]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | #include <proxmark3.h> | |
9 | #include <stdlib.h> | |
10 | #include "apps.h" | |
11 | #ifdef WITH_LCD | |
12 | #include "fonts.h" | |
13 | #include "LCD.h" | |
14 | #endif | |
15 | ||
16 | ||
17 | //============================================================================= | |
18 | // A buffer where we can queue things up to be sent through the FPGA, for | |
19 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
20 | // is the order in which they go out on the wire. | |
21 | //============================================================================= | |
22 | ||
23 | BYTE ToSend[256]; | |
24 | int ToSendMax; | |
25 | static int ToSendBit; | |
26 | ||
27 | void BufferClear(void) | |
28 | { | |
29 | memset(BigBuf,0,sizeof(BigBuf)); | |
30 | DbpString("Buffer cleared"); | |
31 | } | |
32 | ||
33 | void ToSendReset(void) | |
34 | { | |
35 | ToSendMax = -1; | |
36 | ToSendBit = 8; | |
37 | } | |
38 | ||
39 | void ToSendStuffBit(int b) | |
40 | { | |
41 | if(ToSendBit >= 8) { | |
42 | ToSendMax++; | |
43 | ToSend[ToSendMax] = 0; | |
44 | ToSendBit = 0; | |
45 | } | |
46 | ||
47 | if(b) { | |
48 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
49 | } | |
50 | ||
51 | ToSendBit++; | |
52 | ||
53 | if(ToSendBit >= sizeof(ToSend)) { | |
54 | ToSendBit = 0; | |
55 | DbpString("ToSendStuffBit overflowed!"); | |
56 | } | |
57 | } | |
58 | ||
59 | //============================================================================= | |
60 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
61 | //============================================================================= | |
62 | ||
63 | void DbpString(char *str) | |
64 | { | |
65 | /* this holds up stuff unless we're connected to usb */ | |
66 | if (!UsbConnected()) | |
67 | return; | |
68 | ||
69 | UsbCommand c; | |
70 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
71 | c.ext1 = strlen(str); | |
72 | memcpy(c.d.asBytes, str, c.ext1); | |
73 | ||
74 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
75 | // TODO fix USB so stupid things like this aren't req'd | |
76 | SpinDelay(50); | |
77 | } | |
78 | ||
79 | void DbpIntegers(int x1, int x2, int x3) | |
80 | { | |
81 | /* this holds up stuff unless we're connected to usb */ | |
82 | if (!UsbConnected()) | |
83 | return; | |
84 | ||
85 | UsbCommand c; | |
86 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
87 | c.ext1 = x1; | |
88 | c.ext2 = x2; | |
89 | c.ext3 = x3; | |
90 | ||
91 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
92 | // XXX | |
93 | SpinDelay(50); | |
94 | } | |
95 | ||
96 | //----------------------------------------------------------------------------- | |
97 | // Read an ADC channel and block till it completes, then return the result | |
98 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
99 | // return that. | |
100 | //----------------------------------------------------------------------------- | |
101 | static int ReadAdc(int ch) | |
102 | { | |
103 | DWORD d; | |
104 | ||
105 | ADC_CONTROL = ADC_CONTROL_RESET; | |
106 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | | |
107 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
108 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); | |
109 | ||
110 | ADC_CONTROL = ADC_CONTROL_START; | |
111 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) | |
112 | ; | |
113 | d = ADC_CHANNEL_DATA(ch); | |
114 | ||
115 | return d; | |
116 | } | |
117 | ||
118 | static int AvgAdc(int ch) | |
119 | { | |
120 | int i; | |
121 | int a = 0; | |
122 | ||
123 | for(i = 0; i < 32; i++) { | |
124 | a += ReadAdc(ch); | |
125 | } | |
126 | ||
