]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
cleanup
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30{
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false);
76}
77
78/* blank r/w tag data stream
79...0000000000000000 01111111
801010101010101010101010101010101010101010101010101010101010101010
810011010010100001
8201111111
83101010101010101[0]000...
84
85[5555fe852c5555555555555555fe0000]
86*/
87void ReadTItag(void)
88{
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215}
216
217void WriteTIbyte(uint8_t b)
218{
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240}
241
242void AcquireTiType(void)
243{
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311}
312
313// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314// if crc provided, it will be written with the data verbatim (even if bogus)
315// if not provided a valid crc will be computed from the data and written.
316void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317{
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use `lf ti read` to check");
383}
384
385void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386{
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
392
393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
394
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
407 DbpString("Stopped");
408 return;
409 }
410 WDT_HIT();
411 }
412 if (ledcontrol)
413 LED_D_ON();
414
415 if(tab[i])
416 OPEN_COIL();
417 else
418 SHORT_COIL();
419
420 if (ledcontrol)
421 LED_D_OFF();
422 //wait until SSC_CLK goes LOW
423 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
424 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
425 DbpString("Stopped");
426 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
427 return;
428 }
429 WDT_HIT();
430 }
431
432 i++;
433 if(i == period) {
434
435 i = 0;
436 if (gap) {
437 SHORT_COIL();
438 SpinDelayUs(gap);
439 }
440 }
441
442 }
443}
444
445#define DEBUG_FRAME_CONTENTS 1
446void SimulateTagLowFrequencyBidir(int divisor, int t0)
447{
448}
449
450// compose fc/8 fc/10 waveform (FSK2)
451static void fc(int c, int *n)
452{
453 uint8_t *dest = BigBuf_get_addr();
454 int idx;
455
456 // for when we want an fc8 pattern every 4 logical bits
457 if(c==0) {
458 dest[((*n)++)]=1;
459 dest[((*n)++)]=1;
460 dest[((*n)++)]=1;
461 dest[((*n)++)]=1;
462 dest[((*n)++)]=0;
463 dest[((*n)++)]=0;
464 dest[((*n)++)]=0;
465 dest[((*n)++)]=0;
466 }
467
468 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
469 if(c==8) {
470 for (idx=0; idx<6; idx++) {
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=1;
473 dest[((*n)++)]=1;
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=0;
476 dest[((*n)++)]=0;
477 dest[((*n)++)]=0;
478 dest[((*n)++)]=0;
479 }
480 }
481
482 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
483 if(c==10) {
484 for (idx=0; idx<5; idx++) {
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=1;
488 dest[((*n)++)]=1;
489 dest[((*n)++)]=1;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 dest[((*n)++)]=0;
493 dest[((*n)++)]=0;
494 dest[((*n)++)]=0;
495 }
496 }
497}
498// compose fc/X fc/Y waveform (FSKx)
499static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
500{
501 uint8_t *dest = BigBuf_get_addr();
502 uint8_t halfFC = fc/2;
503 uint8_t wavesPerClock = clock/fc;
504 uint8_t mod = clock % fc; //modifier
505 uint8_t modAdj = fc/mod; //how often to apply modifier
506 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
507 // loop through clock - step field clock
508 for (uint8_t idx=0; idx < wavesPerClock; idx++){
509 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
510 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
511 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
512 *n += fc;
513 }
514 if (mod>0) (*modCnt)++;
515 if ((mod>0) && modAdjOk){ //fsk2
516 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
517 memset(dest+(*n), 0, fc-halfFC);
518 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
519 *n += fc;
520 }
521 }
522 if (mod>0 && !modAdjOk){ //fsk1
523 memset(dest+(*n), 0, mod-(mod/2));
524 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
525 *n += mod;
526 }
527}
528
529// prepare a waveform pattern in the buffer based on the ID given then
530// simulate a HID tag until the button is pressed
531void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
532{
533 int n=0, i=0;
534 /*
535 HID tag bitstream format
536 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
537 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
538 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
539 A fc8 is inserted before every 4 bits
540 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
541 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 */
543
544 if (hi>0xFFF) {
545 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 return;
547 }
548 fc(0,&n);
549 // special start of frame marker containing invalid bit sequences
550 fc(8, &n); fc(8, &n); // invalid
551 fc(8, &n); fc(10, &n); // logical 0
552 fc(10, &n); fc(10, &n); // invalid
553 fc(8, &n); fc(10, &n); // logical 0
