]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, Mar 2006 | |
3 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // The main application code. This is the first thing called after start.c | |
10 | // executes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "usb_cdc.h" | |
14 | #include "cmd.h" | |
15 | ||
16 | #include "proxmark3.h" | |
17 | #include "apps.h" | |
18 | #include "util.h" | |
19 | #include "printf.h" | |
20 | #include "string.h" | |
21 | ||
22 | #include <stdarg.h> | |
23 | ||
24 | #include "legicrf.h" | |
25 | #include <hitag2.h> | |
26 | ||
27 | #ifdef WITH_LCD | |
28 | #include "LCD.h" | |
29 | #endif | |
30 | ||
31 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
32 | ||
33 | //============================================================================= | |
34 | // A buffer where we can queue things up to be sent through the FPGA, for | |
35 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
36 | // is the order in which they go out on the wire. | |
37 | //============================================================================= | |
38 | ||
39 | #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits | |
40 | uint8_t ToSend[TOSEND_BUFFER_SIZE]; | |
41 | int ToSendMax; | |
42 | static int ToSendBit; | |
43 | struct common_area common_area __attribute__((section(".commonarea"))); | |
44 | ||
45 | void BufferClear(void) | |
46 | { | |
47 | memset(BigBuf,0,sizeof(BigBuf)); | |
48 | Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); | |
49 | } | |
50 | ||
51 | void ToSendReset(void) | |
52 | { | |
53 | ToSendMax = -1; | |
54 | ToSendBit = 8; | |
55 | } | |
56 | ||
57 | void ToSendStuffBit(int b) | |
58 | { | |
59 | if(ToSendBit >= 8) { | |
60 | ToSendMax++; | |
61 | ToSend[ToSendMax] = 0; | |
62 | ToSendBit = 0; | |
63 | } | |
64 | ||
65 | if(b) { | |
66 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
67 | } | |
68 | ||
69 | ToSendBit++; | |
70 | ||
71 | if(ToSendMax >= sizeof(ToSend)) { | |
72 | ToSendBit = 0; | |
73 | DbpString("ToSendStuffBit overflowed!"); | |
74 | } | |
75 | } | |
76 | ||
77 | //============================================================================= | |
78 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
79 | //============================================================================= | |
80 | ||
81 | void DbpString(char *str) | |
82 | { | |
83 | byte_t len = strlen(str); | |
84 | cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); | |
85 | } | |
86 | ||
87 | #if 0 | |
88 | void DbpIntegers(int x1, int x2, int x3) | |
89 | { | |
90 | cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); | |
91 | } | |
92 | #endif | |
93 | ||
94 | void Dbprintf(const char *fmt, ...) { | |
95 | // should probably limit size here; oh well, let's just use a big buffer | |
96 | char output_string[128]; | |
97 | va_list ap; | |
98 | ||
99 | va_start(ap, fmt); | |
100 | kvsprintf(fmt, output_string, 10, ap); | |
101 | va_end(ap); | |
102 | ||
103 | DbpString(output_string); | |
104 | } | |
105 | ||
106 | // prints HEX & ASCII | |
107 | void Dbhexdump(int len, uint8_t *d, bool bAsci) { | |
108 | int l=0,i; | |
109 | char ascii[9]; | |
110 | ||
111 | while (len>0) { | |
112 | if (len>8) l=8; | |
113 | else l=len; | |
114 | ||
115 | memcpy(ascii,d,l); | |
116 | ascii[l]=0; | |
117 | ||
118 | // filter safe ascii | |
119 | for (i=0;i<l;i++) | |
120 | if (ascii[i]<32 || ascii[i]>126) ascii[i]='.'; | |
121 | ||
122 | if (bAsci) { | |
123 | Dbprintf("%-8s %*D",ascii,l,d," "); | |
124 | } else { | |
125 | Dbprintf("%*D",l,d," "); | |
126 | } | |
127 | ||
128 | len-=8; | |
129 | d+=8; | |
130 | } | |
131 | } | |
132 | ||
133 | //----------------------------------------------------------------------------- | |
134 | // Read an ADC channel and block till it completes, then return the result | |
135 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
136 | // return that. | |
137 | //----------------------------------------------------------------------------- | |
138 | static int ReadAdc(int ch) | |
139 | { | |
140 | uint32_t d; | |
141 | ||
142 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
143 | AT91C_BASE_ADC->ADC_MR = | |
144 | ADC_MODE_PRESCALE(32) | | |
145 | ADC_MODE_STARTUP_TIME(16) | | |