127 | return (a + 15) >> 5; | |
128 | } | |
129 | ||
130 | void MeasureAntennaTuning(void) | |
131 | { | |
132 | BYTE *dest = (BYTE *)BigBuf; | |
133 | int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; | |
134 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
135 | ||
136 | UsbCommand c; | |
137 | ||
138 | DbpString("Measuring antenna characteristics, please wait."); | |
139 | memset(BigBuf,0,sizeof(BigBuf)); | |
140 | ||
141 | /* | |
142 | * Sweeps the useful LF range of the proxmark from | |
143 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
144 | * read the voltage in the antenna, the result left | |
145 | * in the buffer is a graph which should clearly show | |
146 | * the resonating frequency of your LF antenna | |
147 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
148 | */ | |
149 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
150 | for (i=255; i>19; i--) { | |
151 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
152 | SpinDelay(20); | |
153 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
154 | // can measure voltages up to 137500 mV | |
155 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
156 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
157 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
158 | ||
159 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
160 | if(dest[i] > peak) { | |
161 | peakv = adcval; | |
162 | peak = dest[i]; | |
163 | peakf = i; | |
164 | ptr = i; | |
165 | } | |
166 | } | |
167 | ||
168 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
169 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
170 | SpinDelay(20); | |
171 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
172 | // can measure voltages up to 33000 mV | |
173 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
174 | ||
175 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
176 | c.ext1 = (vLf125 << 0) | (vLf134 << 16); | |
177 | c.ext2 = vHf; | |
178 | c.ext3 = peakf | (peakv << 16); | |
179 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
180 | } | |
181 | ||
182 | void SimulateTagHfListen(void) | |
183 | { | |
184 | BYTE *dest = (BYTE *)BigBuf; | |
185 | int n = sizeof(BigBuf); | |
186 | BYTE v = 0; | |
187 | int i; | |
188 | int p = 0; | |
189 | ||
190 | // We're using this mode just so that I can test it out; the simulated | |
191 | // tag mode would work just as well and be simpler. | |
192 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
193 | ||
194 | // We need to listen to the high-frequency, peak-detected path. | |
195 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
196 | ||
197 | FpgaSetupSsc(); | |
198 | ||
199 | i = 0; | |
200 | for(;;) { | |
201 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
202 | SSC_TRANSMIT_HOLDING = 0xff; | |
203 | } | |
204 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
205 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING; | |
206 | ||
207 | v <<= 1; | |
208 | if(r & 1) { | |
209 | v |= 1; | |
210 | } | |
211 | p++; | |
212 | ||
213 | if(p >= 8) { | |
214 | dest[i] = v; | |
215 | v = 0; | |
216 | p = 0; | |
217 | i++; | |
218 | ||
219 | if(i >= n) { | |
220 | break; | |
221 | } | |
222 | } | |
223 | } | |
224 | } | |
225 | DbpString("simulate tag (now type bitsamples)"); | |
226 | } | |
227 | ||
228 | void ReadMem(int addr) | |
229 | { | |
230 | const DWORD *data = ((DWORD *)addr); | |
231 | int i; | |
232 | ||
233 | DbpString("Reading memory at address"); | |
234 | DbpIntegers(0, 0, addr); | |
235 | for (i = 0; i < 8; i+= 2) | |
236 | DbpIntegers(0, data[i], data[i+1]); | |
237 | } | |
238 | ||
239 | // samy's sniff and repeat routine | |
240 | void SamyRun() | |
