]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/fpga.c
The older gnuarm in the windows toolchain seems to need the glue_7t section
[proxmark3-svn] / armsrc / fpga.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------\r
2// Routines to load the FPGA image, and then to configure the FPGA's major\r
3// mode once it is configured.\r
4//\r
5// Jonathan Westhues, April 2006\r
6//-----------------------------------------------------------------------------\r
7#include <proxmark3.h>\r
8#include "apps.h"\r
9\r
10//-----------------------------------------------------------------------------\r
11// Set up the Serial Peripheral Interface as master\r
12// Used to write the FPGA config word\r
13// May also be used to write to other SPI attached devices like an LCD\r
14//-----------------------------------------------------------------------------\r
15void SetupSpi(int mode)\r
16{\r
17 // PA10 -> SPI_NCS2 chip select (LCD)\r
18 // PA11 -> SPI_NCS0 chip select (FPGA)\r
19 // PA12 -> SPI_MISO Master-In Slave-Out\r
20 // PA13 -> SPI_MOSI Master-Out Slave-In\r
21 // PA14 -> SPI_SPCK Serial Clock\r
22\r
23 // Disable PIO control of the following pins, allows use by the SPI peripheral\r
24 PIO_DISABLE = (1 << GPIO_NCS0) |\r
25 (1 << GPIO_NCS2) |\r
26 (1 << GPIO_MISO) |\r
27 (1 << GPIO_MOSI) |\r
28 (1 << GPIO_SPCK);\r
29\r
30 PIO_PERIPHERAL_A_SEL = (1 << GPIO_NCS0) |\r
31 (1 << GPIO_MISO) |\r
32 (1 << GPIO_MOSI) |\r
33 (1 << GPIO_SPCK);\r
34\r
35 PIO_PERIPHERAL_B_SEL = (1 << GPIO_NCS2);\r
36\r
37 //enable the SPI Peripheral clock\r
38 PMC_PERIPHERAL_CLK_ENABLE = (1<<PERIPH_SPI);\r
39 // Enable SPI\r
40 SPI_CONTROL = SPI_CONTROL_ENABLE;\r
41\r
42 switch (mode) {\r
43 case SPI_FPGA_MODE:\r
44 SPI_MODE =\r
45 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
46 (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)\r
47 ( 0 << 7) | // Local Loopback Disabled\r
48 ( 1 << 4) | // Mode Fault Detection disabled\r
49 ( 0 << 2) | // Chip selects connected directly to peripheral\r
50 ( 0 << 1) | // Fixed Peripheral Select\r
51 ( 1 << 0); // Master Mode\r
52 SPI_FOR_CHIPSEL_0 =\r
53 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
54 ( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
55 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
56 ( 8 << 4) | // Bits per Transfer (16 bits)\r
57 ( 0 << 3) | // Chip Select inactive after transfer\r
58 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge\r
59 ( 0 << 0); // Clock Polarity inactive state is logic 0\r
60 break;\r
61 case SPI_LCD_MODE:\r
62 SPI_MODE =\r
63 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)\r
64 (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)\r
65 ( 0 << 7) | // Local Loopback Disabled\r
66 ( 1 << 4) | // Mode Fault Detection disabled\r
67 ( 0 << 2) | // Chip selects connected directly to peripheral\r
68 ( 0 << 1) | // Fixed Peripheral Select\r
69 ( 1 << 0); // Master Mode\r
70 SPI_FOR_CHIPSEL_2 =\r
71 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)\r
72 ( 1 << 16) | // Delay Before SPCK (1 MCK period)\r
73 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud\r
74 ( 1 << 4) | // Bits per Transfer (9 bits)\r
75 ( 0 << 3) | // Chip Select inactive after transfer\r
76 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge\r
77 ( 0 << 0); // Clock Polarity inactive state is logic 0\r
78 break;\r
79 default: // Disable SPI\r
80 SPI_CONTROL = SPI_CONTROL_DISABLE;\r
81 break;\r
82 }\r
83}\r
84\r
85//-----------------------------------------------------------------------------\r
86// Set up the synchronous serial port, with the one set of options that we\r
87// always use when we are talking to the FPGA. Both RX and TX are enabled.\r
88//-----------------------------------------------------------------------------\r
89void FpgaSetupSsc(void)\r
90{\r
91 // First configure the GPIOs, and get ourselves a clock.\r
92 PIO_PERIPHERAL_A_SEL = (1 << GPIO_SSC_FRAME) |\r
93 (1 << GPIO_SSC_DIN) |\r
94 (1 << GPIO_SSC_DOUT) |\r
95 (1 << GPIO_SSC_CLK);\r
96 PIO_DISABLE = (1 << GPIO_SSC_DOUT);\r
97\r
98 PMC_PERIPHERAL_CLK_ENABLE = (1 << PERIPH_SSC);\r
99\r
100 // Now set up the SSC proper, starting from a known state.\r
101 SSC_CONTROL = SSC_CONTROL_RESET;\r
102\r
103 // RX clock comes from TX clock, RX starts when TX starts, data changes\r
104 // on RX clock rising edge, sampled on falling edge\r
105 SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);\r
106\r
107 // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync\r
108 // pulse, no output sync, start on positive-going edge of sync\r
109 SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(8) |\r
110 SSC_FRAME_MODE_MSB_FIRST | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);\r
111\r
