| 1 | //----------------------------------------------------------------------------- |
| 2 | // Gerhard de Koning Gans - May 2008 |
| 3 | // Hagen Fritsch - June 2010 |
| 4 | // Gerhard de Koning Gans - May 2011 |
| 5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation |
| 6 | // |
| 7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 8 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 9 | // the license. |
| 10 | //----------------------------------------------------------------------------- |
| 11 | // Routines to support iClass. |
| 12 | //----------------------------------------------------------------------------- |
| 13 | // Based on ISO14443a implementation. Still in experimental phase. |
| 14 | // Contribution made during a security research at Radboud University Nijmegen |
| 15 | // |
| 16 | // Please feel free to contribute and extend iClass support!! |
| 17 | //----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // FIX: |
| 20 | // ==== |
| 21 | // We still have sometimes a demodulation error when snooping iClass communication. |
| 22 | // The resulting trace of a read-block-03 command may look something like this: |
| 23 | // |
| 24 | // + 22279: : 0c 03 e8 01 |
| 25 | // |
| 26 | // ...with an incorrect answer... |
| 27 | // |
| 28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc |
| 29 | // |
| 30 | // We still left the error signalling bytes in the traces like 0xbb |
| 31 | // |
| 32 | // A correct trace should look like this: |
| 33 | // |
| 34 | // + 21112: : 0c 03 e8 01 |
| 35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 |
| 36 | // |
| 37 | //----------------------------------------------------------------------------- |
| 38 | |
| 39 | #include "proxmark3.h" |
| 40 | #include "apps.h" |
| 41 | #include "util.h" |
| 42 | #include "string.h" |
| 43 | #include "common.h" |
| 44 | #include "cmd.h" |
| 45 | // Needed for CRC in emulation mode; |
| 46 | // same construction as in ISO 14443; |
| 47 | // different initial value (CRC_ICLASS) |
| 48 | #include "iso14443crc.h" |
| 49 | #include "iso15693tools.h" |
| 50 | #include "protocols.h" |
| 51 | #include "optimized_cipher.h" |
| 52 | |
| 53 | static int timeout = 4096; |
| 54 | |
| 55 | |
| 56 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); |
| 57 | |
| 58 | //----------------------------------------------------------------------------- |
| 59 | // The software UART that receives commands from the reader, and its state |
| 60 | // variables. |
| 61 | //----------------------------------------------------------------------------- |
| 62 | static struct { |
| 63 | enum { |
| 64 | STATE_UNSYNCD, |
| 65 | STATE_START_OF_COMMUNICATION, |
| 66 | STATE_RECEIVING |
| 67 | } state; |
| 68 | uint16_t shiftReg; |
| 69 | int bitCnt; |
| 70 | int byteCnt; |
| 71 | int byteCntMax; |
| 72 | int posCnt; |
| 73 | int nOutOfCnt; |
| 74 | int OutOfCnt; |
| 75 | int syncBit; |
| 76 | int samples; |
| 77 | int highCnt; |
| 78 | int swapper; |
| 79 | int counter; |
| 80 | int bitBuffer; |
| 81 | int dropPosition; |
| 82 | uint8_t *output; |
| 83 | } Uart; |
| 84 | |
| 85 | static RAMFUNC int OutOfNDecoding(int bit) |
| 86 | { |
| 87 | //int error = 0; |
| 88 | int bitright; |
| 89 | |
| 90 | if(!Uart.bitBuffer) { |
| 91 | Uart.bitBuffer = bit ^ 0xFF0; |
| 92 | return FALSE; |
| 93 | } |
| 94 | else { |
| 95 | Uart.bitBuffer <<= 4; |
| 96 | Uart.bitBuffer ^= bit; |
| 97 | } |
| 98 | |
| 99 | /*if(Uart.swapper) { |
| 100 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
| 101 | Uart.byteCnt++; |
| 102 | Uart.swapper = 0; |
| 103 | if(Uart.byteCnt > 15) { return TRUE; } |
| 104 | } |
| 105 | else { |
| 106 | Uart.swapper = 1; |
| 107 | }*/ |
| 108 | |
| 109 | if(Uart.state != STATE_UNSYNCD) { |
| 110 | Uart.posCnt++; |
| 111 | |
| 112 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { |
| 113 | bit = 0x00; |
| 114 | } |
| 115 | else { |
| 116 | bit = 0x01; |
| 117 | } |
| 118 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { |
| 119 | bitright = 0x00; |
| 120 | } |
| 121 | else { |
| 122 | bitright = 0x01; |
| 123 | } |
| 124 | if(bit != bitright) { bit = bitright; } |
| 125 | |
| 126 | |
| 127 | // So, now we only have to deal with *bit*, lets see... |
