]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/cmdhfmfhard.c
FIX: "hf mf hardnested" - removed the call to free_candidates_memory, on my ubuntu...
[proxmark3-svn] / client / cmdhfmfhard.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// Implements a card only attack based on crypto text (encrypted nonces
10// received during a nested authentication) only. Unlike other card only
11// attacks this doesn't rely on implementation errors but only on the
12// inherent weaknesses of the crypto1 cypher. Described in
13// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15// Computer and Communications Security, 2015
16//-----------------------------------------------------------------------------
17#include "cmdhfmfhard.h"
18#include "cmdhw.h"
19
20#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
21#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
22#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
23#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24#define MAX_BUCKETS 128
25
26#define END_OF_LIST_MARKER 0xFFFFFFFF
27
28static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0290 };
62
63typedef struct noncelistentry {
64 uint32_t nonce_enc;
65 uint8_t par_enc;
66 void *next;
67} noncelistentry_t;
68
69typedef struct noncelist {
70 uint16_t num;
71 uint16_t Sum;
72 uint16_t Sum8_guess;
73 uint8_t BitFlip[2];
74 float Sum8_prob;
75 bool updated;
76 noncelistentry_t *first;
77 float score1;
78 uint_fast8_t score2;
79} noncelist_t;
80
81static size_t nonces_to_bruteforce = 0;
82static noncelistentry_t *brute_force_nonces[256];
83static uint32_t cuid = 0;
84static noncelist_t nonces[256];
85static uint8_t best_first_bytes[256];
86static uint16_t first_byte_Sum = 0;
87static uint16_t first_byte_num = 0;
88static uint16_t num_good_first_bytes = 0;
89static uint64_t maximum_states = 0;
90static uint64_t known_target_key;
91static bool write_stats = false;
92static FILE *fstats = NULL;
93
94
95typedef enum {
96 EVEN_STATE = 0,
97 ODD_STATE = 1
98} odd_even_t;
99
100#define STATELIST_INDEX_WIDTH 16
101#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
102
103typedef struct {
104 uint32_t *states[2];
105 uint32_t len[2];
106 uint32_t *index[2][STATELIST_INDEX_SIZE];
107} partial_indexed_statelist_t;
108
109typedef struct {
110 uint32_t *states[2];
111 uint32_t len[2];
112 void* next;
113} statelist_t;
114
115
116static partial_indexed_statelist_t partial_statelist[17];
117static partial_indexed_statelist_t statelist_bitflip;
118static statelist_t *candidates = NULL;
119
120bool field_off = false;
121
122uint64_t foundkey = 0;
123size_t keys_found = 0;
124size_t bucket_count = 0;
125statelist_t* buckets[MAX_BUCKETS];
126static uint64_t total_states_tested = 0;
127size_t thread_count = 4;
128
129// these bitsliced states will hold identical states in all slices
130bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
131
132// arrays of bitsliced states with identical values in all slices
133bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
134bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
135
136#define EXACT_COUNT
137
138static bool generate_candidates(uint16_t, uint16_t);
139static bool brute_force(void);
140
141static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
142{
143 uint8_t first_byte = nonce_enc >> 24;
144 noncelistentry_t *p1 = nonces[first_byte].first;
145 noncelistentry_t *p2 = NULL;
146
147 if (p1 == NULL) { // first nonce with this 1st byte
148 first_byte_num++;
149 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
151 // nonce_enc,
152 // par_enc,
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
155 }
156
157 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
158 p2 = p1;
159 p1 = p1->next;
160 }
161
162 if (p1 == NULL) { // need to add at the end of the list
163 if (p2 == NULL) { // list is empty yet. Add first entry.
164 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
165 } else { // add new entry at end of existing list.
166 p2 = p2->next = malloc(sizeof(noncelistentry_t));
167 }
168 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
169 if (p2 == NULL) { // need to insert at start of list
170 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
171 } else {
172 p2 = p2->next = malloc(sizeof(noncelistentry_t));
173 }
174 } else { // we have seen this 2nd byte before. Nothing to add or insert.
175 return (0);
176 }
177
178 // add or insert new data
179 p2->next = p1;
180 p2->nonce_enc = nonce_enc;
181 p2->par_enc = par_enc;
182
183 if(nonces_to_bruteforce < 256){
184 brute_force_nonces[nonces_to_bruteforce] = p2;
185 nonces_to_bruteforce++;
186 }
187
188 nonces[first_byte].num++;
189 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
190 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
191
192 return (1); // new nonce added
193}
194
195static void init_nonce_memory(void)
196{
197 for (uint16_t i = 0; i < 256; i++) {
198 nonces[i].num = 0;
199 nonces[i].Sum = 0;
200 nonces[i].Sum8_guess = 0;
201 nonces[i].Sum8_prob = 0.0;
202 nonces[i].updated = true;
203 nonces[i].first = NULL;
204 }
205 first_byte_num = 0;
206 first_byte_Sum = 0;
207 num_good_first_bytes = 0;
208}
209
210static void free_nonce_list(noncelistentry_t *p)
211{
212 if (p == NULL) {
213 return;
214 } else {
215 free_nonce_list(p->next);
216 free(p);
217 }
218}
219
220static void free_nonces_memory(void)
221{
222 for (uint16_t i = 0; i < 256; i++) {
223 free_nonce_list(nonces[i].first);
224 }
225}
226
227static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
228{
229 uint16_t sum = 0;
230 for (uint16_t j = 0; j < 16; j++) {
231 uint32_t st = state;
232 uint16_t part_sum = 0;
233 if (odd_even == ODD_STATE) {
234 for (uint16_t i = 0; i < 5; i++) {
235 part_sum ^= filter(st);
236 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
237 }
238 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
239 } else {
240 for (uint16_t i = 0; i < 4; i++) {
241 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
242 part_sum ^= filter(st);
243 }
244 }
245 sum += part_sum;
246 }
247 return sum;
248}
249
250// static uint16_t SumProperty(struct Crypto1State *s)
251// {
252 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
253 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
254 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
255// }
256
257static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
258{
259 // for efficient computation we are using the recursive definition
260 // (K-k+1) * (n-k+1)
261 // P(X=k) = P(X=k-1) * --------------------
262 // k * (N-K-n+k)
263 // and
264 // (N-K)*(N-K-1)*...*(N-K-n+1)
265 // P(X=0) = -----------------------------
266 // N*(N-1)*...*(N-n+1)
267
268 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
269 if (k == 0) {
270 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
271 double log_result = 0.0;
272 for (int16_t i = N-K; i >= N-K-n+1; i--) {
273 log_result += log(i);
274 }
275 for (int16_t i = N; i >= N-n+1; i--) {
276 log_result -= log(i);
