | default: | |
529 | Demod.output[Demod.len] = 0xdd; | |
530 | Demod.state = DEMOD_UNSYNCD; | |
531 | break; | |
532 | } | |
533 | ||
534 | if(Demod.bitCount>=9) { | |
535 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
536 | Demod.len++; | |
537 | ||
538 | Demod.parityBits <<= 1; | |
539 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
540 | ||
541 | Demod.bitCount = 0; | |
542 | Demod.shiftReg = 0; | |
543 | } | |
544 | ||
545 | /*if(error) { | |
546 | Demod.output[Demod.len] = 0xBB; | |
547 | Demod.len++; | |
548 | Demod.output[Demod.len] = error & 0xFF; | |
549 | Demod.len++; | |
550 | Demod.output[Demod.len] = 0xBB; | |
551 | Demod.len++; | |
552 | Demod.output[Demod.len] = bit & 0xFF; | |
553 | Demod.len++; | |
554 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
555 | Demod.len++; | |
556 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
557 | Demod.len++; | |
558 | Demod.output[Demod.len] = 0xBB; | |
559 | Demod.len++; | |
560 | return TRUE; | |
561 | }*/ | |
562 | ||
563 | } | |
564 | ||
565 | } // end (state != UNSYNCED) | |
566 | ||
567 | return FALSE; | |
568 | } | |
569 | ||
570 | //============================================================================= | |
571 | // Finally, a `sniffer' for ISO 14443 Type A | |
572 | // Both sides of communication! | |
573 | //============================================================================= | |
574 | ||
575 | //----------------------------------------------------------------------------- | |
576 | // Record the sequence of commands sent by the reader to the tag, with | |
577 | // triggering so that we start recording at the point that the tag is moved | |
578 | // near the reader. | |
579 | //----------------------------------------------------------------------------- | |
580 | void RAMFUNC SnoopIso14443a(uint8_t param) { | |
581 | // param: | |
582 | // bit 0 - trigger from first card answer | |
583 | // bit 1 - trigger from first reader 7-bit request | |
584 | ||
585 | LEDsoff(); | |
586 | // init trace buffer | |
587 | iso14a_clear_trace(); | |
588 | ||
589 | // We won't start recording the frames that we acquire until we trigger; | |
590 | // a good trigger condition to get started is probably when we see a | |
591 | // response from the tag. | |
592 | // triggered == FALSE -- to wait first for card | |
593 | int triggered = !(param & 0x03); | |
594 | ||
595 | // The command (reader -> tag) that we're receiving. | |
596 | // The length of a received command will in most cases be no more than 18 bytes. | |
597 | // So 32 should be enough! | |
598 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
599 | // The response (tag -> reader) that we're receiving. | |
600 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
601 | ||
602 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
603 | // into trace, along with its length and other annotations. | |
604 | //uint8_t *trace = (uint8_t *)BigBuf; | |
605 | ||
606 | // The DMA buffer, used to stream samples from the FPGA | |
607 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
608 | int8_t *data = dmaBuf; | |
609 | int maxDataLen = 0; | |
610 | int dataLen = 0; | |
611 | ||
612 | // Set up the demodulator for tag -> reader responses. | |
613 | Demod.output = receivedResponse; | |
614 | Demod.len = 0; | |
615 | Demod.state = DEMOD_UNSYNCD; | |
616 | ||
617 | // Set up the demodulator for the reader -> tag commands | |
618 | memset(&Uart, 0, sizeof(Uart)); | |
619 | Uart.output = receivedCmd; | |
620 | Uart.byteCntMax = 32; // was 100 (greg)////////////////// | |
621 | Uart.state = STATE_UNSYNCD; | |
622 | ||
623 | // Setup for the DMA. | |
624 | FpgaSetupSsc(); | |
625 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
626 | ||
627 | // And put the FPGA in the appropriate mode | |
628 | // Signal field is off with the appropriate LED | |
629 | LED_D_OFF(); | |
630 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
631 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
632 | ||
633 | // Count of samples received so far, so that we can include timing | |
634 | // information in the trace buffer. | |
635 | rsamples = 0; | |
636 | // And now we loop, receiving samples. | |
637 | while(true) { | |
638 | if(BUTTON_PRESS()) { | |
639 | DbpString("cancelled by button"); | |
640 | goto done; | |
641 | } | |
642 | ||
643 | LED_A_ON(); | |
644 | WDT_HIT(); | |
645 | ||
646 | int register readBufDataP = data - dmaBuf; | |
647 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
648 | if (readBufDataP <= dmaBufDataP){ | |
649 | dataLen = dmaBufDataP - readBufDataP; | |
650 | } else { | |
651 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; | |
652 | } | |
653 | // test for length of buffer | |
654 | if(dataLen > maxDataLen) { | |
655 | maxDataLen = dataLen; | |
656 | if(dataLen > 400) { | |
657 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
658 | goto done; | |
659 | } | |
660 | } | |
661 | if(dataLen < 1) continue; | |
662 | ||
663 | // primary buffer was stopped( <-- we lost data! | |
664 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
665 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
666 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
667 | } | |
668 | // secondary buffer sets as primary, secondary buffer was stopped | |
669 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
670 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
671 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
672 | } | |
673 | ||
674 | LED_A_OFF(); | |
675 | ||
676 | rsamples += 4; | |
677 | if(MillerDecoding((data[0] & 0xF0) >> 4)) { | |
678 | LED_C_ON(); | |
679 | ||
680 | // check - if there is a short 7bit request from reader | |
681 | if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE; | |
682 | ||
683 | if(triggered) { | |
684 | if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break; | |
685 | } | |
686 | /* And ready to receive another command. */ | |
687 | Uart.state = STATE_UNSYNCD; | |
688 | /* And also reset the demod code, which might have been */ | |
689 | /* false-triggered by the commands from the reader. */ | |
690 | Demod.state = DEMOD_UNSYNCD; | |
691 | LED_B_OFF(); | |
692 | } | |
693 | ||
694 | if(ManchesterDecoding(data[0] & 0x0F)) { | |
695 | LED_B_ON(); | |
696 | ||
697 | if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break; | |
698 | ||
699 | if ((!triggered) && (param & 0x01)) triggered = TRUE; | |
700 | ||
701 | // And ready to receive another response. | |
702 | memset(&Demod, 0, sizeof(Demod)); | |
703 | Demod.output = receivedResponse; | |
704 | Demod.state = DEMOD_UNSYNCD; | |
705 | LED_C_OFF(); | |
706 | } | |
707 | ||
708 | data++; | |
709 | if(data > dmaBuf + DMA_BUFFER_SIZE) { | |
710 | data = dmaBuf; | |
711 | } | |
712 | } // main cycle | |
713 | ||
714 | DbpString("COMMAND FINISHED"); | |
715 | ||
716 | done: | |
717 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
718 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); | |
719 | Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
720 | LEDsoff(); | |
721 | } | |
722 | ||
723 | //----------------------------------------------------------------------------- | |
724 | // Prepare tag messages | |
725 | //----------------------------------------------------------------------------- | |
726 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) | |
727 | { | |
728 | int i; | |
729 | ||
730 | ToSendReset(); | |
731 | ||
732 | // Correction bit, might be removed when not needed | |
733 | ToSendStuffBit(0); | |
734 | ToSendStuffBit(0); | |
735 | ToSendStuffBit(0); | |
736 | ToSendStuffBit(0); | |
737 | ToSendStuffBit(1); // 1 | |
738 | ToSendStuffBit(0); | |
739 | ToSendStuffBit(0); | |
740 | ToSendStuffBit(0); | |
741 | ||
742 | // Send startbit | |
743 | ToSend[++ToSendMax] = SEC_D; | |
744 | ||
745 | for(i = 0; i < len; i++) { | |
746 | int j; | |
747 | uint8_t b = cmd[i]; | |
748 | ||
749 | // Data bits | |
750 | for(j = 0; j < 8; j++) { | |
751 | if(b & 1) { | |
752 | ToSend[++ToSendMax] = SEC_D; | |
753 | } else { | |
754 | ToSend[++ToSendMax] = SEC_E; | |
755 | } | |
756 | b >>= 1; | |
757 | } | |
758 | ||
759 | // Get the parity bit | |
760 | if ((dwParity >> i) & 0x01) { | |
761 | ToSend[++ToSendMax] = SEC_D; | |
762 | } else { | |
763 | ToSend[++ToSendMax] = SEC_E; | |
764 | } | |
765 | } | |
766 | ||
767 | // Send stopbit | |
768 | ToSend[++ToSendMax] = SEC_F; | |
769 | ||
770 | // Convert from last byte pos to length | |
771 | ToSendMax++; | |
772 | } | |
773 | ||
774 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ | |
775 | CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); | |
776 | } | |
777 | ||
778 | ////----------------------------------------------------------------------------- | |
779 | //// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 | |
780 | ////----------------------------------------------------------------------------- | |
781 | //static void CodeStrangeAnswerAsTag() | |
782 | //{ | |
783 | // int i; | |
784 | // | |
785 | // ToSendReset(); | |
786 | // | |
787 | // // Correction bit, might be removed when not needed | |
788 | // ToSendStuffBit(0); | |
789 | // ToSendStuffBit(0); | |
790 | // ToSendStuffBit(0); | |
791 | // ToSendStuffBit(0); | |
792 | // ToSendStuffBit(1); // 1 | |
793 | // ToSendStuffBit(0); | |
794 | // ToSendStuffBit(0); | |
