]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Routines to support ISO 14443B. This includes both the reader software and | |
9 | // the `fake tag' modes. | |
10 | //----------------------------------------------------------------------------- | |
11 | ||
12 | #include "proxmark3.h" | |
13 | #include "apps.h" | |
14 | #include "util.h" | |
15 | #include "string.h" | |
16 | #include "iso14443crc.h" | |
17 | #include "common.h" | |
18 | #define RECEIVE_SAMPLES_TIMEOUT 600000 | |
19 | #define ISO14443B_DMA_BUFFER_SIZE 256 | |
20 | ||
21 | ||
22 | // PCB Block number for APDUs | |
23 | static uint8_t pcb_blocknum = 0; | |
24 | ||
25 | //============================================================================= | |
26 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
27 | // a UART kind of thing that's implemented in software. When we get a | |
28 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
29 | // If it's good, then we can do something appropriate with it, and send | |
30 | // a response. | |
31 | //============================================================================= | |
32 | ||
33 | //----------------------------------------------------------------------------- | |
34 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
35 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
36 | // them yet, just leaves them ready to send in ToSend[]. | |
37 | //----------------------------------------------------------------------------- | |
38 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) | |
39 | { | |
40 | int i; | |
41 | ||
42 | ToSendReset(); | |
43 | ||
44 | // Transmit a burst of ones, as the initial thing that lets the | |
45 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
46 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
47 | // so I will too. | |
48 | for(i = 0; i < 20; i++) { | |
49 | ToSendStuffBit(1); | |
50 | ToSendStuffBit(1); | |
51 | ToSendStuffBit(1); | |
52 | ToSendStuffBit(1); | |
53 | } | |
54 | ||
55 | // Send SOF. | |
56 | for(i = 0; i < 10; i++) { | |
57 | ToSendStuffBit(0); | |
58 | ToSendStuffBit(0); | |
59 | ToSendStuffBit(0); | |
60 | ToSendStuffBit(0); | |
61 | } | |
62 | for(i = 0; i < 2; i++) { | |
63 | ToSendStuffBit(1); | |
64 | ToSendStuffBit(1); | |
65 | ToSendStuffBit(1); | |
66 | ToSendStuffBit(1); | |
67 | } | |
68 | ||
69 | for(i = 0; i < len; i++) { | |
70 | int j; | |
71 | uint8_t b = cmd[i]; | |
72 | ||
73 | // Start bit | |
74 | ToSendStuffBit(0); | |
75 | ToSendStuffBit(0); | |
76 | ToSendStuffBit(0); | |
77 | ToSendStuffBit(0); | |
78 | ||
79 | // Data bits | |
80 | for(j = 0; j < 8; j++) { | |
81 | if(b & 1) { | |
82 | ToSendStuffBit(1); | |
83 | ToSendStuffBit(1); | |
84 | ToSendStuffBit(1); | |
85 | ToSendStuffBit(1); | |
86 | } else { | |
87 | ToSendStuffBit(0); | |
88 | ToSendStuffBit(0); | |
89 | ToSendStuffBit(0); | |
90 | ToSendStuffBit(0); | |
91 | } | |
92 | b >>= 1; | |
93 | } | |
94 | ||
95 | // Stop bit | |
96 | ToSendStuffBit(1); | |
97 | ToSendStuffBit(1); | |
98 | ToSendStuffBit(1); | |
99 | ToSendStuffBit(1); | |
100 | } | |
101 | ||
102 | // Send EOF. | |
103 | for(i = 0; i < 10; i++) { | |
104 | ToSendStuffBit(0); | |
105 | ToSendStuffBit(0); | |
106 | ToSendStuffBit(0); | |
107 | ToSendStuffBit(0); | |
108 | } | |
109 | for(i = 0; i < 2; i++) { | |
110 | ToSendStuffBit(1); | |
111 | ToSendStuffBit(1); | |
112 | ToSendStuffBit(1); | |
113 | ToSendStuffBit(1); | |
114 | } | |
115 | ||
116 | // Convert from last byte pos to length | |
117 | ToSendMax++; | |
118 | } | |
119 | ||
120 | //----------------------------------------------------------------------------- | |
121 | // The software UART that receives commands from the reader, and its state | |
122 | // variables. | |
123 | //----------------------------------------------------------------------------- | |
124 | static struct { | |
125 | enum { | |
126 | STATE_UNSYNCD, | |
127 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
128 | STATE_AWAITING_START_BIT, | |
129 | STATE_RECEIVING_DATA | |
130 | } state; | |
131 | uint16_t shiftReg; | |
132 | int bitCnt; | |
133 | int byteCnt; | |
134 | int byteCntMax; | |
135 | int posCnt; | |
136 | uint8_t *output; | |
137 | } Uart; | |
138 | ||
139 | /* Receive & handle a bit coming from the reader. | |
140 | * | |
141 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
142 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
143 | * | |
144 | * LED handling: | |
145 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
146 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
147 | * | |
148 | * Returns: true if we received a EOF | |
149 | * false if we are still waiting for some more | |
150 | */ | |
151 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) | |
152 | { | |
153 | switch(Uart.state) { | |
154 | case STATE_UNSYNCD: | |
155 | if(!bit) { | |
156 | // we went low, so this could be the beginning | |
157 | // of an SOF | |
158 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
159 | Uart.posCnt = 0; | |
160 | Uart.bitCnt = 0; | |
161 | } | |
162 | break; | |
163 | ||
164 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
165 | Uart.posCnt++; | |
166 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
167 | if(bit) { | |
168 | if(Uart.bitCnt > 9) { | |
169 | // we've seen enough consecutive | |
170 | // zeros that it's a valid SOF | |
171 | Uart.posCnt = 0; | |
172 | Uart.byteCnt = 0; | |
173 | Uart.state = STATE_AWAITING_START_BIT; | |
174 | LED_A_ON(); // Indicate we got a valid SOF | |
175 | } else { | |
176 | // didn't stay down long enough | |
177 | // before going high, error | |
178 | Uart.state = STATE_UNSYNCD; | |
179 | } | |
180 | } else { | |
181 | // do nothing, keep waiting | |
182 | } | |