277 }
278 return exp(log_result);
279 } else {
280 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
281 double log_result = 0.0;
282 for (int16_t i = k+1; i <= n; i++) {
283 log_result += log(i);
284 }
285 for (int16_t i = K+1; i <= N; i++) {
286 log_result -= log(i);
287 }
288 return exp(log_result);
289 } else { // recursion
290 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
291 }
292 }
293}
294
295static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
296{
297 const uint16_t N = 256;
298
299 if (k > K || p_K[K] == 0.0) return 0.0;
300
301 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
302 if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
303
304 double p_S_is_K = p_K[K];
305 double p_T_is_k = 0.0;
306 for (uint16_t i = 0; i <= 256; i++) {
307 if (p_K[i] != 0.0) {
308 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
309 }
310 }
311 if (p_T_is_k == 0.0) return 0.0;
312 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
313}
314
315static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
316{
317 static const uint_fast8_t common_bits_LUT[256] = {
318 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
334 };
335
336 return common_bits_LUT[bytes_diff];
337}
338
339static void Tests()
340{
341 // printf("Tests: Partial Statelist sizes\n");
342 // for (uint16_t i = 0; i <= 16; i+=2) {
343 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
344 // }
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
347 // }
348
349 // #define NUM_STATISTICS 100000
350 // uint32_t statistics_odd[17];
351 // uint64_t statistics[257];
352 // uint32_t statistics_even[17];
353 // struct Crypto1State cs;
354 // time_t time1 = clock();
355
356 // for (uint16_t i = 0; i < 257; i++) {
357 // statistics[i] = 0;
358 // }
359 // for (uint16_t i = 0; i < 17; i++) {
360 // statistics_odd[i] = 0;
361 // statistics_even[i] = 0;
362 // }
363
364 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
365 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
366 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
367 // uint16_t sum_property = SumProperty(&cs);
368 // statistics[sum_property] += 1;
369 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
370 // statistics_even[sum_property]++;
371 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
372 // statistics_odd[sum_property]++;
373 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
374 // }
375
376 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
377 // for (uint16_t i = 0; i < 257; i++) {
378 // if (statistics[i] != 0) {
379 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
380 // }
381 // }
382 // for (uint16_t i = 0; i <= 16; i++) {
383 // if (statistics_odd[i] != 0) {
384 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
385 // }
386 // }
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
390 // }
391 // }
392
393 // printf("Tests: Sum Probabilities based on Partial Sums\n");
394 // for (uint16_t i = 0; i < 257; i++) {
395 // statistics[i] = 0;
396 // }
397 // uint64_t num_states = 0;
398 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
399 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
400 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
401 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
402 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
403 // }
404 // }
405 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
406 // for (uint16_t i = 0; i < 257; i++) {
407 // if (statistics[i] != 0) {
408 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
409 // }
410 // }
411
412 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
413 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
414 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
415 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
416 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
417 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
418 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
419
420 // struct Crypto1State *pcs;
421 // pcs = crypto1_create(0xffffffffffff);
422 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
423 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
425 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // best_first_bytes[0],
427 // SumProperty(pcs),
428 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // //test_state_odd = pcs->odd & 0x00ffffff;
430 // //test_state_even = pcs->even & 0x00ffffff;
431 // crypto1_destroy(pcs);
432 // pcs = crypto1_create(0xa0a1a2a3a4a5);
433 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
434 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
436 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // best_first_bytes[0],
438 // SumProperty(pcs),
439 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // //test_state_odd = pcs->odd & 0x00ffffff;
441 // //test_state_even = pcs->even & 0x00ffffff;
442 // crypto1_destroy(pcs);
443 // pcs = crypto1_create(0xa6b9aa97b955);
444 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
445 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
446 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
447 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // best_first_bytes[0],
449 // SumProperty(pcs),
450 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
451 //test_state_odd = pcs->odd & 0x00ffffff;
452 //test_state_even = pcs->even & 0x00ffffff;
453 // crypto1_destroy(pcs);
454
455
456 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
457
458 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
459 // for (uint16_t i = 0; i < 256; i++) {
460 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
461 // if (i % 8 == 7) {
462 // printf("\n");
463 // }
464 // }
465
466 // printf("\nTests: Sorted First Bytes:\n");
467 // for (uint16_t i = 0; i < 256; i++) {
468 // uint8_t best_byte = best_first_bytes[i];
469 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
470 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
471 // i, best_byte,
472 // nonces[best_byte].num,
473 // nonces[best_byte].Sum,
474 // nonces[best_byte].Sum8_guess,
475 // nonces[best_byte].Sum8_prob * 100,
476 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
477 // //nonces[best_byte].score1,
478 // //nonces[best_byte].score2
479 // );
480 // }
481
482 // printf("\nTests: parity performance\n");
483 // time_t time1p = clock();
484 // uint32_t par_sum = 0;
485 // for (uint32_t i = 0; i < 100000000; i++) {
486 // par_sum += parity(i);
487 // }
488 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
489
490 // time1p = clock();
491 // par_sum = 0;
492 // for (uint32_t i = 0; i < 100000000; i++) {
493 // par_sum += evenparity32(i);
494 // }
495 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
496
497
498}
499
500static uint16_t sort_best_first_bytes(void)
501{
502 // sort based on probability for correct guess
503 for (uint16_t i = 0; i < 256; i++ ) {
504 uint16_t j = 0;
505 float prob1 = nonces[i].Sum8_prob;