795 | // ToSendStuffBit(0); | |
796 | // | |
797 | // // Send startbit | |
798 | // ToSend[++ToSendMax] = SEC_D; | |
799 | // | |
800 | // // 0 | |
801 | // ToSend[++ToSendMax] = SEC_E; | |
802 | // | |
803 | // // 0 | |
804 | // ToSend[++ToSendMax] = SEC_E; | |
805 | // | |
806 | // // 1 | |
807 | // ToSend[++ToSendMax] = SEC_D; | |
808 | // | |
809 | // // Send stopbit | |
810 | // ToSend[++ToSendMax] = SEC_F; | |
811 | // | |
812 | // // Flush the buffer in FPGA!! | |
813 | // for(i = 0; i < 5; i++) { | |
814 | // ToSend[++ToSendMax] = SEC_F; | |
815 | // } | |
816 | // | |
817 | // // Convert from last byte pos to length | |
818 | // ToSendMax++; | |
819 | //} | |
820 | ||
821 | static void Code4bitAnswerAsTag(uint8_t cmd) | |
822 | { | |
823 | int i; | |
824 | ||
825 | ToSendReset(); | |
826 | ||
827 | // Correction bit, might be removed when not needed | |
828 | ToSendStuffBit(0); | |
829 | ToSendStuffBit(0); | |
830 | ToSendStuffBit(0); | |
831 | ToSendStuffBit(0); | |
832 | ToSendStuffBit(1); // 1 | |
833 | ToSendStuffBit(0); | |
834 | ToSendStuffBit(0); | |
835 | ToSendStuffBit(0); | |
836 | ||
837 | // Send startbit | |
838 | ToSend[++ToSendMax] = SEC_D; | |
839 | ||
840 | uint8_t b = cmd; | |
841 | for(i = 0; i < 4; i++) { | |
842 | if(b & 1) { | |
843 | ToSend[++ToSendMax] = SEC_D; | |
844 | } else { | |
845 | ToSend[++ToSendMax] = SEC_E; | |
846 | } | |
847 | b >>= 1; | |
848 | } | |
849 | ||
850 | // Send stopbit | |
851 | ToSend[++ToSendMax] = SEC_F; | |
852 | ||
853 | // Flush the buffer in FPGA!! | |
854 | for(i = 0; i < 5; i++) { | |
855 | ToSend[++ToSendMax] = SEC_F; | |
856 | } | |
857 | ||
858 | // Convert from last byte pos to length | |
859 | ToSendMax++; | |
860 | } | |
861 | ||
862 | //----------------------------------------------------------------------------- | |
863 | // Wait for commands from reader | |
864 | // Stop when button is pressed | |
865 | // Or return TRUE when command is captured | |
866 | //----------------------------------------------------------------------------- | |
867 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) | |
868 | { | |
869 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
870 | // only, since we are receiving, not transmitting). | |
871 | // Signal field is off with the appropriate LED | |
872 | LED_D_OFF(); | |
873 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
874 | ||
875 | // Now run a `software UART' on the stream of incoming samples. | |
876 | Uart.output = received; | |
877 | Uart.byteCntMax = maxLen; | |
878 | Uart.state = STATE_UNSYNCD; | |
879 | ||
880 | for(;;) { | |
881 | WDT_HIT(); | |
882 | ||
883 | if(BUTTON_PRESS()) return FALSE; | |
884 | ||
885 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
886 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
887 | } | |
888 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
889 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
890 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
891 | *len = Uart.byteCnt; | |
892 | return TRUE; | |
893 | } | |
894 | if(MillerDecoding(b & 0x0f)) { | |
895 | *len = Uart.byteCnt; | |
896 | return TRUE; | |
897 | } | |
898 | } | |
899 | } | |
900 | } | |
901 | ||
902 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); | |
903 | int EmSend4bitEx(uint8_t resp, int correctionNeeded); | |
904 | int EmSend4bit(uint8_t resp); | |
905 | int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); | |
906 | int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); | |
907 | int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded); | |
908 | int EmSendCmd(uint8_t *resp, int respLen); | |
909 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); | |
910 | ||
911 | static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
912 | ||
913 | typedef struct { | |
914 | uint8_t* response; | |
915 | size_t response_n; | |
916 | uint8_t* modulation; | |
917 | size_t modulation_n; | |
918 | } tag_response_info_t; | |
919 | ||
920 | void reset_free_buffer() { | |
921 | free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
922 | } | |
923 | ||
924 | bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { | |
925 | // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes | |
926 | // This will need the following byte array for a modulation sequence | |
927 | // 144 data bits (18 * 8) | |
928 | // 18 parity bits | |
929 | // 2 Start and stop | |
930 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
931 | // 1 just for the case | |
932 | // ----------- + | |
933 | // 166 bytes, since every bit that needs to be send costs us a byte | |
934 | // | |
935 | ||
936 | // Prepare the tag modulation bits from the message | |
937 | CodeIso14443aAsTag(response_info->response,response_info->response_n); | |
938 | ||
939 | // Make sure we do not exceed the free buffer space | |
940 | if (ToSendMax > max_buffer_size) { | |
941 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
942 | Dbhexdump(response_info->response_n,response_info->response,false); | |
943 | return false; | |
944 | } | |
945 | ||
946 | // Copy the byte array, used for this modulation to the buffer position | |
947 | memcpy(response_info->modulation,ToSend,ToSendMax); | |
948 | ||
949 | // Store the number of bytes that were used for encoding/modulation | |
950 | response_info->modulation_n = ToSendMax; | |
951 | ||
952 | return true; | |
953 | } | |
954 | ||
955 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { | |
956 | // Retrieve and store the current buffer index | |
957 | response_info->modulation = free_buffer_pointer; | |
958 | ||
959 | // Determine the maximum size we can use from our buffer | |
960 | size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer; | |
961 | ||
962 | // Forward the prepare tag modulation function to the inner function | |
963 | if (prepare_tag_modulation(response_info,max_buffer_size)) { | |
964 | // Update the free buffer offset | |
965 | free_buffer_pointer += ToSendMax; | |
966 | return true; | |
967 | } else { | |
968 | return false; | |
969 | } | |
970 | } | |
971 | ||
972 | //----------------------------------------------------------------------------- | |
973 | // Main loop of simulated tag: receive commands from reader, decide what | |
974 | // response to send, and send it. | |
975 | //----------------------------------------------------------------------------- | |
976 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) | |
977 | { | |
978 | // Enable and clear the trace | |
979 | tracing = TRUE; | |
980 | iso14a_clear_trace(); | |
981 | ||
982 | // This function contains the tag emulation | |
983 | uint8_t sak; | |
984 | ||
985 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
986 | uint8_t response1[2]; | |
987 | ||
988 | switch (tagType) { | |
989 | case 1: { // MIFARE Classic | |
990 | // Says: I am Mifare 1k - original line | |
991 | response1[0] = 0x04; | |
992 | response1[1] = 0x00; | |
993 | sak = 0x08; | |
994 | } break; | |
995 | case 2: { // MIFARE Ultralight | |
996 | // Says: I am a stupid memory tag, no crypto | |
997 | response1[0] = 0x04; | |
998 | response1[1] = 0x00; | |
999 | sak = 0x00; | |
1000 | } break; | |
1001 | case 3: { // MIFARE DESFire | |
1002 | // Says: I am a DESFire tag, ph33r me | |
1003 | response1[0] = 0x04; | |
1004 | response1[1] = 0x03; | |
1005 | sak = 0x20; | |
1006 | } break; | |
1007 | case 4: { // ISO/IEC 14443-4 | |
1008 | // Says: I am a javacard (JCOP) | |
1009 | response1[0] = 0x04; | |
1010 | response1[1] = 0x00; | |
1011 | sak = 0x28; | |
1012 | } break; | |
1013 | default: { | |
1014 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
1015 | return; | |
1016 | } break; | |
1017 | } | |
1018 | ||
1019 | // The second response contains the (mandatory) first 24 bits of the UID | |
1020 | uint8_t response2[5]; | |
1021 | ||
1022 | // Check if the uid uses the (optional) part | |
1023 | uint8_t response2a[5]; | |
1024 | if (uid_2nd) { | |
1025 | response2[0] = 0x88; | |
1026 | num_to_bytes(uid_1st,3,response2+1); | |
1027 | num_to_bytes(uid_2nd,4,response2a); | |
1028 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
1029 | ||
1030 | // Configure the ATQA and SAK accordingly | |
1031 | response1[0] |= 0x40; | |
1032 | sak |= 0x04; | |
1033 | } else { | |
1034 | num_to_bytes(uid_1st,4,response2); | |
1035 | // Configure the ATQA and SAK accordingly | |
1036 | response1[0] &= 0xBF; | |
1037 | sak &= 0xFB; | |
1038 | } | |
1039 | ||
1040 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
1041 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
1042 | ||
1043 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
1044 | uint8_t response3[3]; | |
1045 | response3[0] = sak; | |
1046 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
1047 | ||
1048 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
1049 | uint8_t response3a[3]; | |
1050 | response3a[0] = sak & 0xFB; | |
1051 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1052 | ||
1053 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
1054 | uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS | |
1055 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); | |
1056 | ||
1057 | #define TAG_RESPONSE_COUNT 7 | |
1058 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
1059 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
1060 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