183 | Uart.bitCnt++; | |
184 | } | |
185 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
186 | if(Uart.bitCnt > 12) { | |
187 | // Give up if we see too many zeros without | |
188 | // a one, too. | |
189 | LED_A_OFF(); | |
190 | Uart.state = STATE_UNSYNCD; | |
191 | } | |
192 | break; | |
193 | ||
194 | case STATE_AWAITING_START_BIT: | |
195 | Uart.posCnt++; | |
196 | if(bit) { | |
197 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
198 | // stayed high for too long between | |
199 | // characters, error | |
200 | Uart.state = STATE_UNSYNCD; | |
201 | } | |
202 | } else { | |
203 | // falling edge, this starts the data byte | |
204 | Uart.posCnt = 0; | |
205 | Uart.bitCnt = 0; | |
206 | Uart.shiftReg = 0; | |
207 | Uart.state = STATE_RECEIVING_DATA; | |
208 | } | |
209 | break; | |
210 | ||
211 | case STATE_RECEIVING_DATA: | |
212 | Uart.posCnt++; | |
213 | if(Uart.posCnt == 2) { | |
214 | // time to sample a bit | |
215 | Uart.shiftReg >>= 1; | |
216 | if(bit) { | |
217 | Uart.shiftReg |= 0x200; | |
218 | } | |
219 | Uart.bitCnt++; | |
220 | } | |
221 | if(Uart.posCnt >= 4) { | |
222 | Uart.posCnt = 0; | |
223 | } | |
224 | if(Uart.bitCnt == 10) { | |
225 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
226 | { | |
227 | // this is a data byte, with correct | |
228 | // start and stop bits | |
229 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
230 | Uart.byteCnt++; | |
231 | ||
232 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
233 | // Buffer overflowed, give up | |
234 | LED_A_OFF(); | |
235 | Uart.state = STATE_UNSYNCD; | |
236 | } else { | |
237 | // so get the next byte now | |
238 | Uart.posCnt = 0; | |
239 | Uart.state = STATE_AWAITING_START_BIT; | |
240 | } | |
241 | } else if (Uart.shiftReg == 0x000) { | |
242 | // this is an EOF byte | |
243 | LED_A_OFF(); // Finished receiving | |
244 | Uart.state = STATE_UNSYNCD; | |
245 | if (Uart.byteCnt != 0) { | |
246 | return TRUE; | |
247 | } | |
248 | } else { | |
249 | // this is an error | |
250 | LED_A_OFF(); | |
251 | Uart.state = STATE_UNSYNCD; | |
252 | } | |
253 | } | |
254 | break; | |
255 | ||
256 | default: | |
257 | LED_A_OFF(); | |
258 | Uart.state = STATE_UNSYNCD; | |
259 | break; | |
260 | } | |
261 | ||
262 | return FALSE; | |
263 | } | |
264 | ||
265 | ||
266 | static void UartReset() | |
267 | { | |
268 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
269 | Uart.state = STATE_UNSYNCD; | |
270 | Uart.byteCnt = 0; | |
271 | Uart.bitCnt = 0; | |
272 | Uart.posCnt = 0; | |
273 | memset(Uart.output, 0x00, MAX_FRAME_SIZE); | |
274 | } | |
275 | ||
276 | ||
277 | static void UartInit(uint8_t *data) | |
278 | { | |
279 | Uart.output = data; | |
280 | UartReset(); | |
281 | } | |
282 | ||
283 | ||
284 | //----------------------------------------------------------------------------- | |
285 | // Receive a command (from the reader to us, where we are the simulated tag), | |
286 | // and store it in the given buffer, up to the given maximum length. Keeps | |
287 | // spinning, waiting for a well-framed command, until either we get one | |
288 | // (returns TRUE) or someone presses the pushbutton on the board (FALSE). | |
289 | // | |
290 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
291 | // correctly. | |
292 | //----------------------------------------------------------------------------- | |
293 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) | |
294 | { | |
295 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen | |
296 | // only, since we are receiving, not transmitting). | |
297 | // Signal field is off with the appropriate LED | |
298 | LED_D_OFF(); | |
299 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
300 | ||
301 | // Now run a `software UART' on the stream of incoming samples. | |
302 | UartInit(received); | |
303 | ||
304 | for(;;) { | |
305 | WDT_HIT(); | |
306 | ||
307 | if(BUTTON_PRESS()) return FALSE; | |
308 | ||
309 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
310 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
311 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { | |
312 | if(Handle14443bUartBit(b & mask)) { | |
313 | *len = Uart.byteCnt; | |
314 | return TRUE; | |
315 | } | |
316 | } | |
317 | } | |
318 | } | |
319 | ||
320 | return FALSE; | |
321 | } | |
322 | ||
323 | //----------------------------------------------------------------------------- | |
324 | // Main loop of simulated tag: receive commands from reader, decide what | |
325 | // response to send, and send it. | |
326 | //----------------------------------------------------------------------------- | |
327 | void SimulateIso14443bTag(void) | |
328 | { | |
329 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: | |
330 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
331 | // ... and REQB, AFI=0, Normal Request, N=1: | |
332 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB | |
333 | // ... and HLTB | |
334 | static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB | |
335 | // ... and ATTRIB | |
336 | static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB | |
337 | ||
338 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
339 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, | |
340 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
341 | static const uint8_t response1[] = { | |
342 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
343 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
344 | }; | |
345 | // response to HLTB and ATTRIB | |
346 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
347 | ||
348 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
349 | ||
350 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
351 | ||
352 | clear_trace(); | |