506 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
507 while (prob1 < prob2 && j < i) {
508 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
509 }
510 if (j < i) {
511 for (uint16_t k = i; k > j; k--) {
512 best_first_bytes[k] = best_first_bytes[k-1];
513 }
514 }
515 best_first_bytes[j] = i;
516 }
517
518 // determine how many are above the CONFIDENCE_THRESHOLD
519 uint16_t num_good_nonces = 0;
520 for (uint16_t i = 0; i < 256; i++) {
521 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
522 ++num_good_nonces;
523 }
524 }
525
526 if (num_good_nonces == 0) return 0;
527
528 uint16_t best_first_byte = 0;
529
530 // select the best possible first byte based on number of common bits with all {b'}
531 // uint16_t max_common_bits = 0;
532 // for (uint16_t i = 0; i < num_good_nonces; i++) {
533 // uint16_t sum_common_bits = 0;
534 // for (uint16_t j = 0; j < num_good_nonces; j++) {
535 // if (i != j) {
536 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
537 // }
538 // }
539 // if (sum_common_bits > max_common_bits) {
540 // max_common_bits = sum_common_bits;
541 // best_first_byte = i;
542 // }
543 // }
544
545 // select best possible first byte {b} based on least likely sum/bitflip property
546 float min_p_K = 1.0;
547 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
548 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
549 float bitflip_prob = 1.0;
550
551 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
552 bitflip_prob = 0.09375;
553
554 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
555
556 if (p_K[sum8] * bitflip_prob <= min_p_K)
557 min_p_K = p_K[sum8] * bitflip_prob;
558
559 }
560
561
562 // use number of commmon bits as a tie breaker
563 uint_fast8_t max_common_bits = 0;
564 for (uint16_t i = 0; i < num_good_nonces; i++) {
565
566 float bitflip_prob = 1.0;
567 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
568 bitflip_prob = 0.09375;
569
570 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
571 uint_fast8_t sum_common_bits = 0;
572 for (uint16_t j = 0; j < num_good_nonces; j++) {
573 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
574 }
575 nonces[best_first_bytes[i]].score2 = sum_common_bits;
576 if (sum_common_bits > max_common_bits) {
577 max_common_bits = sum_common_bits;
578 best_first_byte = i;
579 }
580 }
581 }
582
583 // swap best possible first byte to the pole position
584 if (best_first_byte != 0) {
585 uint16_t temp = best_first_bytes[0];
586 best_first_bytes[0] = best_first_bytes[best_first_byte];
587 best_first_bytes[best_first_byte] = temp;
588 }
589
590 return num_good_nonces;
591}
592
593static uint16_t estimate_second_byte_sum(void)
594{
595 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
596 float Sum8_prob = 0.0;
597 uint16_t Sum8 = 0;
598 if (nonces[first_byte].updated) {
599 for (uint16_t sum = 0; sum <= 256; sum++) {
600 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
601 if (prob > Sum8_prob) {
602 Sum8_prob = prob;
603 Sum8 = sum;
604 }
605 }
606 nonces[first_byte].Sum8_guess = Sum8;
607 nonces[first_byte].Sum8_prob = Sum8_prob;
608 nonces[first_byte].updated = false;
609 }
610 }
611 return sort_best_first_bytes();
612}
613
614static int read_nonce_file(void)
615{
616 FILE *fnonces = NULL;
617 uint8_t trgBlockNo = 0;
618 uint8_t trgKeyType = 0;
619 uint8_t read_buf[9];
620 uint32_t nt_enc1 = 0, nt_enc2 = 0;
621 uint8_t par_enc = 0;
622 int total_num_nonces = 0;
623
624 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
625 PrintAndLog("Could not open file nonces.bin");
626 return 1;
627 }
628
629 PrintAndLog("Reading nonces from file nonces.bin...");
630 memset (read_buf, 0, sizeof (read_buf));
631 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
632 if ( bytes_read == 0) {
633 PrintAndLog("File reading error.");
634 fclose(fnonces);
635 return 1;
636 }
637 cuid = bytes_to_num(read_buf, 4);
638 trgBlockNo = bytes_to_num(read_buf+4, 1);
639 trgKeyType = bytes_to_num(read_buf+5, 1);
640 size_t ret = 0;
641 do {
642 memset (read_buf, 0, sizeof (read_buf));
643 if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
644 nt_enc1 = bytes_to_num(read_buf, 4);
645 nt_enc2 = bytes_to_num(read_buf+4, 4);
646 par_enc = bytes_to_num(read_buf+8, 1);
647 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
648 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
649 add_nonce(nt_enc1, par_enc >> 4);
650 add_nonce(nt_enc2, par_enc & 0x0f);
651 total_num_nonces += 2;
652 }
653 } while (ret == 9);
654
655 fclose(fnonces);
656 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
657 return 0;
658}
659
660static void Check_for_FilterFlipProperties(void)
661{
662 printf("Checking for Filter Flip Properties...\n");
663 uint16_t num_bitflips = 0;
664
665 for (uint16_t i = 0; i < 256; i++) {
666 nonces[i].BitFlip[ODD_STATE] = false;
667 nonces[i].BitFlip[EVEN_STATE] = false;
668 }
669
670 for (uint16_t i = 0; i < 256; i++) {
671 if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
672
673 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
674 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
675 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
676
677 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
678 nonces[i].BitFlip[ODD_STATE] = true;
679 num_bitflips++;
680 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
681 nonces[i].BitFlip[EVEN_STATE] = true;
682 num_bitflips++;
683 }
684 }
685
686 if (write_stats)
687 fprintf(fstats, "%d;", num_bitflips);
688}
689
690static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
691{
692 struct Crypto1State sim_cs = {0, 0};
693 // init cryptostate with key:
694 for(int8_t i = 47; i > 0; i -= 2) {
695 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
696 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
697 }
698
699 *par_enc = 0;
700 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
701 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
702 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
703 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
704 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
705 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
706 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
707 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
708 }
709
710}
711
712static void simulate_acquire_nonces()
713{
714 clock_t time1 = clock();
715 bool filter_flip_checked = false;
716 uint32_t total_num_nonces = 0;
717 uint32_t next_fivehundred = 500;
718 uint32_t total_added_nonces = 0;
719
720 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
721 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
722
723 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
724 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
725
726 do {
727 uint32_t nt_enc = 0;
728 uint8_t par_enc = 0;
729
730 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
731 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
732 total_added_nonces += add_nonce(nt_enc, par_enc);