146 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
147 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); | |
148 | ||
149 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
150 | while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) | |
151 | ; | |
152 | d = AT91C_BASE_ADC->ADC_CDR[ch]; | |
153 | ||
154 | return d; | |
155 | } | |
156 | ||
157 | int AvgAdc(int ch) // was static - merlok | |
158 | { | |
159 | int i; | |
160 | int a = 0; | |
161 | ||
162 | for(i = 0; i < 32; i++) { | |
163 | a += ReadAdc(ch); | |
164 | } | |
165 | ||
166 | return (a + 15) >> 5; | |
167 | } | |
168 | ||
169 | void MeasureAntennaTuning(void) | |
170 | { | |
171 | uint8_t LF_Results[256]; | |
172 | int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 | |
173 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
174 | ||
175 | LED_B_ON(); | |
176 | ||
177 | /* | |
178 | * Sweeps the useful LF range of the proxmark from | |
179 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
180 | * read the voltage in the antenna, the result left | |
181 | * in the buffer is a graph which should clearly show | |
182 | * the resonating frequency of your LF antenna | |
183 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
184 | */ | |
185 | ||
186 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
187 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
188 | for (i=255; i>=19; i--) { | |
189 | WDT_HIT(); | |
190 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
191 | SpinDelay(20); | |
192 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
193 | // can measure voltages up to 137500 mV | |
194 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
195 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
196 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
197 | ||
198 | LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
199 | if(LF_Results[i] > peak) { | |
200 | peakv = adcval; | |
201 | peak = LF_Results[i]; | |
202 | peakf = i; | |
203 | //ptr = i; | |
204 | } | |
205 | } | |
206 | ||
207 | for (i=18; i >= 0; i--) LF_Results[i] = 0; | |
208 | ||
209 | LED_A_ON(); | |
210 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
211 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
212 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
213 | SpinDelay(20); | |
214 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
215 | // can measure voltages up to 33000 mV | |
216 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
217 | ||
218 | cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256); | |
219 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
220 | LED_A_OFF(); | |
221 | LED_B_OFF(); | |
222 | return; | |
223 | } | |
224 | ||
225 | void MeasureAntennaTuningHf(void) | |
226 | { | |
227 | int vHf = 0; // in mV | |
228 | ||
229 | DbpString("Measuring HF antenna, press button to exit"); | |
230 | ||
231 | for (;;) { | |
232 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
233 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
234 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
235 | SpinDelay(20); | |
236 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
237 | // can measure voltages up to 33000 mV | |
238 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
239 | ||
240 | Dbprintf("%d mV",vHf); | |
241 | if (BUTTON_PRESS()) break; | |
242 | } | |
243 | DbpString("cancelled"); | |
244 | } | |
245 | ||
246 | ||
247 | void SimulateTagHfListen(void) | |
248 | { | |
249 | uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET; | |
250 | uint8_t v = 0; | |
251 | int i; | |
252 | int p = 0; | |
253 | ||
254 | // We're using this mode just so that I can test it out; the simulated | |
255 | // tag mode would work just as well and be simpler. | |
256 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
257 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
258 | ||
259 | // We need to listen to the high-frequency, peak-detected path. | |
260 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
261 | ||
262 | FpgaSetupSsc(); | |
263 | ||
264 | i = 0; | |
265 | for(;;) { | |
266 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
267 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
268 | } | |