1061 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1062 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
1063 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
1064 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
1065 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
1066 | }; | |
1067 | ||
1068 | // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it | |
1069 | // Such a response is less time critical, so we can prepare them on the fly | |
1070 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
1071 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
1072 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
1073 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
1074 | tag_response_info_t dynamic_response_info = { | |
1075 | .response = dynamic_response_buffer, | |
1076 | .response_n = 0, | |
1077 | .modulation = dynamic_modulation_buffer, | |
1078 | .modulation_n = 0 | |
1079 | }; | |
1080 | ||
1081 | // Reset the offset pointer of the free buffer | |
1082 | reset_free_buffer(); | |
1083 | ||
1084 | // Prepare the responses of the anticollision phase | |
1085 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1086 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { | |
1087 | prepare_allocated_tag_modulation(&responses[i]); | |
1088 | } | |
1089 | ||
1090 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
1091 | int len; | |
1092 | ||
1093 | // To control where we are in the protocol | |
1094 | int order = 0; | |
1095 | int lastorder; | |
1096 | ||
1097 | // Just to allow some checks | |
1098 | int happened = 0; | |
1099 | int happened2 = 0; | |
1100 | int cmdsRecvd = 0; | |
1101 | ||
1102 | // We need to listen to the high-frequency, peak-detected path. | |
1103 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1104 | FpgaSetupSsc(); | |
1105 | ||
1106 | cmdsRecvd = 0; | |
1107 | tag_response_info_t* p_response; | |
1108 | ||
1109 | LED_A_ON(); | |
1110 | for(;;) { | |
1111 | // Clean receive command buffer | |
1112 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1113 | ||
1114 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) { | |
1115 | DbpString("Button press"); | |
1116 | break; | |
1117 | } | |
1118 | ||
1119 | if (tracing) { | |
1120 | LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); | |
1121 | } | |
1122 | ||
1123 | p_response = NULL; | |
1124 | ||
1125 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated | |
1126 | // Okay, look at the command now. | |
1127 | lastorder = order; | |
1128 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
1129 | p_response = &responses[0]; order = 1; | |
1130 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP | |
1131 | p_response = &responses[0]; order = 6; | |
1132 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) | |
1133 | p_response = &responses[1]; order = 2; | |
1134 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) | |
1135 | p_response = &responses[2]; order = 20; | |
1136 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) | |
1137 | p_response = &responses[3]; order = 3; | |
1138 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) | |
1139 | p_response = &responses[4]; order = 30; | |
1140 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ | |
1141 | EmSendCmdEx(data+(4*receivedCmd[0]),16,false); | |
1142 | Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); | |
1143 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below | |
1144 | p_response = NULL; | |
1145 | } else if(receivedCmd[0] == 0x50) { // Received a HALT | |
1146 | // DbpString("Reader requested we HALT!:"); | |
1147 | p_response = NULL; | |
1148 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request | |
1149 | p_response = &responses[5]; order = 7; | |
1150 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request | |
1151 | p_response = &responses[6]; order = 70; | |
1152 | } else if (order == 7 && len ==8) { // Received authentication request | |
1153 | uint32_t nr = bytes_to_num(receivedCmd,4); | |
1154 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1155 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
1156 | } else { | |
1157 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1158 | switch (receivedCmd[0]) { | |
1159 | ||
1160 | case 0x0B: | |
1161 | case 0x0A: { // IBlock (command) | |
1162 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1163 | dynamic_response_info.response[1] = 0x00; | |
1164 | dynamic_response_info.response[2] = 0x90; | |
1165 | dynamic_response_info.response[3] = 0x00; | |
1166 | dynamic_response_info.response_n = 4; | |
1167 | } break; | |
1168 | ||
1169 | case 0x1A: | |
1170 | case 0x1B: { // Chaining command | |
1171 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1172 | dynamic_response_info.response_n = 2; | |
1173 | } break; | |
1174 | ||
1175 | case 0xaa: | |
1176 | case 0xbb: { | |
1177 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1178 | dynamic_response_info.response_n = 2; | |
1179 | } break; | |
1180 | ||
1181 | case 0xBA: { // | |
1182 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1183 | dynamic_response_info.response_n = 2; | |
1184 | } break; | |
1185 | ||
1186 | case 0xCA: | |
1187 | case 0xC2: { // Readers sends deselect command | |
1188 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1189 | dynamic_response_info.response_n = 2; | |
1190 | } break; | |
1191 | ||
1192 | default: { | |
1193 | // Never seen this command before | |
1194 | Dbprintf("Received unknown command (len=%d):",len); | |
1195 | Dbhexdump(len,receivedCmd,false); | |
1196 | // Do not respond | |
1197 | dynamic_response_info.response_n = 0; | |
1198 | } break; | |
1199 | } | |
1200 | ||
1201 | if (dynamic_response_info.response_n > 0) { | |
1202 | // Copy the CID from the reader query | |
1203 | dynamic_response_info.response[1] = receivedCmd[1]; | |
1204 | ||
1205 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards | |
1206 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1207 | dynamic_response_info.response_n += 2; | |
1208 | ||
1209 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { | |
1210 | Dbprintf("Error preparing tag response"); | |
1211 | break; | |
1212 | } | |
1213 | p_response = &dynamic_response_info; | |
1214 | } | |
1215 | } | |
1216 | ||
1217 | // Count number of wakeups received after a halt | |
1218 | if(order == 6 && lastorder == 5) { happened++; } | |
1219 | ||
1220 | // Count number of other messages after a halt | |
1221 | if(order != 6 && lastorder == 5) { happened2++; } | |
1222 | ||
1223 | // Look at last parity bit to determine timing of answer | |
1224 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { | |
1225 | // 1236, so correction bit needed | |
1226 | //i = 0; | |
1227 | } | |
1228 | ||
1229 | if(cmdsRecvd > 999) { | |
1230 | DbpString("1000 commands later..."); | |
1231 | break; | |
1232 | } | |
1233 | cmdsRecvd++; | |
1234 | ||
1235 | if (p_response != NULL) { | |
1236 | EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); | |
1237 | if (tracing) { | |
1238 | LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE); | |
1239 | if(traceLen > TRACE_SIZE) { | |
1240 | DbpString("Trace full"); | |
1241 | // break; | |
1242 | } | |
1243 | } | |
1244 | } | |
1245 | } | |
1246 | ||
1247 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1248 | LED_A_OFF(); | |
1249 | } | |
1250 | ||
1251 | ||
1252 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1253 | // of bits specified in the delay parameter. | |
1254 | void PrepareDelayedTransfer(uint16_t delay) | |
1255 | { | |
1256 | uint8_t bitmask = 0; | |
1257 | uint8_t bits_to_shift = 0; | |
1258 | uint8_t bits_shifted = 0; | |
1259 | ||
1260 | delay &= 0x07; | |
1261 | if (delay) { | |
1262 | for (uint16_t i = 0; i < delay; i++) { | |
1263 | bitmask |= (0x01 << i); | |
1264 | } | |
1265 | ToSend[++ToSendMax] = 0x00; | |
1266 | for (uint16_t i = 0; i < ToSendMax; i++) { | |
1267 | bits_to_shift = ToSend[i] & bitmask; | |
1268 | ToSend[i] = ToSend[i] >> delay; | |
1269 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1270 | bits_shifted = bits_to_shift; | |
1271 | } | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | //----------------------------------------------------------------------------- | |
1276 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1277 | // Parameter timing: | |
1278 | // if NULL: ignored | |
1279 | // if == 0: return time of transfer | |
1280 | // if != 0: delay transfer until time specified | |
1281 | //----------------------------------------------------------------------------- | |
1282 | static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) | |
1283 | { | |
1284 | int c; | |
1285 | ||
1286 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1287 | ||
1288 | ||
1289 | if (timing) { | |
1290 | if(*timing == 0) { // Measure time | |
1291 | *timing = (GetCountMifare() + 8) & 0xfffffff8; | |
1292 | } else { | |
1293 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1294 | } | |
1295 | if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); | |
1296 | while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1297 | } | |
1298 | ||
1299 | for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission) | |
1300 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1301 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1302 | c++; | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | c = 0; | |