733 total_num_nonces++;
734
735 if (first_byte_num == 256 ) {
736 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
737 if (!filter_flip_checked) {
738 Check_for_FilterFlipProperties();
739 filter_flip_checked = true;
740 }
741 num_good_first_bytes = estimate_second_byte_sum();
742 if (total_num_nonces > next_fivehundred) {
743 next_fivehundred = (total_num_nonces/500+1) * 500;
744 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
745 total_num_nonces,
746 total_added_nonces,
747 CONFIDENCE_THRESHOLD * 100.0,
748 num_good_first_bytes);
749 }
750 }
751
752 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
753
754 time1 = clock() - time1;
755 if ( time1 > 0 ) {
756 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
757 total_num_nonces,
758 ((float)time1)/CLOCKS_PER_SEC,
759 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
760 }
761 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
762
763}
764
765static void free_candidates_memory(statelist_t *sl)
766{
767 if (sl == NULL) {
768 return;
769 } else {
770 free_candidates_memory(sl->next);
771 free(sl);
772 }
773}
774
775static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
776{
777 uint8_t three_in_row = 0;
778 uint8_t prev_best = 0;
779 clock_t time1 = clock();
780 bool initialize = true;
781 bool finished = false;
782 bool filter_flip_checked = false;
783 uint32_t flags = 0;
784 uint8_t write_buf[9];
785 uint32_t total_num_nonces = 0;
786 uint32_t next_fivehundred = 500;
787 uint32_t total_added_nonces = 0;
788 uint32_t idx = 1;
789 FILE *fnonces = NULL;
790 field_off = false;
791 UsbCommand resp;
792 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
793 memcpy(c.d.asBytes, key, 6);
794 c.arg[0] = blockNo + (keyType * 0x100);
795 c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
796
797 printf("Acquiring nonces...\n");
798 do {
799
800 flags = 0;
801 //flags |= initialize ? 0x0001 : 0;
802 flags |= 0x0001;
803 flags |= slow ? 0x0002 : 0;
804 flags |= field_off ? 0x0004 : 0;
805 c.arg[2] = flags;
806
807 clearCommandBuffer();
808 SendCommand(&c);
809
810 if (field_off) break;
811
812 if (!WaitForResponseTimeout(CMD_ACK, &resp, 6000)) {
813 if (fnonces) fclose(fnonces);
814 return 1;
815 }
816
817 if (resp.arg[0]) {
818 if (fnonces) fclose(fnonces);
819 return resp.arg[0]; // error during nested_hard
820 }
821
822 if (initialize) {
823 // global var CUID
824 cuid = resp.arg[1];
825 if (nonce_file_write && fnonces == NULL) {
826 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
827 PrintAndLog("Could not create file nonces.bin");
828 return 3;
829 }
830 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
831 memset (write_buf, 0, sizeof (write_buf));
832 num_to_bytes(cuid, 4, write_buf);
833 fwrite(write_buf, 1, 4, fnonces);
834 fwrite(&trgBlockNo, 1, 1, fnonces);
835 fwrite(&trgKeyType, 1, 1, fnonces);
836 fflush(fnonces);
837 }
838 initialize = false;
839 }
840
841 uint32_t nt_enc1, nt_enc2;
842 uint8_t par_enc;
843 uint16_t num_acquired_nonces = resp.arg[2];
844 uint8_t *bufp = resp.d.asBytes;
845 for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
846 nt_enc1 = bytes_to_num(bufp, 4);
847 nt_enc2 = bytes_to_num(bufp+4, 4);
848 par_enc = bytes_to_num(bufp+8, 1);
849
850 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
851 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
852
853 if (nonce_file_write && fnonces) {
854 fwrite(bufp, 1, 9, fnonces);
855 fflush(fnonces);
856 }
857 bufp += 9;
858 }
859 total_num_nonces += num_acquired_nonces;
860
861 if (first_byte_num == 256) {
862
863 if (!filter_flip_checked) {
864 Check_for_FilterFlipProperties();
865 filter_flip_checked = true;
866 }
867
868 num_good_first_bytes = estimate_second_byte_sum();
869
870 if (total_num_nonces > next_fivehundred) {
871 next_fivehundred = (total_num_nonces/500+1) * 500;
872 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
873 total_num_nonces,
874 total_added_nonces,
875 NONCES_THRESHOLD * idx,
876 CONFIDENCE_THRESHOLD * 100.0,
877 num_good_first_bytes
878 );
879 }
880
881 if ( num_good_first_bytes > 0 ) {
882
883 if ( prev_best == best_first_bytes[0] ){
884 ++three_in_row;
885 } else {
886 three_in_row = 0;
887 }
888 prev_best = best_first_bytes[0];
889
890 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
891 if ( total_added_nonces >= (NONCES_THRESHOLD * idx) || three_in_row >= 3) {
892
893 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
894 if (cracking || known_target_key != -1) {
895
896 UsbCommand cOff = {CMD_FPGA_MAJOR_MODE_OFF, {0,0,0} };
897 SendCommand(&cOff);
898 field_off = brute_force();
899 }
900 three_in_row = 0;
901 }
902 }
903
904 if ( total_added_nonces >= (NONCES_THRESHOLD * idx))
905 ++idx;
906 }
907 } while (!finished);
908
909 if (nonce_file_write && fnonces)
910 fclose(fnonces);
911
912 time1 = clock() - time1;
913 if ( time1 > 0 ) {
914 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
915 total_num_nonces,
916 ((float)time1)/CLOCKS_PER_SEC,
917 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
918 );
919 }
920 return 0;
921}
922
923static int init_partial_statelists(void)
924{
925 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
926// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
927 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
928
929 printf("Allocating memory for partial statelists...\n");
930 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
931 for (uint16_t i = 0; i <= 16; i+=2) {
932 partial_statelist[i].len[odd_even] = 0;
933 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
934 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
935 if (partial_statelist[i].states[odd_even] == NULL) {
936 PrintAndLog("Cannot allocate enough memory. Aborting");
937 return 4;
938 }
939 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
940 partial_statelist[i].index[odd_even][j] = NULL;
941 }
942 }
943 }
944
945 printf("Generating partial statelists...\n");
946 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
947 uint32_t index = -1;
948 uint32_t num_of_states = 1<<20;
949 for (uint32_t state = 0; state < num_of_states; state++) {
950 uint16_t sum_property = PartialSumProperty(state, odd_even);
951 uint32_t *p = partial_statelist[sum_property].states[odd_even];
952 p += partial_statelist[sum_property].len[odd_even];
953 *p = state;
954 partial_statelist[sum_property].len[odd_even]++;
955 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
956 if ((state & index_mask) != index) {
957 index = state & index_mask;
958 }
959 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
960 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
961 }
962 }
963 // add End Of List markers
964 for (uint16_t i = 0; i <= 16; i += 2) {
965 uint32_t *p = partial_statelist[i].states[odd_even];
966 p += partial_statelist[i].len[odd_even];
967 *p = END_OF_LIST_MARKER;
968 }
969 }
970
971 return 0;
972}
973
974static void init_BitFlip_statelist(void)
975{
976 printf("Generating bitflip statelist...\n");