269 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
270 | uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
271 | ||
272 | v <<= 1; | |
273 | if(r & 1) { | |
274 | v |= 1; | |
275 | } | |
276 | p++; | |
277 | ||
278 | if(p >= 8) { | |
279 | dest[i] = v; | |
280 | v = 0; | |
281 | p = 0; | |
282 | i++; | |
283 | ||
284 | if(i >= FREE_BUFFER_SIZE) { | |
285 | break; | |
286 | } | |
287 | } | |
288 | } | |
289 | } | |
290 | DbpString("simulate tag (now type bitsamples)"); | |
291 | } | |
292 | ||
293 | void ReadMem(int addr) | |
294 | { | |
295 | const uint8_t *data = ((uint8_t *)addr); | |
296 | ||
297 | Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
298 | addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); | |
299 | } | |
300 | ||
301 | /* osimage version information is linked in */ | |
302 | extern struct version_information version_information; | |
303 | /* bootrom version information is pointed to from _bootphase1_version_pointer */ | |
304 | extern char *_bootphase1_version_pointer, _flash_start, _flash_end; | |
305 | void SendVersion(void) | |
306 | { | |
307 | char temp[512]; /* Limited data payload in USB packets */ | |
308 | DbpString("Prox/RFID mark3 RFID instrument"); | |
309 | ||
310 | /* Try to find the bootrom version information. Expect to find a pointer at | |
311 | * symbol _bootphase1_version_pointer, perform slight sanity checks on the | |
312 | * pointer, then use it. | |
313 | */ | |
314 | char *bootrom_version = *(char**)&_bootphase1_version_pointer; | |
315 | if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { | |
316 | DbpString("bootrom version information appears invalid"); | |
317 | } else { | |
318 | FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); | |
319 | DbpString(temp); | |
320 | } | |
321 | ||
322 | FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); | |
323 | DbpString(temp); | |
324 | ||
325 | FpgaGatherVersion(temp, sizeof(temp)); | |
326 | DbpString(temp); | |
327 | // Send Chip ID | |
328 | cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0); | |
329 | } | |
330 | ||
331 | #ifdef WITH_LF | |
332 | // samy's sniff and repeat routine | |
333 | void SamyRun() | |
334 | { | |
335 | DbpString("Stand-alone mode! No PC necessary."); | |
336 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
337 | ||
338 | // 3 possible options? no just 2 for now | |
339 | #define OPTS 2 | |
340 | ||
341 | int high[OPTS], low[OPTS]; | |
342 | ||
343 | // Oooh pretty -- notify user we're in elite samy mode now | |
344 | LED(LED_RED, 200); | |
345 | LED(LED_ORANGE, 200); | |
346 | LED(LED_GREEN, 200); | |
347 | LED(LED_ORANGE, 200); | |
348 | LED(LED_RED, 200); | |
349 | LED(LED_ORANGE, 200); | |
350 | LED(LED_GREEN, 200); | |
351 | LED(LED_ORANGE, 200); | |
352 | LED(LED_RED, 200); | |
353 | ||
354 | int selected = 0; | |
355 | int playing = 0; | |
356 | int cardRead = 0; | |
357 | ||
358 | // Turn on selected LED | |
359 | LED(selected + 1, 0); | |
360 | ||
361 | for (;;) | |
362 | { | |
363 | usb_poll(); | |
364 | WDT_HIT(); | |
365 | ||
366 | // Was our button held down or pressed? | |
367 | int button_pressed = BUTTON_HELD(1000); | |
368 | SpinDelay(300); | |
369 | ||
370 | // Button was held for a second, begin recording | |
371 | if (button_pressed > 0 && cardRead == 0) | |
372 | { | |
373 | LEDsoff(); | |
374 | LED(selected + 1, 0); | |
375 | LED(LED_RED2, 0); | |
376 | ||
377 | // record | |
378 | DbpString("Starting recording"); | |
379 | ||
380 | // wait for button to be released | |
381 | while(BUTTON_PRESS()) | |
382 | WDT_HIT(); | |
383 | ||
384 | /* need this delay to prevent catching some weird data */ | |
385 | SpinDelay(500); | |
386 | ||
387 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
388 | Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); | |
389 | ||
390 | LEDsoff(); | |
391 | LED(selected + 1, 0); | |
392 | // Finished recording | |
393 | ||
394 | // If we were previously playing, set playing off | |
395 | // so next button push begins playing what we recorded | |
396 | playing = 0; | |
397 | ||
398 | cardRead = 1; | |
399 | ||
400 | } | |
401 | ||
402 | else if (button_pressed > 0 && cardRead == 1) | |
403 | { | |
404 | LEDsoff(); | |
405 | LED(selected + 1, 0); | |
406 | LED(LED_ORANGE, 0); | |