353 | set_tracing(TRUE); | |
354 | ||
355 | const uint8_t *resp; | |
356 | uint8_t *respCode; | |
357 | uint16_t respLen, respCodeLen; | |
358 | ||
359 | // allocate command receive buffer | |
360 | BigBuf_free(); | |
361 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
362 | ||
363 | uint16_t len; | |
364 | uint16_t cmdsRecvd = 0; | |
365 | ||
366 | // prepare the (only one) tag answer: | |
367 | CodeIso14443bAsTag(response1, sizeof(response1)); | |
368 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); | |
369 | memcpy(resp1Code, ToSend, ToSendMax); | |
370 | uint16_t resp1CodeLen = ToSendMax; | |
371 | ||
372 | // prepare the (other) tag answer: | |
373 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
374 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
375 | memcpy(resp2Code, ToSend, ToSendMax); | |
376 | uint16_t resp2CodeLen = ToSendMax; | |
377 | ||
378 | // We need to listen to the high-frequency, peak-detected path. | |
379 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
380 | FpgaSetupSsc(); | |
381 | ||
382 | cmdsRecvd = 0; | |
383 | ||
384 | for(;;) { | |
385 | ||
386 | if (!GetIso14443bCommandFromReader(receivedCmd, &len)) { | |
387 | Dbprintf("button pressed, received %d commands", cmdsRecvd); | |
388 | break; | |
389 | } | |
390 | ||
391 | LogTrace(receivedCmd, len, 0, 0, parity, TRUE); | |
392 | ||
393 | // Good, look at the command now. | |
394 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
395 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
396 | resp = response1; | |
397 | respLen = sizeof(response1); | |
398 | respCode = resp1Code; | |
399 | respCodeLen = resp1CodeLen; | |
400 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) | |
401 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
402 | resp = response2; | |
403 | respLen = sizeof(response2); | |
404 | respCode = resp2Code; | |
405 | respCodeLen = resp2CodeLen; | |
406 | } else { | |
407 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
408 | // And print whether the CRC fails, just for good measure | |
409 | uint8_t b1, b2; | |
410 | if (len >= 3){ // if crc exists | |
411 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
412 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
413 | // Not so good, try again. | |
414 | DbpString("+++CRC fail"); | |
415 | ||
416 | } else { | |
417 | DbpString("CRC passes"); | |
418 | } | |
419 | } | |
420 | //get rid of compiler warning | |
421 | respCodeLen = 0; | |
422 | resp = response1; | |
423 | respLen = 0; | |
424 | respCode = resp1Code; | |
425 | //don't crash at new command just wait and see if reader will send other new cmds. | |
426 | //break; | |
427 | } | |
428 | ||
429 | cmdsRecvd++; | |
430 | ||
431 | if(cmdsRecvd > 0x30) { | |
432 | DbpString("many commands later..."); | |
433 | break; | |
434 | } | |
435 | ||
436 | if(respCodeLen <= 0) continue; | |
437 | ||
438 | // Modulate BPSK | |
439 | // Signal field is off with the appropriate LED | |
440 | LED_D_OFF(); | |
441 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
442 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
443 | FpgaSetupSsc(); | |
444 | ||
445 | uint8_t c; | |
446 | // clear receiving shift register and holding register | |
447 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
448 | c = AT91C_BASE_SSC->SSC_RHR; (void) c; | |
449 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
450 | c = AT91C_BASE_SSC->SSC_RHR; (void) c; | |
451 | ||
452 | // Clear TXRDY: | |
453 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
454 | ||
455 | // Transmit the response. | |
456 | uint16_t FpgaSendQueueDelay = 0; | |
457 | uint16_t i = 0; | |
458 | for(;i < respCodeLen; ) { | |
459 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
460 | AT91C_BASE_SSC->SSC_THR = respCode[i++]; | |
461 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
462 | } | |
463 | if(BUTTON_PRESS()) break; | |
464 | } | |
465 | ||
466 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: | |
467 | uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; | |
468 | for (i = 0; i <= fpga_queued_bits/8 + 1; ) { | |
469 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
470 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
471 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
472 | i++; | |
473 | } | |
474 | } | |
475 | ||
476 | LogTrace(resp, respLen, 0, 0, parity, FALSE); | |
477 | } | |
478 | FpgaDisableSscDma(); | |
479 | set_tracing(FALSE); | |
480 | } | |
481 | ||
482 | //============================================================================= | |
483 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
484 | // appropriately, and then send them to the tag. We then listen for the | |
485 | // tag's response, which we leave in the buffer to be demodulated on the | |
486 | // PC side. | |
487 | //============================================================================= | |
488 | ||
489 | static struct { | |
490 | enum { | |
491 | DEMOD_UNSYNCD, | |
492 | DEMOD_PHASE_REF_TRAINING, | |
493 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
494 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
495 | DEMOD_AWAITING_START_BIT, | |
496 | DEMOD_RECEIVING_DATA | |
497 | } state; | |
498 | int bitCount; | |
499 | int posCount; | |
500 | int thisBit; | |
501 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
502 | int metric; | |
503 | int metricN; | |
504 | */ | |
505 | uint16_t shiftReg; | |
506 | uint8_t *output; | |
507 | int len; | |
508 | int sumI; | |
509 | int sumQ; | |
510 | } Demod; | |
511 | ||
512 | /* | |
513 | * Handles reception of a bit from the tag | |
514 | * | |
515 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
516 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