977 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
978 uint32_t index = -1;
979 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
980 for (uint32_t state = 0; state < (1 << 20); state++) {
981 if (filter(state) != filter(state^1)) {
982 if ((state & index_mask) != index) {
983 index = state & index_mask;
984 }
985 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
986 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
987 }
988 *p++ = state;
989 }
990 }
991 // set len and add End Of List marker
992 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
993 *p = END_OF_LIST_MARKER;
994 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
995}
996
997static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
998{
999 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
1000
1001 if (p == NULL) return NULL;
1002 while (*p < (state & mask)) p++;
1003 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
1004 if ((*p & mask) == (state & mask)) return p; // found a match.
1005 return NULL; // no match
1006}
1007
1008static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1009{
1010 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
1011 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
1012 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
1013 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
1014 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
1015 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
1016 return !all_diff;
1017}
1018
1019static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1020{
1021 uint_fast8_t j_bit_mask = 0x01 << bit;
1022 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1023 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1024 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1025 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1026 return all_diff;
1027}
1028
1029static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1030{
1031 if (odd_even) {
1032 // odd bits
1033 switch (num_common_bits) {
1034 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1035 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1036 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1037 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1038 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1039 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1040 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1041 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
1042 }
1043 } else {
1044 // even bits
1045 switch (num_common_bits) {
1046 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1047 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1048 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1049 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1050 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1051 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1052 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
1053 }
1054 }
1055
1056 return true; // valid state
1057}
1058
1059static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1060{
1061 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1062 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
1063 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1064 uint_fast8_t j = common_bits(bytes_diff);
1065 uint32_t mask = 0xfffffff0;
1066 if (odd_even == ODD_STATE) {
1067 mask >>= j/2;
1068 } else {
1069 mask >>= (j+1)/2;
1070 }
1071 mask &= 0x000fffff;
1072 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1073 bool found_match = false;
1074 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1075 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1076 if (r*(16-s) + (16-r)*s == sum_a8) {
1077 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1078 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1079 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1080 if (p != NULL) {
1081 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
1082 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
1083 found_match = true;
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1087 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1088 // }
1089 break;
1090 } else {
1091 // if ((odd_even == ODD_STATE && state == test_state_odd)
1092 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1093 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1094 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1095 // }
1096 }
1097 p++;
1098 }
1099 } else {
1100 // if ((odd_even == ODD_STATE && state == test_state_odd)
1101 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1102 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1103 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1104 // }
1105 }
1106 }
1107 }
1108 }
1109
1110 if (!found_match) {
1111 // if ((odd_even == ODD_STATE && state == test_state_odd)
1112 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1113 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1114 // }
1115 return false;
1116 }
1117 }
1118
1119 return true;
1120}
1121
1122static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1123{
1124 for (uint16_t i = 0; i < 256; i++) {
1125 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
1126 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1127 uint_fast8_t j = common_bits(bytes_diff);
1128 uint32_t mask = 0xfffffff0;
1129 if (odd_even == ODD_STATE) {
1130 mask >>= j/2;
1131 } else {
1132 mask >>= (j+1)/2;
1133 }
1134 mask &= 0x000fffff;
1135 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1136 bool found_match = false;
1137 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1138 if (p != NULL) {
1139 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
1140 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
1141 found_match = true;
1142 // if ((odd_even == ODD_STATE && state == test_state_odd)
1143 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1144 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1145 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1146 // }
1147 break;
1148 } else {
1149 // if ((odd_even == ODD_STATE && state == test_state_odd)
1150 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1151 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1152 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1153 // }
1154 }
1155 p++;
1156 }
1157 } else {
1158 // if ((odd_even == ODD_STATE && state == test_state_odd)
1159 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1160 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1161 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1162 // }
1163 }
1164 if (!found_match) {
1165 // if ((odd_even == ODD_STATE && state == test_state_odd)
1166 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1167 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1168 // }
1169 return false;
1170 }
1171 }
1172
1173 }
1174
1175 return true;
1176}
1177
1178static struct sl_cache_entry {
1179 uint32_t *sl;
1180 uint32_t len;
1181 } sl_cache[17][17][2];