241 | { | |
242 | DbpString("Stand-alone mode! No PC necessary."); | |
243 | ||
244 | // 3 possible options? no just 2 for now | |
245 | #define OPTS 2 | |
246 | ||
247 | int high[OPTS], low[OPTS]; | |
248 | ||
249 | // Oooh pretty -- notify user we're in elite samy mode now | |
250 | LED(LED_RED, 200); | |
251 | LED(LED_ORANGE, 200); | |
252 | LED(LED_GREEN, 200); | |
253 | LED(LED_ORANGE, 200); | |
254 | LED(LED_RED, 200); | |
255 | LED(LED_ORANGE, 200); | |
256 | LED(LED_GREEN, 200); | |
257 | LED(LED_ORANGE, 200); | |
258 | LED(LED_RED, 200); | |
259 | ||
260 | int selected = 0; | |
261 | int playing = 0; | |
262 | ||
263 | // Turn on selected LED | |
264 | LED(selected + 1, 0); | |
265 | ||
266 | for (;;) | |
267 | { | |
268 | UsbPoll(FALSE); | |
269 | WDT_HIT(); | |
270 | ||
271 | // Was our button held down or pressed? | |
272 | int button_pressed = BUTTON_HELD(1000); | |
273 | SpinDelay(300); | |
274 | ||
275 | // Button was held for a second, begin recording | |
276 | if (button_pressed > 0) | |
277 | { | |
278 | LEDsoff(); | |
279 | LED(selected + 1, 0); | |
280 | LED(LED_RED2, 0); | |
281 | ||
282 | // record | |
283 | DbpString("Starting recording"); | |
284 | ||
285 | // wait for button to be released | |
286 | while(BUTTON_PRESS()) | |
287 | WDT_HIT(); | |
288 | ||
289 | /* need this delay to prevent catching some weird data */ | |
290 | SpinDelay(500); | |
291 | ||
292 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
293 | DbpString("Recorded"); | |
294 | DbpIntegers(selected, high[selected], low[selected]); | |
295 | ||
296 | LEDsoff(); | |
297 | LED(selected + 1, 0); | |
298 | // Finished recording | |
299 | ||
300 | // If we were previously playing, set playing off | |
301 | // so next button push begins playing what we recorded | |
302 | playing = 0; | |
303 | } | |
304 | ||
305 | // Change where to record (or begin playing) | |
306 | else if (button_pressed) | |
307 | { | |
308 | // Next option if we were previously playing | |
309 | if (playing) | |
310 | selected = (selected + 1) % OPTS; | |
311 | playing = !playing; | |
312 | ||
313 | LEDsoff(); | |
314 | LED(selected + 1, 0); | |
315 | ||
316 | // Begin transmitting | |
317 | if (playing) | |
318 | { | |
319 | LED(LED_GREEN, 0); | |
320 | DbpString("Playing"); | |
321 | // wait for button to be released | |
322 | while(BUTTON_PRESS()) | |
323 | WDT_HIT(); | |
324 | DbpIntegers(selected, high[selected], low[selected]); | |
325 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
326 | DbpString("Done playing"); | |
327 | if (BUTTON_HELD(1000) > 0) | |
328 | { | |
329 | DbpString("Exiting"); | |
330 | LEDsoff(); | |
331 | return; | |
332 | } | |
333 | ||
334 | /* We pressed a button so ignore it here with a delay */ | |
335 | SpinDelay(300); | |
336 | ||
337 | // when done, we're done playing, move to next option | |
338 | selected = (selected + 1) % OPTS; | |
339 | playing = !playing; | |
340 | LEDsoff(); | |
341 | LED(selected + 1, 0); | |
342 | } | |
343 | else | |
344 | while(BUTTON_PRESS()) | |
345 | WDT_HIT(); | |
346 | } | |
347 | } | |
348 | } | |
349 | ||
350 | ||
351 | /* | |
352 | OBJECTIVE | |
353 | Listen and detect an external reader. Determine the best location | |
354 | for the antenna. | |
355 | ||
356 | INSTRUCTIONS: | |
357 | Inside the ListenReaderField() function, there is two mode. | |
358 | By default, when you call the function, you will enter mode 1. | |
359 | If you press the PM3 button one time, you will enter mode 2. | |
360 | If you press the PM3 button a second time, you will exit the function. | |
361 | ||
362 | DESCRIPTION OF MODE 1: | |
363 | This mode just listens for an external reader field and lights up green | |