517 | * | |
518 | * LED handling: | |
519 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
520 | * LED C -> OFF once we have received EOF or are unsynced | |
521 | * | |
522 | * Returns: true if we received a EOF | |
523 | * false if we are still waiting for some more | |
524 | * | |
525 | */ | |
526 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
527 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) | |
528 | { | |
529 | int v = 0; | |
530 | int ai = abs(ci); | |
531 | int aq = abs(cq); | |
532 | int halfci = (ai >> 1); | |
533 | int halfcq = (aq >> 1); | |
534 | ||
535 | // The soft decision on the bit uses an estimate of just the | |
536 | // quadrant of the reference angle, not the exact angle. | |
537 | #define MAKE_SOFT_DECISION() { \ | |
538 | if(Demod.sumI > 0) { \ | |
539 | v = ci; \ | |
540 | } else { \ | |
541 | v = -ci; \ | |
542 | } \ | |
543 | if(Demod.sumQ > 0) { \ | |
544 | v += cq; \ | |
545 | } else { \ | |
546 | v -= cq; \ | |
547 | } \ | |
548 | } | |
549 | ||
550 | #define SUBCARRIER_DETECT_THRESHOLD 8 | |
551 | ||
552 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
553 | #define CHECK_FOR_SUBCARRIER() { \ | |
554 | v = MAX(ai, aq) + MIN(halfci, halfcq); \ | |
555 | } | |
556 | ||
557 | ||
558 | switch(Demod.state) { | |
559 | case DEMOD_UNSYNCD: | |
560 | CHECK_FOR_SUBCARRIER(); | |
561 | if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
562 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
563 | Demod.sumI = ci; | |
564 | Demod.sumQ = cq; | |
565 | Demod.posCount = 1; | |
566 | } | |
567 | break; | |
568 | ||
569 | case DEMOD_PHASE_REF_TRAINING: | |
570 | if(Demod.posCount < 8) { | |
571 | //if(Demod.posCount < 10*2) { | |
572 | CHECK_FOR_SUBCARRIER(); | |
573 | if (v > SUBCARRIER_DETECT_THRESHOLD) { | |
574 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
575 | // note: synchronization time > 80 1/fs | |
576 | Demod.sumI += ci; | |
577 | Demod.sumQ += cq; | |
578 | Demod.posCount++; | |
579 | } else { // subcarrier lost | |
580 | Demod.state = DEMOD_UNSYNCD; | |
581 | } | |
582 | } else { | |
583 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
584 | } | |
585 | break; | |
586 | ||
587 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
588 | MAKE_SOFT_DECISION(); | |
589 | //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); | |
590 | if(v <= 0) { // logic '0' detected | |
591 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
592 | Demod.posCount = 0; // start of SOF sequence | |
593 | } else { | |
594 | if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs | |
595 | Demod.state = DEMOD_UNSYNCD; | |
596 | } | |
597 | } | |
598 | Demod.posCount++; | |
599 | break; | |
600 | ||
601 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
602 | Demod.posCount++; | |
603 | MAKE_SOFT_DECISION(); | |
604 | if(v > 0) { | |
605 | if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
606 | Demod.state = DEMOD_UNSYNCD; | |
607 | } else { | |
608 | LED_C_ON(); // Got SOF | |
609 | Demod.state = DEMOD_AWAITING_START_BIT; | |
610 | Demod.posCount = 0; | |
611 | Demod.len = 0; | |
612 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
613 | Demod.metricN = 0; | |
614 | Demod.metric = 0; | |
615 | */ | |
616 | } | |
617 | } else { | |
618 | if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu) | |
619 | Demod.state = DEMOD_UNSYNCD; | |
620 | LED_C_OFF(); | |
621 | } | |
622 | } | |
623 | break; | |
624 | ||
625 | case DEMOD_AWAITING_START_BIT: | |
626 | Demod.posCount++; | |
627 | MAKE_SOFT_DECISION(); | |
628 | if(v > 0) { | |
629 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
630 | Demod.state = DEMOD_UNSYNCD; | |
631 | LED_C_OFF(); | |
632 | } | |
633 | } else { // start bit detected | |
634 | Demod.bitCount = 0; | |
635 | Demod.posCount = 1; // this was the first half | |
636 | Demod.thisBit = v; | |
637 | Demod.shiftReg = 0; | |
638 | Demod.state = DEMOD_RECEIVING_DATA; | |
639 | } | |
640 | break; | |
641 | ||
642 | case DEMOD_RECEIVING_DATA: | |
643 | MAKE_SOFT_DECISION(); | |
644 | if(Demod.posCount == 0) { // first half of bit | |
645 | Demod.thisBit = v; | |
646 | Demod.posCount = 1; | |
647 | } else { // second half of bit | |
648 | Demod.thisBit += v; | |
649 | ||
650 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
651 | if(Demod.thisBit > 0) { | |
652 | Demod.metric += Demod.thisBit; | |
653 | } else { | |
654 | Demod.metric -= Demod.thisBit; | |
655 | } | |
656 | (Demod.metricN)++; | |
657 | */ | |
658 | ||
659 | Demod.shiftReg >>= 1; | |
660 | if(Demod.thisBit > 0) { // logic '1' | |
661 | Demod.shiftReg |= 0x200; | |
662 | } | |
663 | ||
664 | Demod.bitCount++; | |
665 | if(Demod.bitCount == 10) { | |
666 | uint16_t s = Demod.shiftReg; | |
667 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' | |
668 | uint8_t b = (s >> 1); | |
669 | Demod.output[Demod.len] = b; | |
670 | Demod.len++; | |
671 | Demod.state = DEMOD_AWAITING_START_BIT; | |
672 | } else { | |
673 | Demod.state = DEMOD_UNSYNCD; | |
674 | LED_C_OFF(); | |
675 | if(s == 0x000) { | |
676 | // This is EOF (start, stop and all data bits == '0' | |
677 | return TRUE; | |
678 | } | |
679 | } | |
680 | } | |
681 | Demod.posCount = 0; | |
682 | } | |
683 | break; | |
684 | ||
685 | default: | |
686 | Demod.state = DEMOD_UNSYNCD; | |
687 | LED_C_OFF(); | |
688 | break; | |
689 | } | |
690 | return FALSE; | |
691 | } | |
692 | ||
693 | ||
694 | static void DemodReset() | |
695 | { | |
696 | // Clear out the state of the "UART" that receives from the tag. | |
697 | Demod.len = 0; | |
698 | Demod.state = DEMOD_UNSYNCD; | |
699 | Demod.posCount = 0; | |
700 | Demod.sumI = 0; | |
701 | Demod.sumQ = 0; | |
702 | Demod.bitCount = 0; | |
703 | Demod.thisBit = 0; | |