407 | ||
408 | // record | |
409 | Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]); | |
410 | ||
411 | // wait for button to be released | |
412 | while(BUTTON_PRESS()) | |
413 | WDT_HIT(); | |
414 | ||
415 | /* need this delay to prevent catching some weird data */ | |
416 | SpinDelay(500); | |
417 | ||
418 | CopyHIDtoT55x7(high[selected], low[selected], 0, 0); | |
419 | Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]); | |
420 | ||
421 | LEDsoff(); | |
422 | LED(selected + 1, 0); | |
423 | // Finished recording | |
424 | ||
425 | // If we were previously playing, set playing off | |
426 | // so next button push begins playing what we recorded | |
427 | playing = 0; | |
428 | ||
429 | cardRead = 0; | |
430 | ||
431 | } | |
432 | ||
433 | // Change where to record (or begin playing) | |
434 | else if (button_pressed) | |
435 | { | |
436 | // Next option if we were previously playing | |
437 | if (playing) | |
438 | selected = (selected + 1) % OPTS; | |
439 | playing = !playing; | |
440 | ||
441 | LEDsoff(); | |
442 | LED(selected + 1, 0); | |
443 | ||
444 | // Begin transmitting | |
445 | if (playing) | |
446 | { | |
447 | LED(LED_GREEN, 0); | |
448 | DbpString("Playing"); | |
449 | // wait for button to be released | |
450 | while(BUTTON_PRESS()) | |
451 | WDT_HIT(); | |
452 | Dbprintf("%x %x %x", selected, high[selected], low[selected]); | |
453 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
454 | DbpString("Done playing"); | |
455 | if (BUTTON_HELD(1000) > 0) | |
456 | { | |
457 | DbpString("Exiting"); | |
458 | LEDsoff(); | |
459 | return; | |
460 | } | |
461 | ||
462 | /* We pressed a button so ignore it here with a delay */ | |
463 | SpinDelay(300); | |
464 | ||
465 | // when done, we're done playing, move to next option | |
466 | selected = (selected + 1) % OPTS; | |
467 | playing = !playing; | |
468 | LEDsoff(); | |
469 | LED(selected + 1, 0); | |
470 | } | |
471 | else | |
472 | while(BUTTON_PRESS()) | |
473 | WDT_HIT(); | |
474 | } | |
475 | } | |
476 | } | |
477 | #endif | |
478 | ||
479 | /* | |
480 | OBJECTIVE | |
481 | Listen and detect an external reader. Determine the best location | |
482 | for the antenna. | |
483 | ||
484 | INSTRUCTIONS: | |
485 | Inside the ListenReaderField() function, there is two mode. | |
486 | By default, when you call the function, you will enter mode 1. | |
487 | If you press the PM3 button one time, you will enter mode 2. | |
488 | If you press the PM3 button a second time, you will exit the function. | |
489 | ||
490 | DESCRIPTION OF MODE 1: | |
491 | This mode just listens for an external reader field and lights up green | |
492 | for HF and/or red for LF. This is the original mode of the detectreader | |
493 | function. | |
494 | ||
495 | DESCRIPTION OF MODE 2: | |
496 | This mode will visually represent, using the LEDs, the actual strength of the | |
497 | current compared to the maximum current detected. Basically, once you know | |
498 | what kind of external reader is present, it will help you spot the best location to place | |
499 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
500 | at the same place! :-) | |
501 | ||
502 | LIGHT SCHEME USED: | |
503 | */ | |
504 | static const char LIGHT_SCHEME[] = { | |
505 | 0x0, /* ---- | No field detected */ | |
506 | 0x1, /* X--- | 14% of maximum current detected */ | |
507 | 0x2, /* -X-- | 29% of maximum current detected */ | |
508 | 0x4, /* --X- | 43% of maximum current detected */ | |
509 | 0x8, /* ---X | 57% of maximum current detected */ | |
510 | 0xC, /* --XX | 71% of maximum current detected */ | |
511 | 0xE, /* -XXX | 86% of maximum current detected */ | |
512 | 0xF, /* XXXX | 100% of maximum current detected */ | |
513 | }; | |
514 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
515 | ||
516 | void ListenReaderField(int limit) | |
517 | { | |
518 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; | |
519 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; | |
520 | int mode=1, display_val, display_max, i; | |
521 | ||
522 | #define LF_ONLY 1 | |
523 | #define HF_ONLY 2 | |
524 | ||
525 | LEDsoff(); | |
526 | ||
527 | lf_av=lf_max=ReadAdc(ADC_CHAN_LF); | |
528 | ||
529 | if(limit != HF_ONLY) { | |
530 | Dbprintf("LF 125/134 Baseline: %d", lf_av); | |