364 | for HF and/or red for LF. This is the original mode of the detectreader | |
365 | function. | |
366 | ||
367 | DESCRIPTION OF MODE 2: | |
368 | This mode will visually represent, using the LEDs, the actual strength of the | |
369 | current compared to the maximum current detected. Basically, once you know | |
370 | what kind of external reader is present, it will help you spot the best location to place | |
371 | your antenna. You will probably not get some good results if there is a LF and a HF reader | |
372 | at the same place! :-) | |
373 | ||
374 | LIGHT SCHEME USED: | |
375 | */ | |
376 | static const char LIGHT_SCHEME[] = { | |
377 | 0x0, /* ---- | No field detected */ | |
378 | 0x1, /* X--- | 14% of maximum current detected */ | |
379 | 0x2, /* -X-- | 29% of maximum current detected */ | |
380 | 0x4, /* --X- | 43% of maximum current detected */ | |
381 | 0x8, /* ---X | 57% of maximum current detected */ | |
382 | 0xC, /* --XX | 71% of maximum current detected */ | |
383 | 0xE, /* -XXX | 86% of maximum current detected */ | |
384 | 0xF, /* XXXX | 100% of maximum current detected */ | |
385 | }; | |
386 | static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); | |
387 | ||
388 | void ListenReaderField(int limit) | |
389 | { | |
390 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; | |
391 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; | |
392 | int mode=1, display_val, display_max, i; | |
393 | ||
394 | #define LF_ONLY 1 | |
395 | #define HF_ONLY 2 | |
396 | ||
397 | LEDsoff(); | |
398 | ||
399 | lf_av=lf_max=ReadAdc(ADC_CHAN_LF); | |
400 | ||
401 | if(limit != HF_ONLY) { | |
402 | DbpString("LF 125/134 Baseline:"); | |
403 | DbpIntegers(lf_av,0,0); | |
404 | lf_baseline= lf_av; | |
405 | } | |
406 | ||
407 | hf_av=hf_max=ReadAdc(ADC_CHAN_HF); | |
408 | ||
409 | if (limit != LF_ONLY) { | |
410 | DbpString("HF 13.56 Baseline:"); | |
411 | DbpIntegers(hf_av,0,0); | |
412 | hf_baseline= hf_av; | |
413 | } | |
414 | ||
415 | for(;;) { | |
416 | if (BUTTON_PRESS()) { | |
417 | SpinDelay(500); | |
418 | switch (mode) { | |
419 | case 1: | |
420 | mode=2; | |
421 | DbpString("Signal Strength Mode"); | |
422 | break; | |
423 | case 2: | |
424 | default: | |
425 | DbpString("Stopped"); | |
426 | LEDsoff(); | |
427 | return; | |
428 | break; | |
429 | } | |
430 | } | |
431 | WDT_HIT(); | |
432 | ||
433 | if (limit != HF_ONLY) { | |
434 | if(mode==1) { | |
435 | if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); | |
436 | else LED_D_OFF(); | |
437 | } | |
438 | ||
439 | ++lf_count; | |
440 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
441 | // see if there's a significant change | |
442 | if(abs(lf_av - lf_av_new) > 10) { | |
443 | DbpString("LF 125/134 Field Change:"); | |
444 | DbpIntegers(lf_av,lf_av_new,lf_count); | |
445 | lf_av= lf_av_new; | |
446 | if (lf_av > lf_max) | |
447 | lf_max = lf_av; | |
448 | lf_count= 0; | |
449 | } | |
450 | } | |
451 | ||
452 | if (limit != LF_ONLY) { | |
453 | if (mode == 1){ | |
454 | if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); | |
455 | else LED_B_OFF(); | |
456 | } | |
457 | ||
458 | ++hf_count; | |
459 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
460 | // see if there's a significant change | |
461 | if(abs(hf_av - hf_av_new) > 10) { | |
462 | DbpString("HF 13.56 Field Change:"); | |
463 | DbpIntegers(hf_av,hf_av_new,hf_count); | |
464 | hf_av= hf_av_new; | |
465 | if (hf_av > hf_max) | |
466 | hf_max = hf_av; | |
467 | hf_count= 0; | |
468 | } | |
469 | } | |
470 | ||
471 | if(mode == 2) { | |
472 | if (limit == LF_ONLY) { | |
473 | display_val = lf_av; | |