554
555 WDT_HIT();
556 // manchester encode bits 43 to 32
557 for (i=11; i>=0; i--) {
558 if ((i%4)==3) fc(0,&n);
559 if ((hi>>i)&1) {
560 fc(10, &n); fc(8, &n); // low-high transition
561 } else {
562 fc(8, &n); fc(10, &n); // high-low transition
563 }
564 }
565
566 WDT_HIT();
567 // manchester encode bits 31 to 0
568 for (i=31; i>=0; i--) {
569 if ((i%4)==3) fc(0,&n);
570 if ((lo>>i)&1) {
571 fc(10, &n); fc(8, &n); // low-high transition
572 } else {
573 fc(8, &n); fc(10, &n); // high-low transition
574 }
575 }
576
577 if (ledcontrol)
578 LED_A_ON();
579 SimulateTagLowFrequency(n, 0, ledcontrol);
580
581 if (ledcontrol)
582 LED_A_OFF();
583}
584
585// prepare a waveform pattern in the buffer based on the ID given then
586// simulate a FSK tag until the button is pressed
587// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
588void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
589{
590 int ledcontrol=1;
591 int n=0, i=0;
592 uint8_t fcHigh = arg1 >> 8;
593 uint8_t fcLow = arg1 & 0xFF;
594 uint16_t modCnt = 0;
595 uint8_t clk = arg2 & 0xFF;
596 uint8_t invert = (arg2 >> 8) & 1;
597
598 for (i=0; i<size; i++){
599 if (BitStream[i] == invert){
600 fcAll(fcLow, &n, clk, &modCnt);
601 } else {
602 fcAll(fcHigh, &n, clk, &modCnt);
603 }
604 }
605 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
606 /*Dbprintf("DEBUG: First 32:");
607 uint8_t *dest = BigBuf_get_addr();
608 i=0;
609 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
610 i+=16;
611 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
612 */
613 if (ledcontrol)
614 LED_A_ON();
615
616 SimulateTagLowFrequency(n, 0, ledcontrol);
617
618 if (ledcontrol)
619 LED_A_OFF();
620}
621
622// compose ask waveform for one bit(ASK)
623static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
624{
625 uint8_t *dest = BigBuf_get_addr();
626 uint8_t halfClk = clock/2;
627 // c = current bit 1 or 0
628 if (manchester==1){
629 memset(dest+(*n), c, halfClk);
630 memset(dest+(*n) + halfClk, c^1, halfClk);
631 } else {
632 memset(dest+(*n), c, clock);
633 }
634 *n += clock;
635}
636
637static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
638{
639 uint8_t *dest = BigBuf_get_addr();
640 uint8_t halfClk = clock/2;
641 if (c){
642 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
643 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
644 } else {
645 memset(dest+(*n), c ^ *phase, clock);
646 *phase ^= 1;
647 }
648 *n += clock;
649}
650
651static void stAskSimBit(int *n, uint8_t clock) {
652 uint8_t *dest = BigBuf_get_addr();
653 uint8_t halfClk = clock/2;
654 //ST = .5 high .5 low 1.5 high .5 low 1 high
655 memset(dest+(*n), 1, halfClk);
656 memset(dest+(*n) + halfClk, 0, halfClk);
657 memset(dest+(*n) + clock, 1, clock + halfClk);
658 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
659 memset(dest+(*n) + clock*3, 1, clock);
660 *n += clock*4;
661}
662
663// args clock, ask/man or askraw, invert, transmission separator
664void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
665{
666 int ledcontrol = 1;
667 int n=0, i=0;
668 uint8_t clk = (arg1 >> 8) & 0xFF;
669 uint8_t encoding = arg1 & 0xFF;
670 uint8_t separator = arg2 & 1;
671 uint8_t invert = (arg2 >> 8) & 1;
672
673 if (encoding==2){ //biphase
674 uint8_t phase=0;
675 for (i=0; i<size; i++){
676 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
677 }
678 if (phase==1) { //run a second set inverted to keep phase in check
679 for (i=0; i<size; i++){
680 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
681 }
682 }
683 } else { // ask/manchester || ask/raw
684 for (i=0; i<size; i++){
685 askSimBit(BitStream[i]^invert, &n, clk, encoding);
686 }
687 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
688 for (i=0; i<size; i++){
689 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
690 }
691 }
692 }
693 if (separator==1 && encoding == 1)
694 stAskSimBit(&n, clk);
695 else if (separator==1)
696 Dbprintf("sorry but separator option not yet available");
697
698 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
699 //DEBUG
700 //Dbprintf("First 32:");
701 //uint8_t *dest = BigBuf_get_addr();
702 //i=0;
703 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 //i+=16;
705 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
706
707 if (ledcontrol) LED_A_ON();
708 SimulateTagLowFrequency(n, 0, ledcontrol);
709 if (ledcontrol) LED_A_OFF();
710}
711
712//carrier can be 2,4 or 8
713static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
714{
715 uint8_t *dest = BigBuf_get_addr();
716 uint8_t halfWave = waveLen/2;
717 //uint8_t idx;
718 int i = 0;
719 if (phaseChg){
720 // write phase change
721 memset(dest+(*n), *curPhase^1, halfWave);
722 memset(dest+(*n) + halfWave, *curPhase, halfWave);
723 *n += waveLen;
724 *curPhase ^= 1;
725 i += waveLen;
726 }
727 //write each normal clock wave for the clock duration
728 for (; i < clk; i+=waveLen){
729 memset(dest+(*n), *curPhase, halfWave);
730 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
731 *n += waveLen;
732 }
733}
734
735// args clock, carrier, invert,