1182
1183static void init_statelist_cache(void)
1184{
1185 for (uint16_t i = 0; i < 17; i+=2) {
1186 for (uint16_t j = 0; j < 17; j+=2) {
1187 for (uint16_t k = 0; k < 2; k++) {
1188 sl_cache[i][j][k].sl = NULL;
1189 sl_cache[i][j][k].len = 0;
1190 }
1191 }
1192 }
1193}
1194
1195static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1196{
1197 uint32_t worstcase_size = 1<<20;
1198
1199 // check cache for existing results
1200 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1201 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1202 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1203 return 0;
1204 }
1205
1206 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1207 if (candidates->states[odd_even] == NULL) {
1208 PrintAndLog("Out of memory error.\n");
1209 return 4;
1210 }
1211 uint32_t *add_p = candidates->states[odd_even];
1212 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
1213 uint32_t search_mask = 0x000ffff0;
1214 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1215 if (p1 != NULL && p2 != NULL) {
1216 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
1217 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1218 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
1219 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
1220 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
1221 *add_p++ = (*p1 << 4) | *p2;
1222 }
1223 }
1224 }
1225 p2++;
1226 }
1227 }
1228 }
1229
1230 // set end of list marker and len
1231 *add_p = END_OF_LIST_MARKER;
1232 candidates->len[odd_even] = add_p - candidates->states[odd_even];
1233
1234 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1235
1236 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1237 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1238
1239 return 0;
1240}
1241
1242static statelist_t *add_more_candidates(statelist_t *current_candidates)
1243{
1244 statelist_t *new_candidates = NULL;
1245 if (current_candidates == NULL) {
1246 if (candidates == NULL) {
1247 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1248 }
1249 new_candidates = candidates;
1250 } else {
1251 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1252 }
1253 if (!new_candidates) return NULL;
1254
1255 new_candidates->next = NULL;
1256 new_candidates->len[ODD_STATE] = 0;
1257 new_candidates->len[EVEN_STATE] = 0;
1258 new_candidates->states[ODD_STATE] = NULL;
1259 new_candidates->states[EVEN_STATE] = NULL;
1260 return new_candidates;
1261}
1262
1263static bool TestIfKeyExists(uint64_t key)
1264{
1265 struct Crypto1State *pcs;
1266 pcs = crypto1_create(key);
1267 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1268
1269 uint32_t state_odd = pcs->odd & 0x00ffffff;
1270 uint32_t state_even = pcs->even & 0x00ffffff;
1271 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1272 printf("Validating keysearch space\n");
1273 if ( candidates == NULL ) {
1274 printf("candidates list is NULL\n");
1275 return false;
1276 }
1277 uint64_t count = 0;
1278 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1279 bool found_odd = false;
1280 bool found_even = false;
1281 uint32_t *p_odd = p->states[ODD_STATE];
1282 uint32_t *p_even = p->states[EVEN_STATE];
1283 while (*p_odd != END_OF_LIST_MARKER) {
1284 if ((*p_odd & 0x00ffffff) == state_odd) {
1285 found_odd = true;
1286 break;
1287 }
1288 p_odd++;
1289 }
1290 while (*p_even != END_OF_LIST_MARKER) {
1291 if ((*p_even & 0x00ffffff) == state_even)
1292 found_even = true;
1293
1294 p_even++;
1295 }
1296 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1297 if (found_odd && found_even) {
1298 if (known_target_key != -1) {
1299 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1300 count,
1301 log(count)/log(2),
1302 maximum_states,
1303 log(maximum_states)/log(2)
1304 );
1305 if (write_stats)
1306 fprintf(fstats, "1\n");
1307 }
1308 crypto1_destroy(pcs);
1309 return true;
1310 }
1311 }
1312
1313 if (known_target_key != -1) {
1314 printf("Key NOT found!\n");
1315 if (write_stats)
1316 fprintf(fstats, "0\n");
1317 }
1318 crypto1_destroy(pcs);
1319 return false;
1320}
1321
1322static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
1323{
1324 printf("Generating crypto1 state candidates... \n");
1325
1326 statelist_t *current_candidates = NULL;
1327 // estimate maximum candidate states
1328 maximum_states = 0;
1329 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1330 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1331 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1332 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1333 }
1334 }
1335 }
1336
1337 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1338
1339 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
1340
1341 init_statelist_cache();
1342
1343 for (uint16_t p = 0; p <= 16; p += 2) {
1344 for (uint16_t q = 0; q <= 16; q += 2) {
1345 if (p*(16-q) + (16-p)*q == sum_a0) {
1346 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1347 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1348 for (uint16_t r = 0; r <= 16; r += 2) {
1349 for (uint16_t s = 0; s <= 16; s += 2) {
1350 if (r*(16-s) + (16-r)*s == sum_a8) {
1351 current_candidates = add_more_candidates(current_candidates);
1352 if (current_candidates != NULL) {
1353 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1354 // and eliminate the need to calculate the other part
1355 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1356 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
1357 add_matching_states(current_candidates, p, r, ODD_STATE);
1358 if(current_candidates->len[ODD_STATE]) {
1359 add_matching_states(current_candidates, q, s, EVEN_STATE);
1360 } else {
1361 current_candidates->len[EVEN_STATE] = 0;
1362 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
1363 *p = END_OF_LIST_MARKER;
1364 }
1365 } else {
1366 add_matching_states(current_candidates, q, s, EVEN_STATE);
1367 if(current_candidates->len[EVEN_STATE]) {
1368 add_matching_states(current_candidates, p, r, ODD_STATE);
1369 } else {
1370 current_candidates->len[ODD_STATE] = 0;
1371 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
1372 *p = END_OF_LIST_MARKER;
1373 }
1374 }
1375 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1376 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1377 }
1378 }
1379 }
1380 }
1381 }
1382 }
1383 }
1384
1385 maximum_states = 0;
1386 unsigned int n = 0;
1387 for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
1388 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1389 }
1390
1391 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1392
1393 float kcalc = log(maximum_states)/log(2);
1394 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
1395 if (write_stats) {
1396 fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
1397 }
1398 if (kcalc < CRACKING_THRESHOLD) return true;
1399
1400 return false;
1401}
1402
1403static void free_statelist_cache(void)
1404{
1405 for (uint16_t i = 0; i < 17; i+=2) {
1406 for (uint16_t j = 0; j < 17; j+=2) {