704 | Demod.shiftReg = 0; | |
705 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
706 | } | |
707 | ||
708 | ||
709 | static void DemodInit(uint8_t *data) | |
710 | { | |
711 | Demod.output = data; | |
712 | DemodReset(); | |
713 | } | |
714 | ||
715 | ||
716 | /* | |
717 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
718 | * quiet: set to 'TRUE' to disable debug output | |
719 | */ | |
720 | static void GetSamplesFor14443bDemod(int n, bool quiet) | |
721 | { | |
722 | int max = 0; | |
723 | bool gotFrame = FALSE; | |
724 | int lastRxCounter, ci, cq, samples = 0; | |
725 | ||
726 | // Allocate memory from BigBuf for some buffers | |
727 | // free all previous allocations first | |
728 | BigBuf_free(); | |
729 | ||
730 | // And put the FPGA in the appropriate mode | |
731 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
732 | ||
733 | // The response (tag -> reader) that we're receiving. | |
734 | // Set up the demodulator for tag -> reader responses. | |
735 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
736 | ||
737 | // The DMA buffer, used to stream samples from the FPGA | |
738 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
739 | ||
740 | // Setup and start DMA. | |
741 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
742 | ||
743 | int8_t *upTo = dmaBuf; | |
744 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
745 | ||
746 | // Signal field is ON with the appropriate LED: | |
747 | LED_D_ON(); | |
748 | for(;;) { | |
749 | int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; | |
750 | if(behindBy > max) max = behindBy; | |
751 | ||
752 | while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) { | |
753 | ci = upTo[0]; | |
754 | cq = upTo[1]; | |
755 | upTo += 2; | |
756 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
757 | upTo = dmaBuf; | |
758 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
759 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
760 | } | |
761 | lastRxCounter -= 2; | |
762 | if(lastRxCounter <= 0) { | |
763 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
764 | } | |
765 | ||
766 | samples += 2; | |
767 | ||
768 | // | |
769 | gotFrame = Handle14443bSamplesDemod(ci , cq ); | |
770 | if ( gotFrame ) | |
771 | break; | |
772 | } | |
773 | ||
774 | if(samples > n || gotFrame) { | |
775 | break; | |
776 | } | |
777 | } | |
778 | ||
779 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
780 | ||
781 | if (!quiet) { | |
782 | Dbprintf("max behindby = %d, samples = %d, gotFrame = %s, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", | |
783 | max, | |
784 | samples, | |
785 | (gotFrame) ? "true" : "false", | |
786 | Demod.len, | |
787 | Demod.sumI, | |
788 | Demod.sumQ | |
789 | ); | |
790 | } | |
791 | ||
792 | //Tracing | |
793 | if (Demod.len > 0) { | |
794 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
795 | LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); | |
796 | } | |
797 | } | |
798 | ||
799 | ||
800 | //----------------------------------------------------------------------------- | |
801 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
802 | //----------------------------------------------------------------------------- | |
803 | static void TransmitFor14443b(void) | |
804 | { | |
805 | int c; | |
806 | ||
807 | FpgaSetupSsc(); | |
808 | ||
809 | while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
810 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
811 | } | |
812 | ||
813 | // Signal field is ON with the appropriate Red LED | |
814 | LED_D_ON(); | |
815 | // Signal we are transmitting with the Green LED | |
816 | LED_B_ON(); | |
817 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
818 | ||
819 | for(c = 0; c < 10;) { | |
820 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
821 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
822 | c++; | |
823 | } | |
824 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
825 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
826 | (void)r; | |
827 | } | |
828 | WDT_HIT(); | |
829 | } | |
830 | ||
831 | c = 0; | |
832 | for(;;) { | |
833 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
834 | AT91C_BASE_SSC->SSC_THR = ToSend[c]; | |
835 | c++; | |
836 | if(c >= ToSendMax) { | |
837 | break; | |
838 | } | |
839 | } | |
840 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
841 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
842 | (void)r; | |
843 | } | |
844 | WDT_HIT(); | |
845 | } | |
846 | LED_B_OFF(); // Finished sending | |
847 | } | |
848 | ||
849 | ||
850 | //----------------------------------------------------------------------------- | |
851 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
852 | // so that it is ready to transmit to the tag using TransmitFor14443b(). | |
853 | //----------------------------------------------------------------------------- | |
854 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) | |
855 | { | |
856 | int i, j; | |
857 | uint8_t b; | |
858 | ||
859 | ToSendReset(); | |
860 | ||
861 | // Establish initial reference level | |
862 | for(i = 0; i < 40; i++) { | |
863 | ToSendStuffBit(1); | |
864 | } | |
865 | // Send SOF | |
866 | for(i = 0; i < 11; i++) { | |
867 | ToSendStuffBit(0); | |
868 | } | |
869 | ||
870 | for(i = 0; i < len; i++) { | |
871 | // Stop bits/EGT | |
872 | ToSendStuffBit(1); | |
873 | ToSendStuffBit(1); | |
874 | // Start bit | |
875 | ToSendStuffBit(0); | |
876 | // Data bits | |
877 | b = cmd[i]; | |
878 | for(j = 0; j < 8; j++) { | |
879 | if(b & 1) { | |
880 | ToSendStuffBit(1); | |
881 | } else { | |
882 | ToSendStuffBit(0); | |
883 | } | |
884 | b >>= 1; | |
885 | } | |
886 | } | |
887 | // Send EOF | |
888 | ToSendStuffBit(1); | |