736void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
737{
738 int ledcontrol=1;
739 int n=0, i=0;
740 uint8_t clk = arg1 >> 8;
741 uint8_t carrier = arg1 & 0xFF;
742 uint8_t invert = arg2 & 0xFF;
743 uint8_t curPhase = 0;
744 for (i=0; i<size; i++){
745 if (BitStream[i] == curPhase){
746 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
747 } else {
748 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
749 }
750 }
751 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
752 //Dbprintf("DEBUG: First 32:");
753 //uint8_t *dest = BigBuf_get_addr();
754 //i=0;
755 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
756 //i+=16;
757 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
758
759 if (ledcontrol) LED_A_ON();
760 SimulateTagLowFrequency(n, 0, ledcontrol);
761 if (ledcontrol) LED_A_OFF();
762}
763
764// loop to get raw HID waveform then FSK demodulate the TAG ID from it
765void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
766{
767 uint8_t *dest = BigBuf_get_addr();
768 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
769 size_t size;
770 uint32_t hi2=0, hi=0, lo=0;
771 int idx=0;
772 // Configure to go in 125Khz listen mode
773 LFSetupFPGAForADC(95, true);
774
775 //clear read buffer
776 BigBuf_Clear_keep_EM();
777
778 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
779
780 WDT_HIT();
781 if (ledcontrol) LED_A_ON();
782
783 DoAcquisition_default(-1,true);
784 // FSK demodulator
785 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
786 size = 50*128*2; //big enough to catch 2 sequences of largest format
787 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
788
789 if (idx>0 && lo>0 && (size==96 || size==192)){
790 // go over previously decoded manchester data and decode into usable tag ID
791 if (hi2 != 0){ //extra large HID tags 88/192 bits
792 Dbprintf("TAG ID: %x%08x%08x (%d)",
793 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 }else { //standard HID tags 44/96 bits
795 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
796 uint8_t bitlen = 0;
797 uint32_t fc = 0;
798 uint32_t cardnum = 0;
799 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
800 uint32_t lo2=0;
801 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
802 uint8_t idx3 = 1;
803 while(lo2 > 1){ //find last bit set to 1 (format len bit)
804 lo2=lo2 >> 1;
805 idx3++;
806 }
807 bitlen = idx3+19;
808 fc =0;
809 cardnum=0;
810 if(bitlen == 26){
811 cardnum = (lo>>1)&0xFFFF;
812 fc = (lo>>17)&0xFF;
813 }
814 if(bitlen == 37){
815 cardnum = (lo>>1)&0x7FFFF;
816 fc = ((hi&0xF)<<12)|(lo>>20);
817 }
818 if(bitlen == 34){
819 cardnum = (lo>>1)&0xFFFF;
820 fc= ((hi&1)<<15)|(lo>>17);
821 }
822 if(bitlen == 35){
823 cardnum = (lo>>1)&0xFFFFF;
824 fc = ((hi&1)<<11)|(lo>>21);
825 }
826 }
827 else { //if bit 38 is not set then 37 bit format is used
828 bitlen= 37;
829 fc =0;
830 cardnum=0;
831 if(bitlen==37){
832 cardnum = (lo>>1)&0x7FFFF;
833 fc = ((hi&0xF)<<12)|(lo>>20);
834 }
835 }
836 //Dbprintf("TAG ID: %x%08x (%d)",
837 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
838 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
839 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
840 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
841 }
842 if (findone){
843 if (ledcontrol) LED_A_OFF();
844 *high = hi;
845 *low = lo;
846 break;
847 }
848 // reset
849 }
850 hi2 = hi = lo = idx = 0;
851 WDT_HIT();
852 }
853
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
855 DbpString("Stopped");
856 if (ledcontrol) LED_A_OFF();
857}
858
859// loop to get raw HID waveform then FSK demodulate the TAG ID from it
860void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
861{
862 uint8_t *dest = BigBuf_get_addr();
863 size_t size;
864 int idx=0;
865 //clear read buffer
866 BigBuf_Clear_keep_EM();
867 // Configure to go in 125Khz listen mode
868 LFSetupFPGAForADC(95, true);
869
870 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
871
872 WDT_HIT();
873 if (ledcontrol) LED_A_ON();
874
875 DoAcquisition_default(-1,true);
876 // FSK demodulator
877 size = 50*128*2; //big enough to catch 2 sequences of largest format
878 idx = AWIDdemodFSK(dest, &size);
879
880 if (idx<=0 || size!=96) continue;
881 // Index map
882 // 0 10 20 30 40 50 60
883 // | | | | | | |
884 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
885 // -----------------------------------------------------------------------------
886 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
887 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
888 // |---26 bit---| |-----117----||-------------142-------------|
889 // b = format bit len, o = odd parity of last 3 bits
890 // f = facility code, c = card number
891 // w = wiegand parity
892 // (26 bit format shown)
893
894 //get raw ID before removing parities
895 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
896 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
897 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
898
899 size = removeParity(dest, idx+8, 4, 1, 88);
900 if (size != 66) continue;
901 // ok valid card found!