474 | display_max = lf_max; | |
475 | } else if (limit == HF_ONLY) { | |
476 | display_val = hf_av; | |
477 | display_max = hf_max; | |
478 | } else { /* Pick one at random */ | |
479 | if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { | |
480 | display_val = hf_av; | |
481 | display_max = hf_max; | |
482 | } else { | |
483 | display_val = lf_av; | |
484 | display_max = lf_max; | |
485 | } | |
486 | } | |
487 | for (i=0; i<LIGHT_LEN; i++) { | |
488 | if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { | |
489 | if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); | |
490 | if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); | |
491 | if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); | |
492 | if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); | |
493 | break; | |
494 | } | |
495 | } | |
496 | } | |
497 | } | |
498 | } | |
499 | ||
500 | void UsbPacketReceived(BYTE *packet, int len) | |
501 | { | |
502 | UsbCommand *c = (UsbCommand *)packet; | |
503 | ||
504 | switch(c->cmd) { | |
505 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
506 | AcquireRawAdcSamples125k(c->ext1); | |
507 | break; | |
508 | ||
509 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
510 | ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); | |
511 | break; | |
512 | ||
513 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
514 | AcquireRawAdcSamplesIso15693(); | |
515 | break; | |
516 | ||
517 | case CMD_BUFF_CLEAR: | |
518 | BufferClear(); | |
519 | break; | |
520 | ||
521 | case CMD_READER_ISO_15693: | |
522 | ReaderIso15693(c->ext1); | |
523 | break; | |
524 | ||
525 | case CMD_SIMTAG_ISO_15693: | |
526 | SimTagIso15693(c->ext1); | |
527 | break; | |
528 | ||
529 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
530 | AcquireRawAdcSamplesIso14443(c->ext1); | |
531 | break; | |
532 | ||
533 | case CMD_READ_SRI512_TAG: | |
534 | ReadSRI512Iso14443(c->ext1); | |
535 | break; | |
536 | ||
537 | case CMD_READER_ISO_14443a: | |
538 | ReaderIso14443a(c->ext1); | |
539 | break; | |
540 | ||
541 | case CMD_SNOOP_ISO_14443: | |
542 | SnoopIso14443(); | |
543 | break; | |
544 | ||
545 | case CMD_SNOOP_ISO_14443a: | |
546 | SnoopIso14443a(); | |
547 | break; | |
548 | ||
549 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
550 | SimulateTagHfListen(); | |
551 | break; | |
552 | ||
553 | case CMD_SIMULATE_TAG_ISO_14443: | |
554 | SimulateIso14443Tag(); | |
555 | break; | |
556 | ||
557 | case CMD_SIMULATE_TAG_ISO_14443a: | |
558 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID | |
559 | break; | |
560 | ||
561 | case CMD_MEASURE_ANTENNA_TUNING: | |
562 | MeasureAntennaTuning(); | |
563 | break; | |
564 | ||
565 | case CMD_LISTEN_READER_FIELD: | |
566 | ListenReaderField(c->ext1); | |
567 | break; | |
568 | ||
569 | case CMD_HID_DEMOD_FSK: | |
570 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
571 | break; | |
572 | ||
573 | case CMD_HID_SIM_TAG: | |
574 | CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID | |
575 | break; | |
576 | ||
577 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
578 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
579 | SpinDelay(200); | |
580 | LED_D_OFF(); // LED D indicates field ON or OFF | |
581 | break; | |
582 | ||
583 | case CMD_READ_TI_TYPE: | |
584 | ReadTItag(); | |
585 | break; | |
586 | ||
587 | case CMD_WRITE_TI_TYPE: | |
588 | WriteTItag(c->ext1,c->ext2,c->ext3); | |
589 | break; | |
590 | ||
591 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { | |
592 | UsbCommand n; | |
593 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
594 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
595 | } else { | |