531 | lf_baseline = lf_av; | |
532 | } | |
533 | ||
534 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF); | |
535 | ||
536 | if (limit != LF_ONLY) { | |
537 | Dbprintf("HF 13.56 Baseline: %d", hf_av); | |
538 | hf_baseline = hf_av; | |
539 | } | |
540 | ||
541 | for(;;) { | |
542 | if (BUTTON_PRESS()) { | |
543 | SpinDelay(500); | |
544 | switch (mode) { | |
545 | case 1: | |
546 | mode=2; | |
547 | DbpString("Signal Strength Mode"); | |
548 | break; | |
549 | case 2: | |
550 | default: | |
551 | DbpString("Stopped"); | |
552 | LEDsoff(); | |
553 | return; | |
554 | break; | |
555 | } | |
556 | } | |
557 | WDT_HIT(); | |
558 | ||
559 | if (limit != HF_ONLY) { | |
560 | if(mode==1) { | |
561 | if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); | |
562 | else LED_D_OFF(); | |
563 | } | |
564 | ||
565 | ++lf_count; | |
566 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
567 | // see if there's a significant change | |
568 | if(abs(lf_av - lf_av_new) > 10) { | |
569 | Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); | |
570 | lf_av = lf_av_new; | |
571 | if (lf_av > lf_max) | |
572 | lf_max = lf_av; | |
573 | lf_count= 0; | |
574 | } | |
575 | } | |
576 | ||
577 | if (limit != LF_ONLY) { | |
578 | if (mode == 1){ | |
579 | if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); | |
580 | else LED_B_OFF(); | |
581 | } | |
582 | ||
583 | ++hf_count; | |
584 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
585 | // see if there's a significant change | |
586 | if(abs(hf_av - hf_av_new) > 10) { | |
587 | Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); | |
588 | hf_av = hf_av_new; | |
589 | if (hf_av > hf_max) | |
590 | hf_max = hf_av; | |
591 | hf_count= 0; | |
592 | } | |
593 | } | |
594 | ||
595 | if(mode == 2) { | |
596 | if (limit == LF_ONLY) { | |
597 | display_val = lf_av; | |
598 | display_max = lf_max; | |
599 | } else if (limit == HF_ONLY) { | |
600 | display_val = hf_av; | |
601 | display_max = hf_max; | |
602 | } else { /* Pick one at random */ | |
603 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
604 | display_val = hf_av; | |
605 | display_max = hf_max; | |
606 | } else { | |
607 | display_val = lf_av; | |
608 | display_max = lf_max; | |
609 | } | |
610 | } | |
611 | for (i=0; i<LIGHT_LEN; i++) { | |
612 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
613 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
614 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
615 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
616 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
617 | break; | |
618 | } | |
619 | } | |
620 | } | |
621 | } | |
622 | } | |
623 | ||
624 | void UsbPacketReceived(uint8_t *packet, int len) | |
625 | { | |
626 | UsbCommand *c = (UsbCommand *)packet; | |
627 | ||
628 | // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); | |
629 | ||
630 | switch(c->cmd) { | |
631 | #ifdef WITH_LF | |
632 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
633 | AcquireRawAdcSamples125k(c->arg[0]); | |
634 | cmd_send(CMD_ACK,0,0,0,0,0); | |
635 | break; | |
636 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
637 | ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
638 | break; | |
639 | case CMD_LF_SNOOP_RAW_ADC_SAMPLES: | |
640 | SnoopLFRawAdcSamples(c->arg[0], c->arg[1]); | |
641 | cmd_send(CMD_ACK,0,0,0,0,0); | |
642 | break; | |
643 | case CMD_HID_DEMOD_FSK: | |
644 | CmdHIDdemodFSK(c->arg[0], 0, 0, 1); | |
645 | break; | |
646 | case CMD_HID_SIM_TAG: | |
647 | CmdHIDsimTAG(c->arg[0], c->arg[1], 1); | |
648 | break; | |
649 | case CMD_HID_CLONE_TAG: | |
650 | CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
651 | break; | |
652 | case CMD_IO_DEMOD_FSK: | |
653 | CmdIOdemodFSK(c->arg[0], 0, 0, 1); | |
654 | break; | |
655 | case CMD_IO_CLONE_TAG: | |
656 | CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]); | |
657 | break; | |
658 | case CMD_EM410X_DEMOD: | |
659 | CmdEM410xdemod(c->arg[0], 0, 0, 1); | |
660 | break; | |
661 | case CMD_EM410X_WRITE_TAG: | |
662 | WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); | |
663 | break; | |
664 | case CMD_READ_TI_TYPE: | |
665 | ReadTItag(); | |
666 | break; | |
667 | case CMD_WRITE_TI_TYPE: | |