902
903 // Index map
904 // 0 10 20 30 40 50 60
905 // | | | | | | |
906 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
907 // -----------------------------------------------------------------------------
908 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
909 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
910 // |26 bit| |-117--| |-----142------|
911 // b = format bit len, o = odd parity of last 3 bits
912 // f = facility code, c = card number
913 // w = wiegand parity
914 // (26 bit format shown)
915
916 uint32_t fc = 0;
917 uint32_t cardnum = 0;
918 uint32_t code1 = 0;
919 uint32_t code2 = 0;
920 uint8_t fmtLen = bytebits_to_byte(dest,8);
921 if (fmtLen==26){
922 fc = bytebits_to_byte(dest+9, 8);
923 cardnum = bytebits_to_byte(dest+17, 16);
924 code1 = bytebits_to_byte(dest+8,fmtLen);
925 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
926 } else {
927 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
928 if (fmtLen>32){
929 code1 = bytebits_to_byte(dest+8,fmtLen-32);
930 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
931 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
932 } else{
933 code1 = bytebits_to_byte(dest+8,fmtLen);
934 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
935 }
936 }
937 if (findone){
938 if (ledcontrol) LED_A_OFF();
939 break;
940 }
941 // reset
942 idx = 0;
943 WDT_HIT();
944 }
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
946 DbpString("Stopped");
947 if (ledcontrol) LED_A_OFF();
948}
949
950void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
951{
952 uint8_t *dest = BigBuf_get_addr();
953
954 size_t size=0, idx=0;
955 int clk=0, invert=0, errCnt=0, maxErr=20;
956 uint32_t hi=0;
957 uint64_t lo=0;
958 //clear read buffer
959 BigBuf_Clear_keep_EM();
960 // Configure to go in 125Khz listen mode
961 LFSetupFPGAForADC(95, true);
962
963 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
964
965 WDT_HIT();
966 if (ledcontrol) LED_A_ON();
967
968 DoAcquisition_default(-1,true);
969 size = BigBuf_max_traceLen();
970 //askdemod and manchester decode
971 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
972 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
973 WDT_HIT();
974
975 if (errCnt<0) continue;
976
977 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
978 if (errCnt){
979 if (size>64){
980 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
981 hi,
982 (uint32_t)(lo>>32),
983 (uint32_t)lo,
984 (uint32_t)(lo&0xFFFF),
985 (uint32_t)((lo>>16LL) & 0xFF),
986 (uint32_t)(lo & 0xFFFFFF));
987 } else {
988 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
989 (uint32_t)(lo>>32),
990 (uint32_t)lo,
991 (uint32_t)(lo&0xFFFF),
992 (uint32_t)((lo>>16LL) & 0xFF),
993 (uint32_t)(lo & 0xFFFFFF));
994 }
995
996 if (findone){
997 if (ledcontrol) LED_A_OFF();
998 *high=lo>>32;
999 *low=lo & 0xFFFFFFFF;
1000 break;
1001 }
1002 }
1003 WDT_HIT();
1004 hi = lo = size = idx = 0;
1005 clk = invert = errCnt = 0;
1006 }
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1008 DbpString("Stopped");
1009 if (ledcontrol) LED_A_OFF();
1010}
1011
1012void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1013{
1014 uint8_t *dest = BigBuf_get_addr();
1015 int idx=0;
1016 uint32_t code=0, code2=0;
1017 uint8_t version=0;
1018 uint8_t facilitycode=0;
1019 uint16_t number=0;
1020 //clear read buffer
1021 BigBuf_Clear_keep_EM();
1022 // Configure to go in 125Khz listen mode
1023 LFSetupFPGAForADC(95, true);
1024
1025 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1026 WDT_HIT();
1027 if (ledcontrol) LED_A_ON();
1028 DoAcquisition_default(-1,true);
1029 //fskdemod and get start index
1030 WDT_HIT();
1031 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1032 if (idx<0) continue;
1033 //valid tag found
1034
1035 //Index map
1036 //0 10 20 30 40 50 60
1037 //| | | | | | |
1038 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1039 //-----------------------------------------------------------------------------
1040 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1041 //
1042 //XSF(version)facility:codeone+codetwo
1043 //Handle the data
1044 if(findone){ //only print binary if we are doing one
1045 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1046 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1047 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1048 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1049 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1050 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1051 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1052 }
1053 code = bytebits_to_byte(dest+idx,32);
1054 code2 = bytebits_to_byte(dest+idx+32,32);
1055 version = bytebits_to_byte(dest+idx+27,8); //14,4
1056 facilitycode = bytebits_to_byte(dest+idx+18,8);
1057 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1058
1059 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1060 // if we're only looking for one tag
1061 if (findone){
1062 if (ledcontrol) LED_A_OFF();
1063 //LED_A_OFF();
1064 *high=code;
1065 *low=code2;
1066 break;
1067 }
1068 code=code2=0;
1069 version=facilitycode=0;
1070 number=0;
1071 idx=0;
1072
1073 WDT_HIT();
1074 }
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1076 DbpString("Stopped");
1077 if (ledcontrol) LED_A_OFF();
1078}
1079
1080/*------------------------------
1081 * T5555/T5557/T5567/T5577 routines
1082 *------------------------------
1083 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1084 *
1085 * Relevant communication times in microsecond
1086 * To compensate antenna falling times shorten the write times
1087 * and enlarge the gap ones.