1307 | for(;;) { | |
1308 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1309 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1310 | c++; | |
1311 | if(c >= len) { | |
1312 | break; | |
1313 | } | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | } | |
1318 | ||
1319 | //----------------------------------------------------------------------------- | |
1320 | // Prepare reader command (in bits, support short frames) to send to FPGA | |
1321 | //----------------------------------------------------------------------------- | |
1322 | void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) | |
1323 | { | |
1324 | int i, j; | |
1325 | int last; | |
1326 | uint8_t b; | |
1327 | ||
1328 | ToSendReset(); | |
1329 | ||
1330 | // Start of Communication (Seq. Z) | |
1331 | ToSend[++ToSendMax] = SEC_Z; | |
1332 | last = 0; | |
1333 | ||
1334 | size_t bytecount = nbytes(bits); | |
1335 | // Generate send structure for the data bits | |
1336 | for (i = 0; i < bytecount; i++) { | |
1337 | // Get the current byte to send | |
1338 | b = cmd[i]; | |
1339 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1340 | ||
1341 | for (j = 0; j < bitsleft; j++) { | |
1342 | if (b & 1) { | |
1343 | // Sequence X | |
1344 | ToSend[++ToSendMax] = SEC_X; | |
1345 | last = 1; | |
1346 | } else { | |
1347 | if (last == 0) { | |
1348 | // Sequence Z | |
1349 | ToSend[++ToSendMax] = SEC_Z; | |
1350 | } else { | |
1351 | // Sequence Y | |
1352 | ToSend[++ToSendMax] = SEC_Y; | |
1353 | last = 0; | |
1354 | } | |
1355 | } | |
1356 | b >>= 1; | |
1357 | } | |
1358 | ||
1359 | // Only transmit (last) parity bit if we transmitted a complete byte | |
1360 | if (j == 8) { | |
1361 | // Get the parity bit | |
1362 | if ((dwParity >> i) & 0x01) { | |
1363 | // Sequence X | |
1364 | ToSend[++ToSendMax] = SEC_X; | |
1365 | last = 1; | |
1366 | } else { | |
1367 | if (last == 0) { | |
1368 | // Sequence Z | |
1369 | ToSend[++ToSendMax] = SEC_Z; | |
1370 | } else { | |
1371 | // Sequence Y | |
1372 | ToSend[++ToSendMax] = SEC_Y; | |
1373 | last = 0; | |
1374 | } | |
1375 | } | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | // End of Communication | |
1380 | if (last == 0) { | |
1381 | // Sequence Z | |
1382 | ToSend[++ToSendMax] = SEC_Z; | |
1383 | } else { | |
1384 | // Sequence Y | |
1385 | ToSend[++ToSendMax] = SEC_Y; | |
1386 | last = 0; | |
1387 | } | |
1388 | // Sequence Y | |
1389 | ToSend[++ToSendMax] = SEC_Y; | |
1390 | ||
1391 | // Just to be sure! | |
1392 | ToSend[++ToSendMax] = SEC_Y; | |
1393 | ToSend[++ToSendMax] = SEC_Y; | |
1394 | ToSend[++ToSendMax] = SEC_Y; | |
1395 | ||
1396 | // Convert from last character reference to length | |
1397 | ToSendMax++; | |
1398 | } | |
1399 | ||
1400 | //----------------------------------------------------------------------------- | |
1401 | // Prepare reader command to send to FPGA | |
1402 | //----------------------------------------------------------------------------- | |
1403 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1404 | { | |
1405 | CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity); | |
1406 | } | |
1407 | ||
1408 | //----------------------------------------------------------------------------- | |
1409 | // Wait for commands from reader | |
1410 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1411 | // Or return 0 when command is captured | |
1412 | //----------------------------------------------------------------------------- | |
1413 | static int EmGetCmd(uint8_t *received, int *len, int maxLen) | |
1414 | { | |
1415 | *len = 0; | |
1416 | ||
1417 | uint32_t timer = 0, vtime = 0; | |
1418 | int analogCnt = 0; | |
1419 | int analogAVG = 0; | |
1420 | ||
1421 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1422 | // only, since we are receiving, not transmitting). | |
1423 | // Signal field is off with the appropriate LED | |
1424 | LED_D_OFF(); | |
1425 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1426 | ||
1427 | // Set ADC to read field strength | |
1428 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1429 | AT91C_BASE_ADC->ADC_MR = | |
1430 | ADC_MODE_PRESCALE(32) | | |
1431 | ADC_MODE_STARTUP_TIME(16) | | |
1432 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
1433 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1434 | // start ADC | |
1435 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1436 | ||
1437 | // Now run a 'software UART' on the stream of incoming samples. | |
1438 | Uart.output = received; | |
1439 | Uart.byteCntMax = maxLen; | |
1440 | Uart.state = STATE_UNSYNCD; | |
1441 | ||
1442 | for(;;) { | |
1443 | WDT_HIT(); | |
1444 | ||
1445 | if (BUTTON_PRESS()) return 1; | |
1446 | ||
1447 | // test if the field exists | |
1448 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1449 | analogCnt++; | |
1450 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1451 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1452 | if (analogCnt >= 32) { | |
1453 | if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1454 | vtime = GetTickCount(); | |
1455 | if (!timer) timer = vtime; | |
1456 | // 50ms no field --> card to idle state | |
1457 | if (vtime - timer > 50) return 2; | |
1458 | } else | |
1459 | if (timer) timer = 0; | |
1460 | analogCnt = 0; | |
1461 | analogAVG = 0; | |
1462 | } | |
1463 | } | |
1464 | // transmit none | |
1465 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1466 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1467 | } | |
1468 | // receive and test the miller decoding | |
1469 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1470 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1471 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
1472 | *len = Uart.byteCnt; | |
1473 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1474 | return 0; | |
1475 | } | |
1476 | if(MillerDecoding(b & 0x0f)) { | |
1477 | *len = Uart.byteCnt; | |
1478 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1479 | return 0; | |
1480 | } | |
1481 | } | |
1482 | } | |
1483 | } | |
1484 | ||
1485 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) | |
1486 | { | |
1487 | int i, u = 0; | |
1488 | uint8_t b = 0; | |
1489 | ||
1490 | // Modulate Manchester | |
1491 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1492 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1493 | FpgaSetupSsc(); | |
1494 | ||
1495 | // include correction bit | |
1496 | i = 1; | |
1497 | if((Uart.parityBits & 0x01) || correctionNeeded) { | |
1498 | // 1236, so correction bit needed | |
1499 | i = 0; | |
1500 | } | |
1501 | ||
1502 | // send cycle | |
1503 | for(;;) { | |
1504 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1505 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1506 | (void)b; | |
1507 | } | |
1508 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1509 | if(i > respLen) { | |
1510 | b = 0xff; // was 0x00 | |
1511 | u++; | |
1512 | } else { | |
1513 | b = resp[i]; | |
1514 | i++; | |
1515 | } | |
1516 | AT91C_BASE_SSC->SSC_THR = b; | |
1517 | ||
1518 | if(u > 4) break; | |
1519 | } | |
1520 | if(BUTTON_PRESS()) { | |
1521 | break; | |
1522 | } | |
1523 | } | |
1524 | ||
1525 | return 0; | |
1526 | } | |
1527 | ||
1528 | int EmSend4bitEx(uint8_t resp, int correctionNeeded){ | |
1529 | Code4bitAnswerAsTag(resp); | |
1530 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1531 | if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); | |
1532 | return res; | |
1533 | } | |
1534 | ||
1535 | int EmSend4bit(uint8_t resp){ | |
1536 | return EmSend4bitEx(resp, 0); | |
1537 | } | |
1538 | ||
1539 | int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ | |
1540 | CodeIso14443aAsTagPar(resp, respLen, par); | |
1541 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1542 | if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); | |
1543 | return res; | |
1544 | } | |
1545 | ||
1546 | int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ | |
1547 | return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); | |
1548 | } | |
1549 | ||
1550 | int EmSendCmd(uint8_t *resp, int respLen){ | |
1551 | return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); | |
1552 | } | |
1553 | ||
1554 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ | |
1555 | return EmSendCmdExPar(resp, respLen, 0, par); | |
1556 | } | |
1557 | ||
1558 | //----------------------------------------------------------------------------- | |
1559 | // Wait a certain time for tag response | |
1560 | // If a response is captured return TRUE | |
1561 | // If it takes to long return FALSE | |
1562 | //----------------------------------------------------------------------------- | |
1563 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1564 | { | |
1565 | // buffer needs to be 512 bytes | |
1566 | int c; | |
1567 | ||
1568 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1569 | // only, since we are receiving, not transmitting). | |
1570 | // Signal field is on with the appropriate LED | |
1571 | LED_D_ON(); | |
1572 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1573 | ||
1574 | // Now get the answer from the card | |
1575 | Demod.output = receivedResponse; | |
1576 | Demod.len = 0; | |
1577 | Demod.state = DEMOD_UNSYNCD; | |
1578 | ||
1579 | uint8_t b; | |