596 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
597 | } | |
598 | n.ext1 = c->ext1; | |
599 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); | |
600 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
601 | break; | |
602 | } | |
603 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
604 | BYTE *b = (BYTE *)BigBuf; | |
605 | memcpy(b+c->ext1, c->d.asBytes, 48); | |
606 | break; | |
607 | } | |
608 | case CMD_SIMULATE_TAG_125K: | |
609 | LED_A_ON(); | |
610 | SimulateTagLowFrequency(c->ext1, 1); | |
611 | LED_A_OFF(); | |
612 | break; | |
613 | case CMD_READ_MEM: | |
614 | ReadMem(c->ext1); | |
615 | break; | |
616 | case CMD_SET_LF_DIVISOR: | |
617 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); | |
618 | break; | |
619 | #ifdef WITH_LCD | |
620 | case CMD_LCD_RESET: | |
621 | LCDReset(); | |
622 | break; | |
623 | case CMD_LCD: | |
624 | LCDSend(c->ext1); | |
625 | break; | |
626 | #endif | |
627 | case CMD_SETUP_WRITE: | |
628 | case CMD_FINISH_WRITE: | |
629 | case CMD_HARDWARE_RESET: | |
630 | USB_D_PLUS_PULLUP_OFF(); | |
631 | SpinDelay(1000); | |
632 | SpinDelay(1000); | |
633 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; | |
634 | for(;;) { | |
635 | // We're going to reset, and the bootrom will take control. | |
636 | } | |
637 | break; | |
638 | ||
639 | default: | |
640 | DbpString("unknown command"); | |
641 | break; | |
642 | } | |
643 | } | |
644 | ||
645 | void AppMain(void) | |
646 | { | |
647 | memset(BigBuf,0,sizeof(BigBuf)); | |
648 | SpinDelay(100); | |
649 | ||
650 | LED_D_OFF(); | |
651 | LED_C_OFF(); | |
652 | LED_B_OFF(); | |
653 | LED_A_OFF(); | |
654 | ||
655 | UsbStart(); | |
656 | ||
657 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
658 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); | |
659 | PIO_DISABLE = (1 << GPIO_PCK0); | |
660 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; | |
661 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
662 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | | |
663 | PMC_CLK_PRESCALE_DIV_4; | |
664 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); | |
665 | ||
666 | // Reset SPI | |
667 | SPI_CONTROL = SPI_CONTROL_RESET; | |
668 | // Reset SSC | |
669 | SSC_CONTROL = SSC_CONTROL_RESET; | |
670 | ||
671 | // Load the FPGA image, which we have stored in our flash. | |
672 | FpgaDownloadAndGo(); | |
673 | ||
674 | #ifdef WITH_LCD | |
675 | ||
676 | LCDInit(); | |
677 | ||
678 | // test text on different colored backgrounds | |
679 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
680 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
681 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); | |
682 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); | |
683 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
684 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
685 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
686 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
687 | ||
688 | // color bands | |
689 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
690 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
691 | LCDFill(0, 1+8*10, 132, 8, RED); | |
692 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
693 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
694 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
695 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
696 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
697 | ||
698 | #endif | |
699 | ||
700 | for(;;) { | |
701 | UsbPoll(FALSE); | |
702 | WDT_HIT(); | |
703 | ||
704 | if (BUTTON_HELD(1000) > 0) | |
705 | SamyRun(); | |
706 | } | |
707 | } |