668 | WriteTItag(c->arg[0],c->arg[1],c->arg[2]); | |
669 | break; | |
670 | case CMD_SIMULATE_TAG_125K: | |
671 | LED_A_ON(); | |
672 | SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); | |
673 | LED_A_OFF(); | |
674 | break; | |
675 | case CMD_LF_SIMULATE_BIDIR: | |
676 | SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); | |
677 | break; | |
678 | case CMD_INDALA_CLONE_TAG: | |
679 | CopyIndala64toT55x7(c->arg[0], c->arg[1]); | |
680 | break; | |
681 | case CMD_INDALA_CLONE_TAG_L: | |
682 | CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); | |
683 | break; | |
684 | case CMD_T55XX_READ_BLOCK: | |
685 | T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]); | |
686 | break; | |
687 | case CMD_T55XX_WRITE_BLOCK: | |
688 | T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
689 | break; | |
690 | case CMD_T55XX_READ_TRACE: | |
691 | T55xxReadTrace(); | |
692 | break; | |
693 | case CMD_PCF7931_READ: | |
694 | ReadPCF7931(); | |
695 | cmd_send(CMD_ACK,0,0,0,0,0); | |
696 | break; | |
697 | case CMD_EM4X_READ_WORD: | |
698 | EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); | |
699 | break; | |
700 | case CMD_EM4X_WRITE_WORD: | |
701 | EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); | |
702 | break; | |
703 | #endif | |
704 | ||
705 | #ifdef WITH_HITAG | |
706 | case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type | |
707 | SnoopHitag(c->arg[0]); | |
708 | break; | |
709 | case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content | |
710 | SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); | |
711 | break; | |
712 | case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function | |
713 | ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); | |
714 | break; | |
715 | #endif | |
716 | ||
717 | #ifdef WITH_ISO15693 | |
718 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
719 | AcquireRawAdcSamplesIso15693(); | |
720 | break; | |
721 | case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: | |
722 | RecordRawAdcSamplesIso15693(); | |
723 | break; | |
724 | ||
725 | case CMD_ISO_15693_COMMAND: | |
726 | DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
727 | break; | |
728 | ||
729 | case CMD_ISO_15693_FIND_AFI: | |
730 | BruteforceIso15693Afi(c->arg[0]); | |
731 | break; | |
732 | ||
733 | case CMD_ISO_15693_DEBUG: | |
734 | SetDebugIso15693(c->arg[0]); | |
735 | break; | |
736 | ||
737 | case CMD_READER_ISO_15693: | |
738 | ReaderIso15693(c->arg[0]); | |
739 | break; | |
740 | case CMD_SIMTAG_ISO_15693: | |
741 | SimTagIso15693(c->arg[0], c->d.asBytes); | |
742 | break; | |
743 | #endif | |
744 | ||
745 | #ifdef WITH_LEGICRF | |
746 | case CMD_SIMULATE_TAG_LEGIC_RF: | |
747 | LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); | |
748 | break; | |
749 | ||
750 | case CMD_WRITER_LEGIC_RF: | |
751 | LegicRfWriter(c->arg[1], c->arg[0]); | |
752 | break; | |
753 | ||
754 | case CMD_READER_LEGIC_RF: | |
755 | LegicRfReader(c->arg[0], c->arg[1]); | |
756 | break; | |
757 | #endif | |
758 | ||
759 | #ifdef WITH_ISO14443b | |
760 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
761 | AcquireRawAdcSamplesIso14443(c->arg[0]); | |
762 | break; | |
763 | case CMD_READ_SRI512_TAG: | |
764 | ReadSTMemoryIso14443(0x0F); | |
765 | break; | |
766 | case CMD_READ_SRIX4K_TAG: | |
767 | ReadSTMemoryIso14443(0x7F); | |
768 | break; | |
769 | case CMD_SNOOP_ISO_14443: | |
770 | SnoopIso14443(); | |
771 | break; | |
772 | case CMD_SIMULATE_TAG_ISO_14443: | |
773 | SimulateIso14443Tag(); | |
774 | break; | |
775 | case CMD_ISO_14443B_COMMAND: | |
776 | SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); | |
777 | break; | |
778 | #endif | |
779 | ||
780 | #ifdef WITH_ISO14443a | |
781 | case CMD_SNOOP_ISO_14443a: | |
782 | SnoopIso14443a(c->arg[0]); | |
783 | break; | |
784 | case CMD_READER_ISO_14443a: | |
785 | ReaderIso14443a(c); | |
786 | break; | |
787 | case CMD_SIMULATE_TAG_ISO_14443a: | |
788 | SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID | |
789 | break; | |
790 | ||
791 | case CMD_EPA_PACE_COLLECT_NONCE: | |
792 | EPA_PACE_Collect_Nonce(c); | |
793 | break; | |
794 | ||
795 | case CMD_READER_MIFARE: | |
796 | ReaderMifare(c->arg[0]); | |
797 | break; | |
798 | case CMD_MIFARE_READBL: | |