112 // clock comes from TK pin, no clock output, outputs change on falling\r
113 // edge of TK, start on rising edge of TF\r
114 SSC_TRANSMIT_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(2) |\r
115 SSC_CLOCK_MODE_START(5);\r
116\r
117 // tx framing is the same as the rx framing\r
118 SSC_TRANSMIT_FRAME_MODE = SSC_RECEIVE_FRAME_MODE;\r
119\r
120 SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;\r
121}\r
122\r
123//-----------------------------------------------------------------------------\r
124// Set up DMA to receive samples from the FPGA. We will use the PDC, with\r
125// a single buffer as a circular buffer (so that we just chain back to\r
126// ourselves, not to another buffer). The stuff to manipulate those buffers\r
127// is in apps.h, because it should be inlined, for speed.\r
128//-----------------------------------------------------------------------------\r
129void FpgaSetupSscDma(BYTE *buf, int len)\r
130{\r
131 PDC_RX_POINTER(SSC_BASE) = (DWORD)buf;\r
132 PDC_RX_COUNTER(SSC_BASE) = len;\r
133 PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)buf;\r
134 PDC_RX_NEXT_COUNTER(SSC_BASE) = len;\r
135 PDC_CONTROL(SSC_BASE) = PDC_RX_ENABLE;\r
136}\r
137\r
138//-----------------------------------------------------------------------------\r
139// Download the FPGA image stored in flash (slave serial).\r
140//-----------------------------------------------------------------------------\r
141void FpgaDownloadAndGo(void)\r
142{\r
143 // FPGA image lives in FLASH at base address 0x2000\r
144 // The current board design can not accomodate anything bigger than a XC2S30\r
145 // FPGA and the config file size is fixed at 336,768 bits = 10,524 DWORDs\r
146 const DWORD *FpgaImage=((DWORD *)0x2000);\r
147 const DWORD FpgaImageLen=10524;\r
148\r
149 int i, j;\r
150\r
151 PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_ON);\r
152 PIO_ENABLE = (1 << GPIO_FPGA_ON);\r
153 PIO_OUTPUT_DATA_SET = (1 << GPIO_FPGA_ON);\r
154\r
155 SpinDelay(50);\r
156\r
157 LED_D_ON();\r
158\r
159 HIGH(GPIO_FPGA_NPROGRAM);\r
160 LOW(GPIO_FPGA_CCLK);\r
161 LOW(GPIO_FPGA_DIN);\r
162 PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_NPROGRAM) |\r
163 (1 << GPIO_FPGA_CCLK) |\r
164 (1 << GPIO_FPGA_DIN);\r
165 SpinDelay(1);\r
166\r
167 LOW(GPIO_FPGA_NPROGRAM);\r
168 SpinDelay(50);\r
169 HIGH(GPIO_FPGA_NPROGRAM);\r
170\r
171 for(i = 0; i < FpgaImageLen; i++) {\r
172 DWORD v = FpgaImage[i];\r
173 for(j = 0; j < 32; j++) {\r
174 if(v & 0x80000000) {\r
175 HIGH(GPIO_FPGA_DIN);\r
176 } else {\r
177 LOW(GPIO_FPGA_DIN);\r
178 }\r
179 HIGH(GPIO_FPGA_CCLK);\r
180 LOW(GPIO_FPGA_CCLK);\r
181 v <<= 1;\r
182 }\r
183 }\r
184\r
185 LED_D_OFF();\r
186}\r
187\r
188//-----------------------------------------------------------------------------\r
189// Send a 16 bit command/data pair to the FPGA.\r
190// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0\r
191// where C is the 4 bit command and D is the 12 bit data\r
192//-----------------------------------------------------------------------------\r
193void FpgaSendCommand(WORD cmd, WORD v)\r
194{\r
195 SetupSpi(SPI_FPGA_MODE);\r
196 while ((SPI_STATUS & SPI_STATUS_TX_EMPTY) == 0); // wait for the transfer to complete\r
197 SPI_TX_DATA = SPI_CONTROL_LAST_TRANSFER | cmd | v; // send the data\r
198}\r
199//-----------------------------------------------------------------------------\r
200// Write the FPGA setup word (that determines what mode the logic is in, read\r
201// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to\r
202// avoid changing this function's occurence everywhere in the source code.\r
203//-----------------------------------------------------------------------------\r
204void FpgaWriteConfWord(BYTE v)\r
205{\r
206 FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);\r
207}\r
208\r
209//-----------------------------------------------------------------------------\r
210// Set up the CMOS switches that mux the ADC: four switches, independently\r
211// closable, but should only close one at a time. Not an FPGA thing, but\r
212// the samples from the ADC always flow through the FPGA.\r
213//-----------------------------------------------------------------------------\r
214void SetAdcMuxFor(int whichGpio)\r
215{\r
216 PIO_OUTPUT_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
217 (1 << GPIO_MUXSEL_LOPKD) |\r
218 (1 << GPIO_MUXSEL_LORAW) |\r
219 (1 << GPIO_MUXSEL_HIRAW);\r
220\r
221 PIO_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |\r
222 (1 << GPIO_MUXSEL_LOPKD) |\r
223 (1 << GPIO_MUXSEL_LORAW) |\r
224 (1 << GPIO_MUXSEL_HIRAW);\r
225\r
226 LOW(GPIO_MUXSEL_HIPKD);\r
227 LOW(GPIO_MUXSEL_HIRAW);\r
228 LOW(GPIO_MUXSEL_LORAW);\r
229 LOW(GPIO_MUXSEL_LOPKD);\r
230\r
231 HIGH(whichGpio);\r
232}\r
Impressum, Datenschutz