1407 for (uint16_t k = 0; k < 2; k++) {
1408 free(sl_cache[i][j][k].sl);
1409 }
1410 }
1411 }
1412}
1413
1414static const uint64_t crack_states_bitsliced(statelist_t *p){
1415 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1416 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1417 uint64_t key = -1;
1418 uint8_t bSize = sizeof(bitslice_t);
1419
1420#ifdef EXACT_COUNT
1421 size_t bucket_states_tested = 0;
1422 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1423#else
1424 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1425#endif
1426
1427 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1428 size_t bitsliced_blocks = 0;
1429 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1430
1431 // bitslice all the even states
1432 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1433
1434#ifdef __WIN32
1435 #ifdef __MINGW32__
1436 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1437 #else
1438 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1439 #endif
1440#else
1441 #ifdef __APPLE__
1442 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1443 #else
1444 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
1445 #endif
1446#endif
1447
1448 if ( !lstate_p ) {
1449 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1450 return key;
1451 }
1452
1453 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1454
1455 // bitslice even half-states
1456 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1457#ifdef EXACT_COUNT
1458 bucket_size[bitsliced_blocks] = max_slices;
1459#endif
1460 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1461 uint32_t e = *(p_even+slice_idx);
1462 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1463 // set even bits
1464 if(e&1){
1465 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1466 }
1467 }
1468 }
1469 // compute the rollback bits
1470 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1471 // inlined crypto1_bs_lfsr_rollback
1472 const bitslice_value_t feedout = lstate_p[0].value;
1473 ++lstate_p;
1474 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1475 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1476 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1477 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1478 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1479 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1480 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1481 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1482 }
1483 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1484 }
1485
1486 // bitslice every odd state to every block of even half-states with half-finished rollback
1487 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1488 // early abort
1489 if(keys_found){
1490 goto out;
1491 }
1492
1493 // set the odd bits and compute rollback
1494 uint64_t o = (uint64_t) *p_odd;
1495 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1496 // pre-compute part of the odd feedback bits (minus rollback)
1497 bool odd_feedback_bit = parity(o&0x9ce5c);
1498
1499 crypto1_bs_rewind_a0();
1500 // set odd bits
1501 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1502 state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
1503 }
1504 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1505
1506 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1507 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
1508 size_t state_idx;
1509 // set even bits
1510 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1511 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1512 }
1513 // set rollback bits
1514 uint64_t lo = o;
1515 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1516 // set the odd bits and take in the odd rollback bits from the even states
1517 if(lo & 1){
1518 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1519 } else {
1520 state_p[state_idx] = bitsliced_even_state[state_idx];
1521 }
1522
1523 // set the even bits and take in the even rollback bits from the odd states
1524 if((lo >> 32) & 1){
1525 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1526 } else {
1527 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1528 }
1529 }
1530
1531#ifdef EXACT_COUNT
1532 bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
1533#endif
1534 // pre-compute first keystream and feedback bit vectors
1535 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1536 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1537 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1538 state_p[47-24].value ^ state_p[47-42].value);
1539
1540 // vector to contain test results (1 = passed, 0 = failed)
1541 bitslice_t results = bs_ones;
1542
1543 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1544 size_t parity_bit_idx = 0;
1545 bitslice_value_t fb_bits = fbb;
1546 bitslice_value_t ks_bits = ksb;
1547 state_p = &states[KEYSTREAM_SIZE-1];
1548 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1549
1550 // highest bit is transmitted/received first
1551 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1552 // decrypt nonce bits
1553 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1554 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1555
1556 // compute real parity bits on the fly
1557 parity_bit_vector ^= decrypted_nonce_bit_vector;
1558
1559 // update state
1560 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1561
1562 // compute next keystream bit
1563 ks_bits = crypto1_bs_f20(state_p);
1564
1565 // for each byte:
1566 if((ks_idx&7) == 0){
1567 // get encrypted parity bits
1568 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1569
1570 // decrypt parity bits
1571 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1572
1573 // compare actual parity bits with decrypted parity bits and take count in results vector
1574 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1575
1576 // make sure we still have a match in our set
1577 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1578
1579 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1580 // the short-circuiting also helps
1581 if(results.bytes64[0] == 0
1582#if MAX_BITSLICES > 64
1583 && results.bytes64[1] == 0
1584#endif
1585#if MAX_BITSLICES > 128
1586 && results.bytes64[2] == 0
1587 && results.bytes64[3] == 0
1588#endif
1589 ){
1590 goto stop_tests;
1591 }
1592 // this is about as fast but less portable (requires -std=gnu99)
1593 // asm goto ("ptest %1, %0\n\t"
1594 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1595 parity_bit_vector = bs_zeroes.value;
1596 }
1597 // compute next feedback bit vector
1598 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1599 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1600 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1601 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1602 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1603 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1604 }
1605 }
1606 // all nonce tests were successful: we've found the key in this block!