889 | for(i = 0; i < 11; i++) { | |
890 | ToSendStuffBit(0); | |
891 | } | |
892 | for(i = 0; i < 8; i++) { | |
893 | ToSendStuffBit(1); | |
894 | } | |
895 | ||
896 | // And then a little more, to make sure that the last character makes | |
897 | // it out before we switch to rx mode. | |
898 | for(i = 0; i < 10; i++) { | |
899 | ToSendStuffBit(1); | |
900 | } | |
901 | ||
902 | // Convert from last character reference to length | |
903 | ToSendMax++; | |
904 | } | |
905 | ||
906 | ||
907 | /** | |
908 | Convenience function to encode, transmit and trace iso 14443b comms | |
909 | **/ | |
910 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
911 | { | |
912 | CodeIso14443bAsReader(cmd, len); | |
913 | TransmitFor14443b(); | |
914 | if (tracing) { | |
915 | uint8_t parity[MAX_PARITY_SIZE]; | |
916 | LogTrace(cmd,len, 0, 0, parity, TRUE); | |
917 | } | |
918 | } | |
919 | ||
920 | /* Sends an APDU to the tag | |
921 | * TODO: check CRC and preamble | |
922 | */ | |
923 | int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) | |
924 | { | |
925 | uint8_t message_frame[message_length + 4]; | |
926 | // PCB | |
927 | message_frame[0] = 0x0A | pcb_blocknum; | |
928 | pcb_blocknum ^= 1; | |
929 | // CID | |
930 | message_frame[1] = 0; | |
931 | // INF | |
932 | memcpy(message_frame + 2, message, message_length); | |
933 | // EDC (CRC) | |
934 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
935 | // send | |
936 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); | |
937 | // get response | |
938 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT*100, TRUE); | |
939 | if(Demod.len < 3) | |
940 | { | |
941 | return 0; | |
942 | } | |
943 | // TODO: Check CRC | |
944 | // copy response contents | |
945 | if(response != NULL) | |
946 | { | |
947 | memcpy(response, Demod.output, Demod.len); | |
948 | } | |
949 | return Demod.len; | |
950 | } | |
951 | ||
952 | /* Perform the ISO 14443 B Card Selection procedure | |
953 | * Currently does NOT do any collision handling. | |
954 | * It expects 0-1 cards in the device's range. | |
955 | * TODO: Support multiple cards (perform anticollision) | |
956 | * TODO: Verify CRC checksums | |
957 | */ | |
958 | int iso14443b_select_card() | |
959 | { | |
960 | // WUPB command (including CRC) | |
961 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
962 | static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; | |
963 | // ATTRIB command (with space for CRC) | |
964 | uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; | |
965 | ||
966 | // first, wake up the tag | |
967 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
968 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
969 | // ATQB too short? | |
970 | if (Demod.len < 14) | |
971 | { | |
972 | return 2; | |
973 | } | |
974 | ||
975 | // select the tag | |
976 | // copy the PUPI to ATTRIB | |
977 | memcpy(attrib + 1, Demod.output + 1, 4); | |
978 | /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into | |
979 | ATTRIB (Param 3) */ | |
980 | attrib[7] = Demod.output[10] & 0x0F; | |
981 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
982 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); | |
983 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
984 | // Answer to ATTRIB too short? | |
985 | if(Demod.len < 3) | |
986 | { | |
987 | return 2; | |
988 | } | |
989 | // reset PCB block number | |
990 | pcb_blocknum = 0; | |
991 | return 1; | |
992 | } | |
993 | ||
994 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
995 | void iso14443b_setup() { | |
996 | ||
997 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
998 | ||
999 | BigBuf_free(); | |
1000 | // Set up the synchronous serial port | |
1001 | FpgaSetupSsc(); | |
1002 | // connect Demodulated Signal to ADC: | |
1003 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1004 | ||
1005 | // Signal field is on with the appropriate LED | |
1006 | LED_D_ON(); | |
1007 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
1008 | ||
1009 | //SpinDelay(100); | |
1010 | ||
1011 | // Start the timer | |
1012 | StartCountSspClk(); | |
1013 | ||
1014 | DemodReset(); | |
1015 | UartReset(); | |
1016 | } | |
1017 | ||
1018 | //----------------------------------------------------------------------------- | |
1019 | // Read a SRI512 ISO 14443B tag. | |
1020 | // | |
1021 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
1022 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
1023 | // we have a single tag in the field. | |
1024 | // | |
1025 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
1026 | //----------------------------------------------------------------------------- | |
1027 | void ReadSTMemoryIso14443b(uint32_t dwLast) | |
1028 | { | |
1029 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1030 | BigBuf_free(); | |
1031 | ||
1032 | clear_trace(); | |
1033 | set_tracing(TRUE); | |
1034 | ||
1035 | uint8_t i = 0x00; | |
1036 | ||
1037 | // Make sure that we start from off, since the tags are stateful; | |
1038 | // confusing things will happen if we don't reset them between reads. | |
1039 | LED_D_OFF(); | |
1040 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1041 | SpinDelay(200); | |
1042 | ||
1043 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1044 | FpgaSetupSsc(); | |
1045 | ||
1046 | // Now give it time to spin up. | |
1047 | // Signal field is on with the appropriate LED | |
1048 | LED_D_ON(); | |
1049 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
1050 | SpinDelay(200); | |
1051 | ||
1052 | // First command: wake up the tag using the INITIATE command | |
1053 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; | |
1054 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1055 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1056 | ||