1088 * Q5 tags seems to have issues when these values changes.
1089 */
1090#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1091#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1092#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1093#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1094#define READ_GAP 15*8
1095
1096void TurnReadLFOn(int delay) {
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1098 // Give it a bit of time for the resonant antenna to settle.
1099 SpinDelayUs(delay); //155*8 //50*8
1100}
1101
1102// Write one bit to card
1103void T55xxWriteBit(int bit) {
1104 if (!bit)
1105 TurnReadLFOn(WRITE_0);
1106 else
1107 TurnReadLFOn(WRITE_1);
1108 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1109 SpinDelayUs(WRITE_GAP);
1110}
1111
1112// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1113void T55xxResetRead(void) {
1114 LED_A_ON();
1115 //clear buffer now so it does not interfere with timing later
1116 BigBuf_Clear_keep_EM();
1117
1118 // Set up FPGA, 125kHz
1119 LFSetupFPGAForADC(95, true);
1120
1121 // Trigger T55x7 in mode.
1122 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1123 SpinDelayUs(START_GAP);
1124
1125 // reset tag - op code 00
1126 T55xxWriteBit(0);
1127 T55xxWriteBit(0);
1128
1129 // Turn field on to read the response
1130 TurnReadLFOn(READ_GAP);
1131
1132 // Acquisition
1133 doT55x7Acquisition(BigBuf_max_traceLen());
1134
1135 // Turn the field off
1136 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1137 cmd_send(CMD_ACK,0,0,0,0,0);
1138 LED_A_OFF();
1139}
1140
1141// Write one card block in page 0, no lock
1142void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1143 LED_A_ON();
1144 bool PwdMode = arg & 0x1;
1145 uint8_t Page = (arg & 0x2)>>1;
1146 uint32_t i = 0;
1147
1148 // Set up FPGA, 125kHz
1149 LFSetupFPGAForADC(95, true);
1150
1151 // Trigger T55x7 in mode.
1152 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1153 SpinDelayUs(START_GAP);
1154
1155 // Opcode 10
1156 T55xxWriteBit(1);
1157 T55xxWriteBit(Page); //Page 0
1158 if (PwdMode){
1159 // Send Pwd
1160 for (i = 0x80000000; i != 0; i >>= 1)
1161 T55xxWriteBit(Pwd & i);
1162 }
1163 // Send Lock bit
1164 T55xxWriteBit(0);
1165
1166 // Send Data
1167 for (i = 0x80000000; i != 0; i >>= 1)
1168 T55xxWriteBit(Data & i);
1169
1170 // Send Block number
1171 for (i = 0x04; i != 0; i >>= 1)
1172 T55xxWriteBit(Block & i);
1173
1174 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1175 // so wait a little more)
1176 TurnReadLFOn(20 * 1000);
1177 //could attempt to do a read to confirm write took
1178 // as the tag should repeat back the new block
1179 // until it is reset, but to confirm it we would
1180 // need to know the current block 0 config mode
1181
1182 // turn field off
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1184 LED_A_OFF();
1185}
1186
1187// Write one card block in page 0, no lock
1188void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1189 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1190 cmd_send(CMD_ACK,0,0,0,0,0);
1191}
1192
1193// Read one card block in page [page]
1194void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1195 LED_A_ON();
1196 bool PwdMode = arg0 & 0x1;
1197 uint8_t Page = (arg0 & 0x2) >> 1;
1198 uint32_t i = 0;
1199 bool RegReadMode = (Block == 0xFF);
1200
1201 //clear buffer now so it does not interfere with timing later
1202 BigBuf_Clear_ext(false);
1203
1204 //make sure block is at max 7
1205 Block &= 0x7;
1206
1207 // Set up FPGA, 125kHz to power up the tag
1208 LFSetupFPGAForADC(95, true);
1209
1210 // Trigger T55x7 Direct Access Mode with start gap
1211 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1212 SpinDelayUs(START_GAP);
1213
1214 // Opcode 1[page]
1215 T55xxWriteBit(1);
1216 T55xxWriteBit(Page); //Page 0
1217
1218 if (PwdMode){
1219 // Send Pwd
1220 for (i = 0x80000000; i != 0; i >>= 1)
1221 T55xxWriteBit(Pwd & i);
1222 }
1223 // Send a zero bit separation
1224 T55xxWriteBit(0);
1225
1226 // Send Block number (if direct access mode)
1227 if (!RegReadMode)
1228 for (i = 0x04; i != 0; i >>= 1)
1229 T55xxWriteBit(Block & i);
1230
1231 // Turn field on to read the response
1232 TurnReadLFOn(READ_GAP);
1233
1234 // Acquisition
1235 doT55x7Acquisition(12000);
1236
1237 // Turn the field off
1238 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1239 cmd_send(CMD_ACK,0,0,0,0,0);
1240 LED_A_OFF();
1241}
1242
1243void T55xxWakeUp(uint32_t Pwd){
1244 LED_B_ON();
1245 uint32_t i = 0;
1246
1247 // Set up FPGA, 125kHz
1248 LFSetupFPGAForADC(95, true);
1249
1250 // Trigger T55x7 Direct Access Mode
1251 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1252 SpinDelayUs(START_GAP);
1253
1254 // Opcode 10
1255 T55xxWriteBit(1);
1256 T55xxWriteBit(0); //Page 0
1257
1258 // Send Pwd
1259 for (i = 0x80000000; i != 0; i >>= 1)
1260 T55xxWriteBit(Pwd & i);
1261
1262 // Turn and leave field on to let the begin repeating transmission
1263 TurnReadLFOn(20*1000);
1264}
1265
1266/*-------------- Cloning routines -----------*/
1267