1580 | if (elapsed) *elapsed = 0; | |
1581 | ||
1582 | c = 0; | |
1583 | for(;;) { | |
1584 | WDT_HIT(); | |
1585 | ||
1586 | // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1587 | // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1588 | // if (elapsed) (*elapsed)++; | |
1589 | // } | |
1590 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1591 | if(c < iso14a_timeout) { c++; } else { return FALSE; } | |
1592 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1593 | if(ManchesterDecoding((b>>4) & 0xf)) { | |
1594 | *samples = ((c - 1) << 3) + 4; | |
1595 | return TRUE; | |
1596 | } | |
1597 | if(ManchesterDecoding(b & 0x0f)) { | |
1598 | *samples = c << 3; | |
1599 | return TRUE; | |
1600 | } | |
1601 | } | |
1602 | } | |
1603 | } | |
1604 | ||
1605 | void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) | |
1606 | { | |
1607 | ||
1608 | CodeIso14443aBitsAsReaderPar(frame,bits,par); | |
1609 | ||
1610 | // Select the card | |
1611 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1612 | if(trigger) | |
1613 | LED_A_ON(); | |
1614 | ||
1615 | // Store reader command in buffer | |
1616 | if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE); | |
1617 | } | |
1618 | ||
1619 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) | |
1620 | { | |
1621 | ReaderTransmitBitsPar(frame,len*8,par, timing); | |
1622 | } | |
1623 | ||
1624 | void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) | |
1625 | { | |
1626 | // Generate parity and redirect | |
1627 | ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing); | |
1628 | } | |
1629 | ||
1630 | int ReaderReceive(uint8_t* receivedAnswer) | |
1631 | { | |
1632 | int samples = 0; | |
1633 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1634 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1635 | if(samples == 0) return FALSE; | |
1636 | return Demod.len; | |
1637 | } | |
1638 | ||
1639 | int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr) | |
1640 | { | |
1641 | int samples = 0; | |
1642 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1643 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1644 | *parptr = Demod.parityBits; | |
1645 | if(samples == 0) return FALSE; | |
1646 | return Demod.len; | |
1647 | } | |
1648 | ||
1649 | /* performs iso14443a anticolision procedure | |
1650 | * fills the uid pointer unless NULL | |
1651 | * fills resp_data unless NULL */ | |
1652 | int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) { | |
1653 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP | |
1654 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1655 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1656 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
1657 | uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes | |
1658 | byte_t uid_resp[4]; | |
1659 | size_t uid_resp_len; | |
1660 | ||
1661 | uint8_t sak = 0x04; // cascade uid | |
1662 | int cascade_level = 0; | |
1663 | int len; | |
1664 | ||
1665 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1666 | ReaderTransmitBitsPar(wupa,7,0, NULL); | |
1667 | // Receive the ATQA | |
1668 | if(!ReaderReceive(resp)) return 0; | |
1669 | // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); | |
1670 | ||
1671 | if(p_hi14a_card) { | |
1672 | memcpy(p_hi14a_card->atqa, resp, 2); | |
1673 | p_hi14a_card->uidlen = 0; | |
1674 | memset(p_hi14a_card->uid,0,10); | |
1675 | } | |
1676 | ||
1677 | // clear uid | |
1678 | if (uid_ptr) { | |
1679 | memset(uid_ptr,0,10); | |
1680 | } | |
1681 | ||
1682 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1683 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1684 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1685 | for(; sak & 0x04; cascade_level++) { | |
1686 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1687 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1688 | ||
1689 | // SELECT_ALL | |
1690 | ReaderTransmit(sel_all,sizeof(sel_all), NULL); | |
1691 | if (!ReaderReceive(resp)) return 0; | |
1692 | ||
1693 | // First backup the current uid | |
1694 | memcpy(uid_resp,resp,4); | |
1695 | uid_resp_len = 4; | |
1696 | // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); | |
1697 | ||
1698 | // calculate crypto UID. Always use last 4 Bytes. | |
1699 | if(cuid_ptr) { | |
1700 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
1701 | } | |
1702 | ||
1703 | // Construct SELECT UID command | |
1704 | memcpy(sel_uid+2,resp,5); | |
1705 | AppendCrc14443a(sel_uid,7); | |
1706 | ReaderTransmit(sel_uid,sizeof(sel_uid), NULL); | |
1707 | ||
1708 | // Receive the SAK | |
1709 | if (!ReaderReceive(resp)) return 0; | |
1710 | sak = resp[0]; | |
1711 | ||
1712 | // Test if more parts of the uid are comming | |
1713 | if ((sak & 0x04) && uid_resp[0] == 0x88) { | |
1714 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: | |
1715 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
1716 | memcpy(uid_resp, uid_resp + 1, 3); | |
1717 | uid_resp_len = 3; | |
1718 | } | |
1719 | ||
1720 | if(uid_ptr) { | |
1721 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); | |
1722 | } | |
1723 | ||
1724 | if(p_hi14a_card) { | |
1725 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1726 | p_hi14a_card->uidlen += uid_resp_len; | |
1727 | } | |
1728 | } | |
1729 | ||
1730 | if(p_hi14a_card) { | |
1731 | p_hi14a_card->sak = sak; | |
1732 | p_hi14a_card->ats_len = 0; | |
1733 | } | |
1734 | ||
1735 | if( (sak & 0x20) == 0) { | |
1736 | return 2; // non iso14443a compliant tag | |
1737 | } | |
1738 | ||
1739 | // Request for answer to select | |
1740 | AppendCrc14443a(rats, 2); | |
1741 | ReaderTransmit(rats, sizeof(rats), NULL); | |
1742 | ||
1743 | if (!(len = ReaderReceive(resp))) return 0; | |
1744 | ||
1745 | if(p_hi14a_card) { | |
1746 | memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); | |
1747 | p_hi14a_card->ats_len = len; | |
1748 | } | |
1749 | ||
1750 | // reset the PCB block number | |
1751 | iso14_pcb_blocknum = 0; | |
1752 | return 1; | |
1753 | } | |
1754 | ||
1755 | void iso14443a_setup() { | |
1756 | // Set up the synchronous serial port | |
1757 | FpgaSetupSsc(); | |
1758 | // Start from off (no field generated) | |
1759 | // Signal field is off with the appropriate LED | |
1760 | // LED_D_OFF(); | |
1761 | // FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1762 | // SpinDelay(50); | |
1763 | ||
1764 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1765 | ||
1766 | // Now give it time to spin up. | |
1767 | // Signal field is on with the appropriate LED | |
1768 | LED_D_ON(); | |
1769 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1770 | SpinDelay(7); // iso14443-3 specifies 5ms max. | |
1771 | ||
1772 | iso14a_timeout = 2048; //default | |
1773 | } | |
1774 | ||
1775 | int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { | |
1776 | uint8_t real_cmd[cmd_len+4]; | |
1777 | real_cmd[0] = 0x0a; //I-Block | |
1778 | // put block number into the PCB | |
1779 | real_cmd[0] |= iso14_pcb_blocknum; | |
1780 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards | |
1781 | memcpy(real_cmd+2, cmd, cmd_len); | |
1782 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1783 | ||
1784 | ReaderTransmit(real_cmd, cmd_len+4, NULL); | |
1785 | size_t len = ReaderReceive(data); | |
1786 | uint8_t * data_bytes = (uint8_t *) data; | |
1787 | if (!len) | |
1788 | return 0; //DATA LINK ERROR | |
1789 | // if we received an I- or R(ACK)-Block with a block number equal to the | |
1790 | // current block number, toggle the current block number | |
1791 | else if (len >= 4 // PCB+CID+CRC = 4 bytes | |
1792 | && ((data_bytes[0] & 0xC0) == 0 // I-Block | |
1793 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1794 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
1795 | { | |
1796 | iso14_pcb_blocknum ^= 1; | |
1797 | } | |
1798 | ||
1799 | return len; | |
1800 | } | |
1801 | ||
1802 | //----------------------------------------------------------------------------- | |
1803 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1804 | // | |
1805 | //----------------------------------------------------------------------------- | |
1806 | void ReaderIso14443a(UsbCommand * c) | |
1807 | { | |
1808 | iso14a_command_t param = c->arg[0]; | |
1809 | uint8_t * cmd = c->d.asBytes; | |
1810 | size_t len = c->arg[1]; | |
1811 | size_t lenbits = c->arg[2]; | |
1812 | uint32_t arg0 = 0; | |
1813 | byte_t buf[USB_CMD_DATA_SIZE]; | |
1814 | ||
1815 | if(param & ISO14A_CONNECT) { | |
1816 | iso14a_clear_trace(); | |
1817 | } | |
1818 | iso14a_set_tracing(true); | |
1819 | ||
1820 | if(param & ISO14A_REQUEST_TRIGGER) { | |
1821 | iso14a_set_trigger(1); | |
1822 | } | |
1823 | ||
1824 | if(param & ISO14A_CONNECT) { | |
1825 | iso14443a_setup(); | |
1826 | if(!(param & ISO14A_NO_SELECT)) { | |
1827 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
1828 | arg0 = iso14443a_select_card(NULL,card,NULL); | |
1829 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); | |
1830 | } | |
1831 | } | |
1832 | ||
1833 | if(param & ISO14A_SET_TIMEOUT) { | |
1834 | iso14a_timeout = c->arg[2]; | |
1835 | } | |
1836 | ||
1837 | if(param & ISO14A_SET_TIMEOUT) { | |
1838 | iso14a_timeout = c->arg[2]; | |
1839 | } | |
1840 | ||
1841 | if(param & ISO14A_APDU) { | |
1842 | arg0 = iso14_apdu(cmd, len, buf); | |
1843 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); | |