1057 | if (Demod.len == 0) { | |
1058 | DbpString("No response from tag"); | |
1059 | set_tracing(FALSE); | |
1060 | return; | |
1061 | } else { | |
1062 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", | |
1063 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
1064 | } | |
1065 | ||
1066 | // There is a response, SELECT the uid | |
1067 | DbpString("Now SELECT tag:"); | |
1068 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
1069 | cmd1[1] = Demod.output[0]; | |
1070 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1071 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1072 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1073 | if (Demod.len != 3) { | |
1074 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); | |
1075 | set_tracing(FALSE); | |
1076 | return; | |
1077 | } | |
1078 | // Check the CRC of the answer: | |
1079 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1080 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
1081 | DbpString("CRC Error reading select response."); | |
1082 | set_tracing(FALSE); | |
1083 | return; | |
1084 | } | |
1085 | // Check response from the tag: should be the same UID as the command we just sent: | |
1086 | if (cmd1[1] != Demod.output[0]) { | |
1087 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); | |
1088 | set_tracing(FALSE); | |
1089 | return; | |
1090 | } | |
1091 | ||
1092 | // Tag is now selected, | |
1093 | // First get the tag's UID: | |
1094 | cmd1[0] = 0x0B; | |
1095 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
1096 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
1097 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1098 | if (Demod.len != 10) { | |
1099 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); | |
1100 | set_tracing(FALSE); | |
1101 | return; | |
1102 | } | |
1103 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1104 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
1105 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { | |
1106 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1107 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); | |
1108 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1109 | } | |
1110 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
1111 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], | |
1112 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
1113 | ||
1114 | // Now loop to read all 16 blocks, address from 0 to last block | |
1115 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); | |
1116 | cmd1[0] = 0x08; | |
1117 | i = 0x00; | |
1118 | dwLast++; | |
1119 | for (;;) { | |
1120 | if (i == dwLast) { | |
1121 | DbpString("System area block (0xff):"); | |
1122 | i = 0xff; | |
1123 | } | |
1124 | cmd1[1] = i; | |
1125 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1126 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1127 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE); | |
1128 | if (Demod.len != 6) { // Check if we got an answer from the tag | |
1129 | DbpString("Expected 6 bytes from tag, got less..."); | |
1130 | return; | |
1131 | } | |
1132 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1133 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1134 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
1135 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1136 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); | |
1137 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1138 | } | |
1139 | // Now print out the memory location: | |
1140 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, | |
1141 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], | |
1142 | (Demod.output[4]<<8)+Demod.output[5]); | |
1143 | if (i == 0xff) { | |
1144 | break; | |
1145 | } | |
1146 | i++; | |
1147 | } | |
1148 | ||
1149 | set_tracing(FALSE); | |
1150 | } | |
1151 | ||
1152 | ||
1153 | //============================================================================= | |
1154 | // Finally, the `sniffer' combines elements from both the reader and | |
1155 | // simulated tag, to show both sides of the conversation. | |
1156 | //============================================================================= | |
1157 | ||
1158 | //----------------------------------------------------------------------------- | |
1159 | // Record the sequence of commands sent by the reader to the tag, with | |
1160 | // triggering so that we start recording at the point that the tag is moved | |
1161 | // near the reader. | |
1162 | //----------------------------------------------------------------------------- | |
1163 | /* | |
1164 | * Memory usage for this function, (within BigBuf) | |
1165 | * Last Received command (reader->tag) - MAX_FRAME_SIZE | |
1166 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
1167 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE | |
1168 | * Demodulated samples received - all the rest | |
1169 | */ | |
1170 | void RAMFUNC SnoopIso14443b(void) | |
1171 | { | |
1172 | // We won't start recording the frames that we acquire until we trigger; | |
1173 | // a good trigger condition to get started is probably when we see a | |
1174 | // response from the tag. | |
1175 | int triggered = TRUE; // TODO: set and evaluate trigger condition | |
1176 | ||
1177 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1178 | BigBuf_free(); | |
1179 | ||
1180 | clear_trace(); | |
1181 | set_tracing(TRUE); | |
1182 | ||
1183 | // The DMA buffer, used to stream samples from the FPGA | |
1184 | int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE); | |
1185 | int lastRxCounter; | |
1186 | int8_t *upTo; | |
1187 | int ci, cq; | |
1188 | int maxBehindBy = 0; | |
1189 | ||