1268void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1269 // write last block first and config block last (if included)
1270 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1271 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1272 }
1273}
1274
1275// Copy HID id to card and setup block 0 config
1276void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1277 uint32_t data[] = {0,0,0,0,0,0,0};
1278 uint8_t last_block = 0;
1279
1280 if (longFMT) {
1281 // Ensure no more than 84 bits supplied
1282 if (hi2>0xFFFFF) {
1283 DbpString("Tags can only have 84 bits.");
1284 return;
1285 }
1286 // Build the 6 data blocks for supplied 84bit ID
1287 last_block = 6;
1288 // load preamble (1D) & long format identifier (9E manchester encoded)
1289 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1290 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1291 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1292 data[3] = manchesterEncode2Bytes(hi >> 16);
1293 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1294 data[5] = manchesterEncode2Bytes(lo >> 16);
1295 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1296 } else {
1297 // Ensure no more than 44 bits supplied
1298 if (hi>0xFFF) {
1299 DbpString("Tags can only have 44 bits.");
1300 return;
1301 }
1302 // Build the 3 data blocks for supplied 44bit ID
1303 last_block = 3;
1304 // load preamble
1305 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1306 data[2] = manchesterEncode2Bytes(lo >> 16);
1307 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1308 }
1309 // load chip config block
1310 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1311
1312 //TODO add selection of chip for Q5 or T55x7
1313 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1314
1315 LED_D_ON();
1316 // Program the data blocks for supplied ID
1317 // and the block 0 for HID format
1318 WriteT55xx(data, 0, last_block+1);
1319
1320 LED_D_OFF();
1321
1322 DbpString("DONE!");
1323}
1324
1325void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1326 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1327 //TODO add selection of chip for Q5 or T55x7
1328 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1329
1330 LED_D_ON();
1331 // Program the data blocks for supplied ID
1332 // and the block 0 config
1333 WriteT55xx(data, 0, 3);
1334
1335 LED_D_OFF();
1336
1337 DbpString("DONE!");
1338}
1339
1340// Clone Indala 64-bit tag by UID to T55x7
1341void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1342 //Program the 2 data blocks for supplied 64bit UID
1343 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1344 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1345 //TODO add selection of chip for Q5 or T55x7
1346 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1347
1348 WriteT55xx(data, 0, 3);
1349 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1350 // T5567WriteBlock(0x603E1042,0);
1351 DbpString("DONE!");
1352}
1353// Clone Indala 224-bit tag by UID to T55x7
1354void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1355 //Program the 7 data blocks for supplied 224bit UID
1356 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1357 // and the block 0 for Indala224 format
1358 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1359 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1360 //TODO add selection of chip for Q5 or T55x7
1361 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1362 WriteT55xx(data, 0, 8);
1363 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1364 // T5567WriteBlock(0x603E10E2,0);
1365 DbpString("DONE!");
1366}
1367// clone viking tag to T55xx
1368void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1369 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1370 if (Q5) data[0] = ( ((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1371 // Program the data blocks for supplied ID and the block 0 config
1372 WriteT55xx(data, 0, 3);
1373 LED_D_OFF();
1374 cmd_send(CMD_ACK,0,0,0,0,0);
1375}
1376
1377// Define 9bit header for EM410x tags
1378#define EM410X_HEADER 0x1FF
1379#define EM410X_ID_LENGTH 40
1380
1381void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1382 int i, id_bit;
1383 uint64_t id = EM410X_HEADER;
1384 uint64_t rev_id = 0; // reversed ID
1385 int c_parity[4]; // column parity
1386 int r_parity = 0; // row parity
1387 uint32_t clock = 0;
1388
1389 // Reverse ID bits given as parameter (for simpler operations)
1390 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1391 if (i < 32) {
1392 rev_id = (rev_id << 1) | (id_lo & 1);
1393 id_lo >>= 1;
1394 } else {
1395 rev_id = (rev_id << 1) | (id_hi & 1);
1396 id_hi >>= 1;
1397 }
1398 }
1399
1400 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1401 id_bit = rev_id & 1;
1402
1403 if (i % 4 == 0) {
1404 // Don't write row parity bit at start of parsing
1405 if (i)
1406 id = (id << 1) | r_parity;
1407 // Start counting parity for new row
1408 r_parity = id_bit;
1409 } else {
1410 // Count row parity
1411 r_parity ^= id_bit;
1412 }
1413
1414 // First elements in column?