1844 | } | |
1845 | ||
1846 | if(param & ISO14A_RAW) { | |
1847 | if(param & ISO14A_APPEND_CRC) { | |
1848 | AppendCrc14443a(cmd,len); | |
1849 | len += 2; | |
1850 | } | |
1851 | if(lenbits>0) { | |
1852 | ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL); | |
1853 | } else { | |
1854 | ReaderTransmit(cmd,len, NULL); | |
1855 | } | |
1856 | arg0 = ReaderReceive(buf); | |
1857 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); | |
1858 | } | |
1859 | ||
1860 | if(param & ISO14A_REQUEST_TRIGGER) { | |
1861 | iso14a_set_trigger(0); | |
1862 | } | |
1863 | ||
1864 | if(param & ISO14A_NO_DISCONNECT) { | |
1865 | return; | |
1866 | } | |
1867 | ||
1868 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1869 | LEDsoff(); | |
1870 | } | |
1871 | ||
1872 | ||
1873 | // Determine the distance between two nonces. | |
1874 | // Assume that the difference is small, but we don't know which is first. | |
1875 | // Therefore try in alternating directions. | |
1876 | int32_t dist_nt(uint32_t nt1, uint32_t nt2) { | |
1877 | ||
1878 | uint16_t i; | |
1879 | uint32_t nttmp1, nttmp2; | |
1880 | ||
1881 | if (nt1 == nt2) return 0; | |
1882 | ||
1883 | nttmp1 = nt1; | |
1884 | nttmp2 = nt2; | |
1885 | ||
1886 | for (i = 1; i < 32768; i++) { | |
1887 | nttmp1 = prng_successor(nttmp1, 1); | |
1888 | if (nttmp1 == nt2) return i; | |
1889 | nttmp2 = prng_successor(nttmp2, 1); | |
1890 | if (nttmp2 == nt1) return -i; | |
1891 | } | |
1892 | ||
1893 | return(-99999); // either nt1 or nt2 are invalid nonces | |
1894 | } | |
1895 | ||
1896 | ||
1897 | //----------------------------------------------------------------------------- | |
1898 | // Recover several bits of the cypher stream. This implements (first stages of) | |
1899 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
1900 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
1901 | // (article by Nicolas T. Courtois, 2009) | |
1902 | //----------------------------------------------------------------------------- | |
1903 | void ReaderMifare(bool first_try) | |
1904 | { | |
1905 | // Mifare AUTH | |
1906 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1907 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1908 | static uint8_t mf_nr_ar3; | |
1909 | ||
1910 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
1911 | traceLen = 0; | |
1912 | tracing = false; | |
1913 | ||
1914 | byte_t nt_diff = 0; | |
1915 | byte_t par = 0; | |
1916 | //byte_t par_mask = 0xff; | |
1917 | static byte_t par_low = 0; | |
1918 | bool led_on = TRUE; | |
1919 | uint8_t uid[10]; | |
1920 | uint32_t cuid; | |
1921 | ||
1922 | uint32_t nt, previous_nt; | |
1923 | static uint32_t nt_attacked = 0; | |
1924 | byte_t par_list[8] = {0,0,0,0,0,0,0,0}; | |
1925 | byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; | |
1926 | ||
1927 | static uint32_t sync_time; | |
1928 | static uint32_t sync_cycles; | |
1929 | int catch_up_cycles = 0; | |
1930 | int last_catch_up = 0; | |
1931 | uint16_t consecutive_resyncs = 0; | |
1932 | int isOK = 0; | |
1933 | ||
1934 | ||
1935 | ||
1936 | if (first_try) { | |
1937 | StartCountMifare(); | |
1938 | mf_nr_ar3 = 0; | |
1939 | iso14443a_setup(); | |
1940 | while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up" | |
1941 | sync_time = GetCountMifare() & 0xfffffff8; | |
1942 | sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). | |
1943 | nt_attacked = 0; | |
1944 | nt = 0; | |
1945 | par = 0; | |
1946 | } | |
1947 | else { | |
1948 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
1949 | // nt_attacked = prng_successor(nt_attacked, 1); | |
1950 | mf_nr_ar3++; | |
1951 | mf_nr_ar[3] = mf_nr_ar3; | |
1952 | par = par_low; | |
1953 | } | |
1954 | ||
1955 | LED_A_ON(); | |
1956 | LED_B_OFF(); | |
1957 | LED_C_OFF(); | |
1958 | ||
1959 | ||
1960 | for(uint16_t i = 0; TRUE; i++) { | |
1961 | ||
1962 | WDT_HIT(); | |
1963 | ||
1964 | // Test if the action was cancelled | |
1965 | if(BUTTON_PRESS()) { | |
1966 | break; | |
1967 | } | |
1968 | ||
1969 | LED_C_ON(); | |
1970 | ||
1971 | if(!iso14443a_select_card(uid, NULL, &cuid)) { | |
1972 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); | |
1973 | continue; | |
1974 | } | |
1975 | ||
1976 | //keep the card active | |
1977 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1978 | ||
1979 | // CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8)); | |
1980 | ||
1981 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; | |
1982 | catch_up_cycles = 0; | |
1983 | ||
1984 | // if we missed the sync time already, advance to the next nonce repeat | |
1985 | while(GetCountMifare() > sync_time) { | |
1986 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; | |
1987 | } | |
1988 | ||
1989 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) | |
1990 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
1991 | ||
1992 | // Receive the (4 Byte) "random" nonce | |
1993 | if (!ReaderReceive(receivedAnswer)) { | |
1994 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); | |
1995 | continue; | |
1996 | } | |
1997 | ||
1998 | previous_nt = nt; | |
1999 | nt = bytes_to_num(receivedAnswer, 4); | |
2000 | ||
2001 | // Transmit reader nonce with fake par | |
2002 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); | |
2003 | ||
2004 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2005 | int nt_distance = dist_nt(previous_nt, nt); | |
2006 | if (nt_distance == 0) { | |
2007 | nt_attacked = nt; | |
2008 | } | |
2009 | else { | |
2010 | if (nt_distance == -99999) { // invalid nonce received, try again | |
2011 | continue; | |
2012 | } | |
2013 | sync_cycles = (sync_cycles - nt_distance); | |
2014 | if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); | |
2015 | continue; | |
2016 | } | |
2017 | } | |
2018 | ||
2019 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2020 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2021 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. | |
2022 | catch_up_cycles = 0; | |
2023 | continue; | |
2024 | } | |
2025 | if (catch_up_cycles == last_catch_up) { | |
2026 | consecutive_resyncs++; | |
2027 | } | |
2028 | else { | |
2029 | last_catch_up = catch_up_cycles; | |
2030 | consecutive_resyncs = 0; | |
2031 | } | |
2032 | if (consecutive_resyncs < 3) { | |
2033 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); | |
2034 | } | |
2035 | else { | |
2036 | sync_cycles = sync_cycles + catch_up_cycles; | |
2037 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); | |
2038 | } | |
2039 | continue; | |
2040 | } | |
2041 | ||
2042 | consecutive_resyncs = 0; | |
2043 | ||
2044 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
2045 | if (ReaderReceive(receivedAnswer)) | |
2046 | { | |
2047 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer | |
2048 | ||
2049 | if (nt_diff == 0) | |
2050 | { | |
2051 | par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change | |
2052 | } | |
2053 | ||
2054 | led_on = !led_on; | |
2055 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2056 | ||
2057 | par_list[nt_diff] = par; | |
2058 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; | |
2059 | ||
2060 | // Test if the information is complete | |
2061 | if (nt_diff == 0x07) { | |
2062 | isOK = 1; | |
2063 | break; | |
2064 | } | |
2065 | ||
2066 | nt_diff = (nt_diff + 1) & 0x07; | |
2067 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
2068 | par = par_low; | |
2069 | } else { | |
2070 | if (nt_diff == 0 && first_try) | |
2071 | { | |
2072 | par++; | |
2073 | } else { | |
2074 | par = (((par >> 3) + 1) << 3) | par_low; | |
2075 | } | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE); | |
2080 | LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); | |
2081 | LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); | |
2082 | ||
2083 | mf_nr_ar[3] &= 0x1F; | |
2084 | ||
2085 | byte_t buf[28]; | |
2086 | memcpy(buf + 0, uid, 4); | |
2087 | num_to_bytes(nt, 4, buf + 4); | |
2088 | memcpy(buf + 8, par_list, 8); | |
2089 | memcpy(buf + 16, ks_list, 8); | |
2090 | memcpy(buf + 24, mf_nr_ar, 4); | |
2091 | ||
2092 | cmd_send(CMD_ACK,isOK,0,0,buf,28); | |
2093 | ||
2094 | // Thats it... | |
2095 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2096 | LEDsoff(); | |
2097 | tracing = TRUE; | |
2098 | } | |
2099 | ||
2100 | //----------------------------------------------------------------------------- | |
2101 | // MIFARE 1K simulate. | |
2102 | // | |
2103 | //----------------------------------------------------------------------------- | |
2104 | void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) | |
2105 | { | |
2106 | int cardSTATE = MFEMUL_NOFIELD; | |
2107 | int _7BUID = 0; | |
2108 | int vHf = 0; // in mV | |
2109 | //int nextCycleTimeout = 0; | |
2110 | int res; | |
2111 | // uint32_t timer = 0; | |
2112 | uint32_t selTimer = 0; | |
2113 | uint32_t authTimer = 0; | |
2114 | uint32_t par = 0; | |
2115 | int len = 0; | |
2116 | uint8_t cardWRBL = 0; | |
2117 | uint8_t cardAUTHSC = 0; | |
2118 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
2119 | //uint32_t cardRn = 0; | |
2120 | uint32_t cardRr = 0; | |
2121 | uint32_t cuid = 0; | |
2122 | //uint32_t rn_enc = 0; | |
2123 | uint32_t ans = 0; | |
2124 | uint32_t cardINTREG = 0; | |
2125 | uint8_t cardINTBLOCK = 0; | |
2126 | struct Crypto1State mpcs = {0, 0}; | |
2127 | struct Crypto1State *pcs; | |