1607 state_t keys[MAX_BITSLICES];
1608 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1609 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1610 if(get_vector_bit(results_idx, results)){
1611 key = keys[results_idx].value;
1612 goto out;
1613 }
1614 }
1615stop_tests:
1616 // prepare to set new states
1617 crypto1_bs_rewind_a0();
1618 continue;
1619 }
1620 }
1621
1622out:
1623 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1624
1625#ifdef __WIN32
1626 #ifdef __MINGW32__
1627 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1628 #else
1629 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1630 #endif
1631#else
1632 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1633#endif
1634
1635 }
1636 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1637 return key;
1638}
1639
1640static void* crack_states_thread(void* x){
1641 const size_t thread_id = (size_t)x;
1642 size_t current_bucket = thread_id;
1643 statelist_t *bucket = NULL;
1644
1645 while(current_bucket < bucket_count){
1646 if (keys_found) break;
1647
1648 if ((bucket = buckets[current_bucket])) {
1649 const uint64_t key = crack_states_bitsliced(bucket);
1650
1651 if (keys_found) break;
1652 else if(key != -1 && TestIfKeyExists(key)) {
1653 __sync_fetch_and_add(&keys_found, 1);
1654 __sync_fetch_and_add(&foundkey, key);
1655 break;
1656 } else {
1657 printf(".");
1658 fflush(stdout);
1659 }
1660 }
1661
1662 current_bucket += thread_count;
1663 }
1664
1665 return NULL;
1666}
1667
1668static bool brute_force(void) {
1669 bool ret = false;
1670 if (known_target_key != -1) {
1671 PrintAndLog("Looking for known target key in remaining key space...");
1672 ret = TestIfKeyExists(known_target_key);
1673 } else {
1674 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1675
1676 PrintAndLog("Brute force phase starting.");
1677
1678 clock_t time1 = clock();
1679 keys_found = 0;
1680 foundkey = 0;
1681
1682 crypto1_bs_init();
1683 memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
1684 memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
1685 memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
1686
1687 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1688 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
1689 // convert to 32 bit little-endian
1690 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
1691
1692 PrintAndLog("Bitslicing nonces...");
1693 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1694 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1695 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1696 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1697 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1698 // convert to 32 bit little-endian
1699 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
1700 }
1701 total_states_tested = 0;
1702
1703 // count number of states to go
1704 bucket_count = 0;
1705 buckets[MAX_BUCKETS-1] = NULL;
1706 for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
1707 buckets[bucket_count] = p;
1708 bucket_count++;
1709 }
1710 if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
1711
1712#ifndef __WIN32
1713 thread_count = sysconf(_SC_NPROCESSORS_CONF);
1714 if ( thread_count < 1)
1715 thread_count = 1;
1716#endif /* _WIN32 */
1717
1718 pthread_t threads[thread_count];
1719
1720 // enumerate states using all hardware threads, each thread handles one bucket
1721 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
1722
1723 for(size_t i = 0; i < thread_count; i++){
1724 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1725 }
1726 for(size_t i = 0; i < thread_count; i++){
1727 pthread_join(threads[i], 0);
1728 }
1729
1730 time1 = clock() - time1;
1731 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
1732
1733 if (keys_found) {
1734 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
1735 ret = true;
1736 }
1737 // reset this counter for the next call
1738 nonces_to_bruteforce = 0;
1739 }
1740 return ret;
1741}
1742
1743int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
1744{
1745 // initialize Random number generator
1746 time_t t;
1747 srand((unsigned) time(&t));
1748
1749 if (trgkey != NULL) {
1750 known_target_key = bytes_to_num(trgkey, 6);
1751 } else {
1752 known_target_key = -1;
1753 }
1754
1755 init_partial_statelists();
1756 init_BitFlip_statelist();
1757 write_stats = false;
1758
1759 if (tests) {
1760 // set the correct locale for the stats printing
1761 setlocale(LC_ALL, "");
1762 write_stats = true;
1763 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1764 PrintAndLog("Could not create/open file hardnested_stats.txt");
1765 return 3;
1766 }
1767 for (uint32_t i = 0; i < tests; i++) {
1768 init_nonce_memory();
1769 simulate_acquire_nonces();
1770 Tests();
1771 printf("Sum(a0) = %d\n", first_byte_Sum);
1772 fprintf(fstats, "%d;", first_byte_Sum);
1773 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1774 brute_force();
1775 free_nonces_memory();
1776 free_statelist_cache();
1777 free_candidates_memory(candidates);
1778 candidates = NULL;
1779 }
1780 fclose(fstats);
1781 fstats = NULL;
1782 } else {
1783 init_nonce_memory();
1784 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1785 if (read_nonce_file() != 0) {
1786 return 3;
1787 }
1788 Check_for_FilterFlipProperties();
1789 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1790 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1791
1792 bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1793 if (cracking || known_target_key != -1) {
1794 brute_force();
1795 }
1796
1797 } else { // acquire nonces.
1798 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1799 if (is_OK != 0) {
1800 return is_OK;
1801 }
1802 }
1803
1804 //Tests();
1805 free_nonces_memory();
1806 free_statelist_cache();
1807 free_candidates_memory(candidates);
1808 candidates = NULL;
1809 }
1810 return 0;
1811}
Impressum, Datenschutz