1415 if (i < 4)
1416 // Fill out first elements
1417 c_parity[i] = id_bit;
1418 else
1419 // Count column parity
1420 c_parity[i % 4] ^= id_bit;
1421
1422 // Insert ID bit
1423 id = (id << 1) | id_bit;
1424 rev_id >>= 1;
1425 }
1426
1427 // Insert parity bit of last row
1428 id = (id << 1) | r_parity;
1429
1430 // Fill out column parity at the end of tag
1431 for (i = 0; i < 4; ++i)
1432 id = (id << 1) | c_parity[i];
1433
1434 // Add stop bit
1435 id <<= 1;
1436
1437 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1438 LED_D_ON();
1439
1440 // Write EM410x ID
1441 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1442
1443 clock = (card & 0xFF00) >> 8;
1444 clock = (clock == 0) ? 64 : clock;
1445 Dbprintf("Clock rate: %d", clock);
1446 if (card & 0xFF) { //t55x7
1447 clock = GetT55xxClockBit(clock);
1448 if (clock == 0) {
1449 Dbprintf("Invalid clock rate: %d", clock);
1450 return;
1451 }
1452 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1453 } else { //t5555 (Q5)
1454 clock = (clock-2)>>1; //n = (RF-2)/2
1455 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1456 }
1457
1458 WriteT55xx(data, 0, 3);
1459
1460 LED_D_OFF();
1461 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1462 (uint32_t)(id >> 32), (uint32_t)id);
1463}
1464
1465//-----------------------------------
1466// EM4469 / EM4305 routines
1467//-----------------------------------
1468#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1469#define FWD_CMD_WRITE 0xA
1470#define FWD_CMD_READ 0x9
1471#define FWD_CMD_DISABLE 0x5
1472
1473uint8_t forwardLink_data[64]; //array of forwarded bits
1474uint8_t * forward_ptr; //ptr for forward message preparation
1475uint8_t fwd_bit_sz; //forwardlink bit counter
1476uint8_t * fwd_write_ptr; //forwardlink bit pointer
1477
1478//====================================================================
1479// prepares command bits
1480// see EM4469 spec
1481//====================================================================
1482//--------------------------------------------------------------------
1483// VALUES TAKEN FROM EM4x function: SendForward
1484// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1485// WRITE_GAP = 128; (16*8)
1486// WRITE_1 = 256 32*8; (32*8)
1487
1488// These timings work for 4469/4269/4305 (with the 55*8 above)
1489// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1490
1491uint8_t Prepare_Cmd( uint8_t cmd ) {
1492
1493 *forward_ptr++ = 0; //start bit
1494 *forward_ptr++ = 0; //second pause for 4050 code
1495
1496 *forward_ptr++ = cmd;
1497 cmd >>= 1;
1498 *forward_ptr++ = cmd;
1499 cmd >>= 1;
1500 *forward_ptr++ = cmd;
1501 cmd >>= 1;
1502 *forward_ptr++ = cmd;
1503
1504 return 6; //return number of emited bits
1505}
1506
1507//====================================================================
1508// prepares address bits
1509// see EM4469 spec
1510//====================================================================
1511uint8_t Prepare_Addr( uint8_t addr ) {
1512
1513 register uint8_t line_parity;
1514
1515 uint8_t i;
1516 line_parity = 0;
1517 for(i=0;i<6;i++) {
1518 *forward_ptr++ = addr;
1519 line_parity ^= addr;
1520 addr >>= 1;
1521 }
1522
1523 *forward_ptr++ = (line_parity & 1);
1524
1525 return 7; //return number of emited bits
1526}
1527
1528//====================================================================
1529// prepares data bits intreleaved with parity bits
1530// see EM4469 spec
1531//====================================================================
1532uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1533
1534 register uint8_t line_parity;
1535 register uint8_t column_parity;
1536 register uint8_t i, j;
1537 register uint16_t data;
1538
1539 data = data_low;
1540 column_parity = 0;
1541
1542 for(i=0; i<4; i++) {
1543 line_parity = 0;
1544 for(j=0; j<8; j++) {
1545 line_parity ^= data;
1546 column_parity ^= (data & 1) << j;
1547 *forward_ptr++ = data;
1548 data >>= 1;
1549 }
1550 *forward_ptr++ = line_parity;
1551 if(i == 1)
1552 data = data_hi;
1553 }
1554
1555 for(j=0; j<8; j++) {
1556 *forward_ptr++ = column_parity;
1557 column_parity >>= 1;
1558 }
1559 *forward_ptr = 0;
1560
1561 return 45; //return number of emited bits
1562}
1563
1564//====================================================================
1565// Forward Link send function
1566// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1567// fwd_bit_count set with number of bits to be sent
1568//====================================================================
1569void SendForward(uint8_t fwd_bit_count) {
1570
1571 fwd_write_ptr = forwardLink_data;
1572 fwd_bit_sz = fwd_bit_count;
1573
1574 // Set up FPGA, 125kHz
1575 LFSetupFPGAForADC(95, true);
1576
1577 // force 1st mod pulse (start gap must be longer for 4305)
1578 fwd_bit_sz--; //prepare next bit modulation
1579 fwd_write_ptr++;
1580 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1581 SpinDelayUs(56*8); //55 cycles off (8us each)for 4305 /another reader has 37 here...