2128 | pcs = &mpcs; | |
2129 | ||
2130 | uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); | |
2131 | uint8_t *response = eml_get_bigbufptr_sendbuf(); | |
2132 | ||
2133 | static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID | |
2134 | ||
2135 | static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
2136 | static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
2137 | ||
2138 | static uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
2139 | static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
2140 | ||
2141 | static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; | |
2142 | // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f}; | |
2143 | static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
2144 | ||
2145 | // clear trace | |
2146 | traceLen = 0; | |
2147 | tracing = true; | |
2148 | ||
2149 | // Authenticate response - nonce | |
2150 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); | |
2151 | ||
2152 | // get UID from emul memory | |
2153 | emlGetMemBt(receivedCmd, 7, 1); | |
2154 | _7BUID = !(receivedCmd[0] == 0x00); | |
2155 | if (!_7BUID) { // ---------- 4BUID | |
2156 | rATQA[0] = 0x04; | |
2157 | ||
2158 | emlGetMemBt(rUIDBCC1, 0, 4); | |
2159 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2160 | } else { // ---------- 7BUID | |
2161 | rATQA[0] = 0x44; | |
2162 | ||
2163 | rUIDBCC1[0] = 0x88; | |
2164 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
2165 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2166 | emlGetMemBt(rUIDBCC2, 3, 4); | |
2167 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; | |
2168 | } | |
2169 | ||
2170 | // -------------------------------------- test area | |
2171 | ||
2172 | // -------------------------------------- END test area | |
2173 | // start mkseconds counter | |
2174 | StartCountUS(); | |
2175 | ||
2176 | // We need to listen to the high-frequency, peak-detected path. | |
2177 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
2178 | FpgaSetupSsc(); | |
2179 | ||
2180 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
2181 | SpinDelay(200); | |
2182 | ||
2183 | if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID); | |
2184 | // calibrate mkseconds counter | |
2185 | GetDeltaCountUS(); | |
2186 | while (true) { | |
2187 | WDT_HIT(); | |
2188 | ||
2189 | if(BUTTON_PRESS()) { | |
2190 | break; | |
2191 | } | |
2192 | ||
2193 | // find reader field | |
2194 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
2195 | // can measure voltages up to 33000 mV | |
2196 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2197 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2198 | if (vHf > MF_MINFIELDV) { | |
2199 | cardSTATE_TO_IDLE(); | |
2200 | LED_A_ON(); | |
2201 | } | |
2202 | } | |
2203 | ||
2204 | if (cardSTATE != MFEMUL_NOFIELD) { | |
2205 | res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout) | |
2206 | if (res == 2) { | |
2207 | cardSTATE = MFEMUL_NOFIELD; | |
2208 | LEDsoff(); | |
2209 | continue; | |
2210 | } | |
2211 | if(res) break; | |
2212 | } | |
2213 | ||
2214 | //nextCycleTimeout = 0; | |
2215 | ||
2216 | // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]); | |
2217 | ||
2218 | if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication | |
2219 | // REQ or WUP request in ANY state and WUP in HALTED state | |
2220 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2221 | selTimer = GetTickCount(); | |
2222 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2223 | cardSTATE = MFEMUL_SELECT1; | |
2224 | ||
2225 | // init crypto block | |
2226 | LED_B_OFF(); | |
2227 | LED_C_OFF(); | |
2228 | crypto1_destroy(pcs); | |
2229 | cardAUTHKEY = 0xff; | |
2230 | } | |
2231 | } | |
2232 | ||
2233 | switch (cardSTATE) { | |
2234 | case MFEMUL_NOFIELD:{ | |
2235 | break; | |
2236 | } | |
2237 | case MFEMUL_HALTED:{ | |
2238 | break; | |
2239 | } | |
2240 | case MFEMUL_IDLE:{ | |
2241 | break; | |
2242 | } | |
2243 | case MFEMUL_SELECT1:{ | |
2244 | // select all | |
2245 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
2246 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); | |
2247 | break; | |
2248 | } | |
2249 | ||
2250 | // select card | |
2251 | if (len == 9 && | |
2252 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
2253 | if (!_7BUID) | |
2254 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2255 | else | |
2256 | EmSendCmd(rSAK1, sizeof(rSAK1)); | |
2257 | ||
2258 | cuid = bytes_to_num(rUIDBCC1, 4); | |
2259 | if (!_7BUID) { | |
2260 | cardSTATE = MFEMUL_WORK; | |
2261 | LED_B_ON(); | |
2262 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2263 | break; | |
2264 | } else { | |
2265 | cardSTATE = MFEMUL_SELECT2; | |
2266 | break; | |
2267 | } | |
2268 | } | |
2269 | ||
2270 | break; | |
2271 | } | |
2272 | case MFEMUL_SELECT2:{ | |
2273 | if (!len) break; | |
2274 | ||
2275 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { | |
2276 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); | |
2277 | break; | |
2278 | } | |
2279 | ||
2280 | // select 2 card | |
2281 | if (len == 9 && | |
2282 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2283 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2284 | ||
2285 | cuid = bytes_to_num(rUIDBCC2, 4); | |
2286 | cardSTATE = MFEMUL_WORK; | |
2287 | LED_B_ON(); | |
2288 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); | |
2289 | break; | |
2290 | } | |
2291 | ||
2292 | // i guess there is a command). go into the work state. | |
2293 | if (len != 4) break; | |
2294 | cardSTATE = MFEMUL_WORK; | |
2295 | goto lbWORK; | |
2296 | } | |
2297 | case MFEMUL_AUTH1:{ | |
2298 | if (len == 8) { | |
2299 | // --- crypto | |
2300 | //rn_enc = bytes_to_num(receivedCmd, 4); | |
2301 | //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1); | |
2302 | cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0); | |
2303 | // test if auth OK | |
2304 | if (cardRr != prng_successor(nonce, 64)){ | |
2305 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64)); | |
2306 | cardSTATE_TO_IDLE(); | |
2307 | break; | |
2308 | } | |
2309 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2310 | num_to_bytes(ans, 4, rAUTH_AT); | |
2311 | // --- crypto | |
2312 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2313 | cardSTATE = MFEMUL_AUTH2; | |
2314 | } else { | |
2315 | cardSTATE_TO_IDLE(); | |
2316 | } | |
2317 | if (cardSTATE != MFEMUL_AUTH2) break; | |
2318 | } | |
2319 | case MFEMUL_AUTH2:{ | |
2320 | LED_C_ON(); | |
2321 | cardSTATE = MFEMUL_WORK; | |
2322 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); | |
2323 | break; | |
2324 | } | |
2325 | case MFEMUL_WORK:{ | |
2326 | lbWORK: if (len == 0) break; | |
2327 | ||
2328 | if (cardAUTHKEY == 0xff) { | |
2329 | // first authentication | |
2330 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2331 | authTimer = GetTickCount(); | |
2332 | ||
2333 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2334 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2335 | ||
2336 | // --- crypto | |
2337 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2338 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2339 | num_to_bytes(nonce, 4, rAUTH_AT); | |
2340 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2341 | // --- crypto | |
2342 | ||
2343 | // last working revision | |
2344 | // EmSendCmd14443aRaw(resp1, resp1Len, 0); | |
2345 | // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true); | |
2346 | ||
2347 | cardSTATE = MFEMUL_AUTH1; | |
2348 | //nextCycleTimeout = 10; | |
2349 | break; | |
2350 | } | |
2351 | } else { | |
2352 | // decrypt seqence | |
2353 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2354 | ||
2355 | // nested authentication | |
2356 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2357 | authTimer = GetTickCount(); | |
2358 | ||
2359 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2360 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2361 | ||
2362 | // --- crypto | |
2363 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2364 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2365 | num_to_bytes(ans, 4, rAUTH_AT); | |
2366 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2367 | // --- crypto | |
2368 | ||
2369 | cardSTATE = MFEMUL_AUTH1; | |
2370 | //nextCycleTimeout = 10; | |
2371 | break; | |
2372 | } | |
2373 | } | |
2374 | ||
2375 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued | |
2376 | // BUT... ACK --> NACK | |
2377 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2378 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2379 | break; | |
2380 | } | |
2381 | ||
2382 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2383 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2384 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2385 | break; | |
2386 | } | |
2387 | ||
2388 | // read block | |
2389 | if (len == 4 && receivedCmd[0] == 0x30) { | |
2390 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2391 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2392 | break; | |
2393 | } | |
2394 | emlGetMem(response, receivedCmd[1], 1); | |
2395 | AppendCrc14443a(response, 16); | |
2396 | mf_crypto1_encrypt(pcs, response, 18, &par); | |
2397 | EmSendCmdPar(response, 18, par); | |
2398 | break; | |
2399 | } | |
2400 | ||
2401 | // write block | |
2402 | if (len == 4 && receivedCmd[0] == 0xA0) { | |