799 | MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
800 | break; | |
801 | case CMD_MIFAREU_READBL: | |
802 | MifareUReadBlock(c->arg[0],c->d.asBytes); | |
803 | break; | |
804 | case CMD_MIFAREUC_AUTH1: | |
805 | MifareUC_Auth1(c->arg[0],c->d.asBytes); | |
806 | break; | |
807 | case CMD_MIFAREUC_AUTH2: | |
808 | MifareUC_Auth2(c->arg[0],c->d.asBytes); | |
809 | break; | |
810 | case CMD_MIFAREU_READCARD: | |
811 | MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes); | |
812 | break; | |
813 | case CMD_MIFAREUC_READCARD: | |
814 | MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes); | |
815 | break; | |
816 | case CMD_MIFARE_READSC: | |
817 | MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
818 | break; | |
819 | case CMD_MIFARE_WRITEBL: | |
820 | MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
821 | break; | |
822 | case CMD_MIFAREU_WRITEBL_COMPAT: | |
823 | MifareUWriteBlock(c->arg[0], c->d.asBytes); | |
824 | break; | |
825 | case CMD_MIFAREU_WRITEBL: | |
826 | MifareUWriteBlock_Special(c->arg[0], c->d.asBytes); | |
827 | break; | |
828 | case CMD_MIFARE_NESTED: | |
829 | MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
830 | break; | |
831 | case CMD_MIFARE_CHKKEYS: | |
832 | MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
833 | break; | |
834 | case CMD_SIMULATE_MIFARE_CARD: | |
835 | Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
836 | break; | |
837 | ||
838 | // emulator | |
839 | case CMD_MIFARE_SET_DBGMODE: | |
840 | MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
841 | break; | |
842 | case CMD_MIFARE_EML_MEMCLR: | |
843 | MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
844 | break; | |
845 | case CMD_MIFARE_EML_MEMSET: | |
846 | MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
847 | break; | |
848 | case CMD_MIFARE_EML_MEMGET: | |
849 | MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
850 | break; | |
851 | case CMD_MIFARE_EML_CARDLOAD: | |
852 | MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
853 | break; | |
854 | ||
855 | // Work with "magic Chinese" card | |
856 | case CMD_MIFARE_CSETBLOCK: | |
857 | MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
858 | break; | |
859 | case CMD_MIFARE_CGETBLOCK: | |
860 | MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
861 | break; | |
862 | case CMD_MIFARE_CIDENT: | |
863 | MifareCIdent(); | |
864 | break; | |
865 | ||
866 | // mifare sniffer | |
867 | case CMD_MIFARE_SNIFFER: | |
868 | SniffMifare(c->arg[0]); | |
869 | break; | |
870 | ||
871 | #endif | |
872 | ||
873 | #ifdef WITH_ICLASS | |
874 | // Makes use of ISO14443a FPGA Firmware | |
875 | case CMD_SNOOP_ICLASS: | |
876 | SnoopIClass(); | |
877 | break; | |
878 | case CMD_SIMULATE_TAG_ICLASS: | |
879 | SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); | |
880 | break; | |
881 | case CMD_READER_ICLASS: | |
882 | ReaderIClass(c->arg[0]); | |
883 | break; | |
884 | case CMD_READER_ICLASS_REPLAY: | |
885 | ReaderIClass_Replay(c->arg[0], c->d.asBytes); | |
886 | break; | |
887 | #endif | |
888 | ||
889 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
890 | SimulateTagHfListen(); | |
891 | break; | |
892 | ||
893 | case CMD_BUFF_CLEAR: | |
894 | BufferClear(); | |
895 | break; | |
896 | ||
897 | case CMD_MEASURE_ANTENNA_TUNING: | |
898 | MeasureAntennaTuning(); | |
899 | break; | |
900 | ||
901 | case CMD_MEASURE_ANTENNA_TUNING_HF: | |
902 | MeasureAntennaTuningHf(); | |
903 | break; | |
904 | ||
905 | case CMD_LISTEN_READER_FIELD: | |
906 | ListenReaderField(c->arg[0]); | |
907 | break; | |
908 | ||
909 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
910 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
911 | SpinDelay(200); | |
912 | LED_D_OFF(); // LED D indicates field ON or OFF | |
913 | break; | |
914 | ||
915 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
916 | ||
917 | LED_B_ON(); | |
918 | for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) { | |
919 | size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); | |
920 | cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len); | |
921 | } | |
922 | // Trigger a finish downloading signal with an ACK frame | |
923 | cmd_send(CMD_ACK,0,0,0,0,0); | |