1582 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1583 SpinDelayUs(18*8); //16 cycles on (8us each) // another reader has 18 here
1584
1585 // now start writting
1586 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1587 if(((*fwd_write_ptr++) & 1) == 1)
1588 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1589 else {
1590 //These timings work for 4469/4269/4305 (with the 55*8 above)
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1592 SpinDelayUs(23*8); //16-4 cycles off (8us each) //23 //one reader goes as high as 25 here
1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1594 SpinDelayUs(16*8); //16 cycles on (8us each) //9 // another reader goes to 17 here
1595 }
1596 }
1597}
1598
1599void EM4xLogin(uint32_t Password) {
1600
1601 uint8_t fwd_bit_count;
1602
1603 forward_ptr = forwardLink_data;
1604 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1605 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1606
1607 SendForward(fwd_bit_count);
1608
1609 //Wait for command to complete
1610 SpinDelay(20);
1611}
1612
1613void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1614
1615 uint8_t fwd_bit_count;
1616
1617 // Clear destination buffer before sending the command
1618 BigBuf_Clear_ext(false);
1619
1620 LED_A_ON();
1621 //If password mode do login
1622 if (PwdMode == 1) EM4xLogin(Pwd);
1623
1624 forward_ptr = forwardLink_data;
1625 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1626 fwd_bit_count += Prepare_Addr( Address );
1627
1628 SendForward(fwd_bit_count);
1629 SpinDelayUs(400);
1630 // Now do the acquisition
1631 DoPartialAcquisition(20, true, 6000);
1632
1633 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1634 LED_A_OFF();
1635 cmd_send(CMD_ACK,0,0,0,0,0);
1636}
1637
1638void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1639
1640 bool PwdMode = (flag & 0xF);
1641 uint8_t Address = (flag >> 8) & 0xFF;
1642 uint8_t fwd_bit_count;
1643
1644 //clear buffer now so it does not interfere with timing later
1645 BigBuf_Clear_ext(false);
1646
1647 LED_A_ON();
1648 //If password mode do login
1649 if (PwdMode) EM4xLogin(Pwd);
1650
1651 forward_ptr = forwardLink_data;
1652 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1653 fwd_bit_count += Prepare_Addr( Address );
1654 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1655
1656 SendForward(fwd_bit_count);
1657
1658 //Wait for write to complete
1659 //SpinDelay(10);
1660
1661 SpinDelayUs(6500);
1662 //Capture response if one exists
1663 DoPartialAcquisition(20, true, 6000);
1664
1665 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1666 LED_A_OFF();
1667 cmd_send(CMD_ACK,0,0,0,0,0);
1668}
1669/*
1670Reading a COTAG.
1671
1672COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1673because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1674
1675READER START SEQUENCE:
1676burst 800 us, gap 2.2 msecs
1677burst 3.6 msecs gap 2.2 msecs
1678burst 800 us gap 2.2 msecs
1679pulse 3.6 msecs
1680
1681This triggers a COTAG tag to response
1682*/
1683void Cotag(uint32_t arg0) {
1684
1685#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1686#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1687
1688 uint8_t rawsignal = arg0 & 0xF;
1689
1690 LED_A_ON();
1691
1692 // Switching to LF image on FPGA. This might empty BigBuff
1693 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1694
1695 //clear buffer now so it does not interfere with timing later
1696 BigBuf_Clear_ext(false);
1697
1698 // Set up FPGA, 132kHz to power up the tag
1699 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1701
1702 // Connect the A/D to the peak-detected low-frequency path.
1703 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1704
1705 // Now set up the SSC to get the ADC samples that are now streaming at us.
1706 FpgaSetupSsc();
1707
1708 // start clock - 1.5ticks is 1us
1709 StartTicks();
1710
1711 //send COTAG start pulse
1712 ON(740) OFF
1713 ON(3330) OFF
1714 ON(740) OFF
1715 ON(1000)
1716
1717 switch(rawsignal) {
1718 case 0: doCotagAcquisition(50000); break;
1719 case 1: doCotagAcquisitionManchester(); break;
1720 case 2: DoAcquisition_config(TRUE); break;
1721 }
1722
1723 // Turn the field off
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1725 cmd_send(CMD_ACK,0,0,0,0,0);
1726 LED_A_OFF();
1727}
Impressum, Datenschutz