1190 | // Count of samples received so far, so that we can include timing | |
1191 | // information in the trace buffer. | |
1192 | int samples = 0; | |
1193 | ||
1194 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1195 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1196 | ||
1197 | // Print some debug information about the buffer sizes | |
1198 | Dbprintf("Snooping buffers initialized:"); | |
1199 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1200 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1201 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
1202 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); | |
1203 | ||
1204 | // Signal field is off, no reader signal, no tag signal | |
1205 | LEDsoff(); | |
1206 | ||
1207 | // And put the FPGA in the appropriate mode | |
1208 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
1209 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1210 | ||
1211 | // Setup for the DMA. | |
1212 | FpgaSetupSsc(); | |
1213 | upTo = dmaBuf; | |
1214 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
1215 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
1216 | uint8_t parity[MAX_PARITY_SIZE] = {0x00}; | |
1217 | ||
1218 | bool TagIsActive = FALSE; | |
1219 | bool ReaderIsActive = FALSE; | |
1220 | ||
1221 | // And now we loop, receiving samples. | |
1222 | for(;;) { | |
1223 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
1224 | (ISO14443B_DMA_BUFFER_SIZE-1); | |
1225 | if(behindBy > maxBehindBy) { | |
1226 | maxBehindBy = behindBy; | |
1227 | } | |
1228 | ||
1229 | if(behindBy < 2) continue; | |
1230 | ||
1231 | ci = upTo[0]; | |
1232 | cq = upTo[1]; | |
1233 | upTo += 2; | |
1234 | lastRxCounter -= 2; | |
1235 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { | |
1236 | upTo = dmaBuf; | |
1237 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
1238 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
1239 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; | |
1240 | WDT_HIT(); | |
1241 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not? | |
1242 | Dbprintf("blew circular buffer! behindBy=%d", behindBy); | |
1243 | break; | |
1244 | } | |
1245 | ||
1246 | if(!tracing) { | |
1247 | DbpString("Trace full"); | |
1248 | break; | |
1249 | } | |
1250 | ||
1251 | if(BUTTON_PRESS()) { | |
1252 | DbpString("cancelled"); | |
1253 | break; | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | samples += 2; | |
1258 | ||
1259 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
1260 | if (Handle14443bUartBit(ci & 0x01)) { | |
1261 | if ( triggered) | |
1262 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); | |
1263 | ||
1264 | /* And ready to receive another command. */ | |
1265 | UartReset(); | |
1266 | /* And also reset the demod code, which might have been */ | |
1267 | /* false-triggered by the commands from the reader. */ | |
1268 | DemodReset(); | |
1269 | } | |
1270 | if (Handle14443bUartBit(cq & 0x01)) { | |
1271 | if (triggered) | |
1272 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE); | |
1273 | ||
1274 | /* And ready to receive another command. */ | |
1275 | UartReset(); | |
1276 | /* And also reset the demod code, which might have been */ | |
1277 | /* false-triggered by the commands from the reader. */ | |
1278 | DemodReset(); | |
1279 | } | |
1280 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); | |
1281 | } | |
1282 | ||
1283 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time | |
1284 | // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103 | |
1285 | if(Handle14443bSamplesDemod(ci & 0xfe, cq & 0xfe)) { | |
1286 | ||
1287 | //Use samples as a time measurement | |
1288 | LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE); | |
1289 | ||
1290 | triggered = TRUE; | |
1291 | ||
1292 | // And ready to receive another response. | |
1293 | DemodReset(); | |
1294 | } | |
1295 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | FpgaDisableSscDma(); | |
1300 | LEDsoff(); | |
1301 | ||
1302 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
1303 | DbpString("Snoop statistics:"); | |
1304 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1305 | Dbprintf(" Uart State: %x", Uart.state); | |
1306 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1307 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1308 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
1309 | set_tracing(FALSE); | |
1310 | } | |
1311 | ||
1312 | ||
1313 | /* | |
1314 | * Send raw command to tag ISO14443B | |
1315 | * @Input | |
1316 | * datalen len of buffer data | |
1317 | * recv bool when true wait for data from tag and send to client | |
1318 | * powerfield bool leave the field on when true | |
1319 | * data buffer with byte to send | |
1320 | * | |
1321 | * @Output | |
1322 | * none | |
1323 | * | |
1324 | */ | |
1325 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) | |
1326 | { | |
1327 | // param ISO_ | |
1328 | // param ISO_CONNECT | |
1329 | // param ISO14A_NO_DISCONNECT | |
1330 | //if (param & ISO14A_NO_DISCONNECT) | |
1331 | // return; | |
1332 | iso14443b_setup(); | |
1333 | ||
1334 | if ( datalen == 0 && recv == 0 && powerfield == 0){ | |
1335 | ||
1336 | } else { | |
1337 | set_tracing(TRUE); | |
1338 | CodeAndTransmit14443bAsReader(data, datalen); | |
1339 | } | |
1340 | ||
1341 | if (recv) { | |
1342 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE); | |
1343 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1344 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
1345 | } | |
1346 | ||
1347 | if (!powerfield) { | |
1348 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1349 | FpgaDisableSscDma(); | |
1350 | set_tracing(FALSE); | |
1351 | LED_D_OFF(); | |
1352 | } | |
1353 | } | |
1354 |