924 | LED_B_OFF(); | |
925 | break; | |
926 | ||
927 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
928 | uint8_t *b = (uint8_t *)BigBuf; | |
929 | memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); | |
930 | cmd_send(CMD_ACK,0,0,0,0,0); | |
931 | break; | |
932 | } | |
933 | case CMD_READ_MEM: | |
934 | ReadMem(c->arg[0]); | |
935 | break; | |
936 | ||
937 | case CMD_SET_LF_DIVISOR: | |
938 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
939 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); | |
940 | break; | |
941 | ||
942 | case CMD_SET_ADC_MUX: | |
943 | switch(c->arg[0]) { | |
944 | case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; | |
945 | case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; | |
946 | case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; | |
947 | case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; | |
948 | } | |
949 | break; | |
950 | ||
951 | case CMD_VERSION: | |
952 | SendVersion(); | |
953 | break; | |
954 | ||
955 | #ifdef WITH_LCD | |
956 | case CMD_LCD_RESET: | |
957 | LCDReset(); | |
958 | break; | |
959 | case CMD_LCD: | |
960 | LCDSend(c->arg[0]); | |
961 | break; | |
962 | #endif | |
963 | case CMD_SETUP_WRITE: | |
964 | case CMD_FINISH_WRITE: | |
965 | case CMD_HARDWARE_RESET: | |
966 | usb_disable(); | |
967 | SpinDelay(1000); | |
968 | SpinDelay(1000); | |
969 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
970 | for(;;) { | |
971 | // We're going to reset, and the bootrom will take control. | |
972 | } | |
973 | break; | |
974 | ||
975 | case CMD_START_FLASH: | |
976 | if(common_area.flags.bootrom_present) { | |
977 | common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; | |
978 | } | |
979 | usb_disable(); | |
980 | AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; | |
981 | for(;;); | |
982 | break; | |
983 | ||
984 | case CMD_DEVICE_INFO: { | |
985 | uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; | |
986 | if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; | |
987 | cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); | |
988 | break; | |
989 | } | |
990 | default: | |
991 | Dbprintf("%s: 0x%04x","unknown command:",c->cmd); | |
992 | break; | |
993 | } | |
994 | } | |
995 | ||
996 | void __attribute__((noreturn)) AppMain(void) | |
997 | { | |
998 | SpinDelay(100); | |
999 | ||
1000 | if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { | |
1001 | /* Initialize common area */ | |
1002 | memset(&common_area, 0, sizeof(common_area)); | |
1003 | common_area.magic = COMMON_AREA_MAGIC; | |
1004 | common_area.version = 1; | |
1005 | } | |
1006 | common_area.flags.osimage_present = 1; | |
1007 | ||
1008 | LED_D_OFF(); | |
1009 | LED_C_OFF(); | |
1010 | LED_B_OFF(); | |
1011 | LED_A_OFF(); | |
1012 | ||
1013 | // Init USB device | |
1014 | usb_enable(); | |
1015 | ||
1016 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
1017 | AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; | |
1018 | AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; | |
1019 | AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; | |
1020 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
1021 | AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | | |
1022 | AT91C_PMC_PRES_CLK_4; | |
1023 | AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; | |
1024 | ||
1025 | // Reset SPI | |
1026 | AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; | |
1027 | // Reset SSC | |
1028 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
1029 | ||
1030 | // Load the FPGA image, which we have stored in our flash. | |
1031 | // (the HF version by default) | |
1032 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1033 | ||
1034 | StartTickCount(); | |
1035 | ||
1036 | #ifdef WITH_LCD | |
1037 | LCDInit(); | |
1038 | #endif | |
1039 | ||
1040 | byte_t rx[sizeof(UsbCommand)]; | |
1041 | size_t rx_len; | |
1042 | ||
1043 | for(;;) { | |
1044 | if (usb_poll()) { | |
1045 | rx_len = usb_read(rx,sizeof(UsbCommand)); | |
1046 | if (rx_len) { | |
1047 | UsbPacketReceived(rx,rx_len); | |
1048 | } | |
1049 | } | |
1050 | WDT_HIT(); | |
1051 | ||
1052 | #ifdef WITH_LF | |
1053 | if (BUTTON_HELD(1000) > 0) | |
1054 | SamyRun(); | |
1055 | #endif | |
1056 | } | |
1057 | } |