2403 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2404 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2405 | break; | |
2406 | } | |
2407 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2408 | //nextCycleTimeout = 50; | |
2409 | cardSTATE = MFEMUL_WRITEBL2; | |
2410 | cardWRBL = receivedCmd[1]; | |
2411 | break; | |
2412 | } | |
2413 | ||
2414 | // works with cardINTREG | |
2415 | ||
2416 | // increment, decrement, restore | |
2417 | if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) { | |
2418 | if (receivedCmd[1] >= 16 * 4 || | |
2419 | receivedCmd[1] / 4 != cardAUTHSC || | |
2420 | emlCheckValBl(receivedCmd[1])) { | |
2421 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2422 | break; | |
2423 | } | |
2424 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2425 | if (receivedCmd[0] == 0xC1) | |
2426 | cardSTATE = MFEMUL_INTREG_INC; | |
2427 | if (receivedCmd[0] == 0xC0) | |
2428 | cardSTATE = MFEMUL_INTREG_DEC; | |
2429 | if (receivedCmd[0] == 0xC2) | |
2430 | cardSTATE = MFEMUL_INTREG_REST; | |
2431 | cardWRBL = receivedCmd[1]; | |
2432 | ||
2433 | break; | |
2434 | } | |
2435 | ||
2436 | ||
2437 | // transfer | |
2438 | if (len == 4 && receivedCmd[0] == 0xB0) { | |
2439 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2440 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2441 | break; | |
2442 | } | |
2443 | ||
2444 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) | |
2445 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2446 | else | |
2447 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2448 | ||
2449 | break; | |
2450 | } | |
2451 | ||
2452 | // halt | |
2453 | if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) { | |
2454 | LED_B_OFF(); | |
2455 | LED_C_OFF(); | |
2456 | cardSTATE = MFEMUL_HALTED; | |
2457 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
2458 | break; | |
2459 | } | |
2460 | ||
2461 | // command not allowed | |
2462 | if (len == 4) { | |
2463 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2464 | break; | |
2465 | } | |
2466 | ||
2467 | // case break | |
2468 | break; | |
2469 | } | |
2470 | case MFEMUL_WRITEBL2:{ | |
2471 | if (len == 18){ | |
2472 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2473 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2474 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2475 | cardSTATE = MFEMUL_WORK; | |
2476 | break; | |
2477 | } else { | |
2478 | cardSTATE_TO_IDLE(); | |
2479 | break; | |
2480 | } | |
2481 | break; | |
2482 | } | |
2483 | ||
2484 | case MFEMUL_INTREG_INC:{ | |
2485 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2486 | memcpy(&ans, receivedCmd, 4); | |
2487 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2488 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2489 | cardSTATE_TO_IDLE(); | |
2490 | break; | |
2491 | } | |
2492 | cardINTREG = cardINTREG + ans; | |
2493 | cardSTATE = MFEMUL_WORK; | |
2494 | break; | |
2495 | } | |
2496 | case MFEMUL_INTREG_DEC:{ | |
2497 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2498 | memcpy(&ans, receivedCmd, 4); | |
2499 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2500 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2501 | cardSTATE_TO_IDLE(); | |
2502 | break; | |
2503 | } | |
2504 | cardINTREG = cardINTREG - ans; | |
2505 | cardSTATE = MFEMUL_WORK; | |
2506 | break; | |
2507 | } | |
2508 | case MFEMUL_INTREG_REST:{ | |
2509 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2510 | memcpy(&ans, receivedCmd, 4); | |
2511 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2512 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2513 | cardSTATE_TO_IDLE(); | |
2514 | break; | |
2515 | } | |
2516 | cardSTATE = MFEMUL_WORK; | |
2517 | break; | |
2518 | } | |
2519 | } | |
2520 | } | |
2521 | ||
2522 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2523 | LEDsoff(); | |
2524 | ||
2525 | // add trace trailer | |
2526 | memset(rAUTH_NT, 0x44, 4); | |
2527 | LogTrace(rAUTH_NT, 4, 0, 0, TRUE); | |
2528 | ||
2529 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); | |
2530 | } | |
2531 | ||
2532 | //----------------------------------------------------------------------------- | |
2533 | // MIFARE sniffer. | |
2534 | // | |
2535 | //----------------------------------------------------------------------------- | |
2536 | void RAMFUNC SniffMifare(uint8_t param) { | |
2537 | // param: | |
2538 | // bit 0 - trigger from first card answer | |
2539 | // bit 1 - trigger from first reader 7-bit request | |
2540 | ||
2541 | // C(red) A(yellow) B(green) | |
2542 | LEDsoff(); | |
2543 | // init trace buffer | |
2544 | iso14a_clear_trace(); | |
2545 | ||
2546 | // The command (reader -> tag) that we're receiving. | |
2547 | // The length of a received command will in most cases be no more than 18 bytes. | |
2548 | // So 32 should be enough! | |
2549 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
2550 | // The response (tag -> reader) that we're receiving. | |
2551 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
2552 | ||
2553 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
2554 | // into trace, along with its length and other annotations. | |
2555 | //uint8_t *trace = (uint8_t *)BigBuf; | |
2556 | ||
2557 | // The DMA buffer, used to stream samples from the FPGA | |
2558 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
2559 | int8_t *data = dmaBuf; | |
2560 | int maxDataLen = 0; | |
2561 | int dataLen = 0; | |
2562 | ||
2563 | // Set up the demodulator for tag -> reader responses. | |
2564 | Demod.output = receivedResponse; | |
2565 | Demod.len = 0; | |
2566 | Demod.state = DEMOD_UNSYNCD; | |
2567 | ||
2568 | // Set up the demodulator for the reader -> tag commands | |
2569 | memset(&Uart, 0, sizeof(Uart)); | |
2570 | Uart.output = receivedCmd; | |
2571 | Uart.byteCntMax = 32; // was 100 (greg)////////////////// | |
2572 | Uart.state = STATE_UNSYNCD; | |
2573 | ||
2574 | // Setup for the DMA. | |
2575 | FpgaSetupSsc(); | |
2576 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
2577 | ||
2578 | // And put the FPGA in the appropriate mode | |
2579 | // Signal field is off with the appropriate LED | |
2580 | LED_D_OFF(); | |
2581 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
2582 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
2583 | ||
2584 | // init sniffer | |
2585 | MfSniffInit(); | |
2586 | int sniffCounter = 0; | |
2587 | ||
2588 | // And now we loop, receiving samples. | |
2589 | while(true) { | |
2590 | if(BUTTON_PRESS()) { | |
2591 | DbpString("cancelled by button"); | |
2592 | goto done; | |
2593 | } | |
2594 | ||
2595 | LED_A_ON(); | |
2596 | WDT_HIT(); | |
2597 | ||
2598 | if (++sniffCounter > 65) { | |
2599 | if (MfSniffSend(2000)) { | |
2600 | FpgaEnableSscDma(); | |
2601 | } | |
2602 | sniffCounter = 0; | |
2603 | } | |
2604 | ||
2605 | int register readBufDataP = data - dmaBuf; | |
2606 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
2607 | if (readBufDataP <= dmaBufDataP){ | |
2608 | dataLen = dmaBufDataP - readBufDataP; | |
2609 | } else { | |
2610 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; | |
2611 | } | |
2612 | // test for length of buffer | |
2613 | if(dataLen > maxDataLen) { | |
2614 | maxDataLen = dataLen; | |
2615 | if(dataLen > 400) { | |
2616 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
2617 | goto done; | |
2618 | } | |
2619 | } | |
2620 | if(dataLen < 1) continue; | |
2621 | ||
2622 | // primary buffer was stopped( <-- we lost data! | |
2623 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
2624 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2625 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
2626 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary | |
2627 | } | |
2628 | // secondary buffer sets as primary, secondary buffer was stopped | |
2629 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2630 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
2631 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
2632 | } | |
2633 | ||
2634 | LED_A_OFF(); | |
2635 | ||
2636 | if(MillerDecoding((data[0] & 0xF0) >> 4)) { | |
2637 | LED_C_INV(); | |
2638 | // check - if there is a short 7bit request from reader | |
2639 | if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break; | |
2640 | ||
2641 | /* And ready to receive another command. */ | |
2642 | Uart.state = STATE_UNSYNCD; | |
2643 | ||
2644 | /* And also reset the demod code */ | |
2645 | Demod.state = DEMOD_UNSYNCD; | |
2646 | } | |
2647 | ||
2648 | if(ManchesterDecoding(data[0] & 0x0F)) { | |
2649 | LED_C_INV(); | |
2650 | ||
2651 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; | |
2652 | ||
2653 | // And ready to receive another response. | |
2654 | memset(&Demod, 0, sizeof(Demod)); | |
2655 | Demod.output = receivedResponse; | |
2656 | Demod.state = DEMOD_UNSYNCD; | |
2657 | ||
2658 | /* And also reset the uart code */ | |
2659 | Uart.state = STATE_UNSYNCD; | |
2660 | } | |
2661 | ||
2662 | data++; | |
2663 | if(data > dmaBuf + DMA_BUFFER_SIZE) { | |
2664 | data = dmaBuf; | |
2665 | } | |
2666 | } // main cycle | |
2667 | ||
2668 | DbpString("COMMAND FINISHED"); | |
2669 | ||
2670 | done: | |
2671 | FpgaDisableSscDma(); | |
2672 | MfSniffEnd(); | |
2673 | ||
2674 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax); | |
2675 | LEDsoff(); | |
2676 | } |