| 128 | if(Uart.posCnt == 1) { |
| 129 | // measurement first half bitperiod |
| 130 | if(!bit) { |
| 131 | // Drop in first half means that we are either seeing |
| 132 | // an SOF or an EOF. |
| 133 | |
| 134 | if(Uart.nOutOfCnt == 1) { |
| 135 | // End of Communication |
| 136 | Uart.state = STATE_UNSYNCD; |
| 137 | Uart.highCnt = 0; |
| 138 | if(Uart.byteCnt == 0) { |
| 139 | // Its not straightforward to show single EOFs |
| 140 | // So just leave it and do not return TRUE |
| 141 | Uart.output[0] = 0xf0; |
| 142 | Uart.byteCnt++; |
| 143 | } |
| 144 | else { |
| 145 | return TRUE; |
| 146 | } |
| 147 | } |
| 148 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { |
| 149 | // When not part of SOF or EOF, it is an error |
| 150 | Uart.state = STATE_UNSYNCD; |
| 151 | Uart.highCnt = 0; |
| 152 | //error = 4; |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | else { |
| 157 | // measurement second half bitperiod |
| 158 | // Count the bitslot we are in... (ISO 15693) |
| 159 | Uart.nOutOfCnt++; |
| 160 | |
| 161 | if(!bit) { |
| 162 | if(Uart.dropPosition) { |
| 163 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
| 164 | //error = 1; |
| 165 | } |
| 166 | else { |
| 167 | //error = 7; |
| 168 | } |
| 169 | // It is an error if we already have seen a drop in current frame |
| 170 | Uart.state = STATE_UNSYNCD; |
| 171 | Uart.highCnt = 0; |
| 172 | } |
| 173 | else { |
| 174 | Uart.dropPosition = Uart.nOutOfCnt; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | Uart.posCnt = 0; |
| 179 | |
| 180 | |
| 181 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { |
| 182 | Uart.nOutOfCnt = 0; |
| 183 | |
| 184 | if(Uart.state == STATE_START_OF_COMMUNICATION) { |
| 185 | if(Uart.dropPosition == 4) { |
| 186 | Uart.state = STATE_RECEIVING; |
| 187 | Uart.OutOfCnt = 256; |
| 188 | } |
| 189 | else if(Uart.dropPosition == 3) { |
| 190 | Uart.state = STATE_RECEIVING; |
| 191 | Uart.OutOfCnt = 4; |
| 192 | //Uart.output[Uart.byteCnt] = 0xdd; |
| 193 | //Uart.byteCnt++; |
| 194 | } |
| 195 | else { |
| 196 | Uart.state = STATE_UNSYNCD; |
| 197 | Uart.highCnt = 0; |
| 198 | } |
| 199 | Uart.dropPosition = 0; |
| 200 | } |
| 201 | else { |
| 202 | // RECEIVING DATA |
| 203 | // 1 out of 4 |
| 204 | if(!Uart.dropPosition) { |
| 205 | Uart.state = STATE_UNSYNCD; |
| 206 | Uart.highCnt = 0; |
| 207 | //error = 9; |
| 208 | } |
| 209 | else { |
| 210 | Uart.shiftReg >>= 2; |
| 211 | |
| 212 | // Swap bit order |
| 213 | Uart.dropPosition--; |
| 214 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } |
| 215 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } |
| 216 | |
| 217 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); |
| 218 | Uart.bitCnt += 2; |
| 219 | Uart.dropPosition = 0; |
| 220 | |
| 221 | if(Uart.bitCnt == 8) { |
| 222 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); |
| 223 | Uart.byteCnt++; |
| 224 | Uart.bitCnt = 0; |
| 225 | Uart.shiftReg = 0; |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { |
| 231 | // RECEIVING DATA |
| 232 | // 1 out of 256 |
| 233 | if(!Uart.dropPosition) { |
| 234 | Uart.state = STATE_UNSYNCD; |
| 235 | Uart.highCnt = 0; |
| 236 | //error = 3; |
| 237 | } |
| 238 | else { |
| 239 | Uart.dropPosition--; |
| 240 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); |
| 241 | Uart.byteCnt++; |
| 242 | Uart.bitCnt = 0; |
| 243 | Uart.shiftReg = 0; |
| 244 | Uart.nOutOfCnt = 0; |
| 245 | Uart.dropPosition = 0; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | /*if(error) { |
| 250 | Uart.output[Uart.byteCnt] = 0xAA; |
| 251 | Uart.byteCnt++; |
| 252 | Uart.output[Uart.byteCnt] = error & 0xFF; |
| 253 | Uart.byteCnt++; |
| 254 | Uart.output[Uart.byteCnt] = 0xAA; |
| 255 | Uart.byteCnt++; |
| 256 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; |
| 257 | Uart.byteCnt++; |
| 258 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
| 259 | Uart.byteCnt++; |
| 260 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; |
| 261 | Uart.byteCnt++; |
| 262 | Uart.output[Uart.byteCnt] = 0xAA; |
| 263 | Uart.byteCnt++; |
| 264 | return TRUE; |
| 265 | }*/ |
| 266 | } |
| 267 | |
| 268 | } |
| 269 | else { |
| 270 | bit = Uart.bitBuffer & 0xf0; |
| 271 | bit >>= 4; |
| 272 | bit ^= 0x0F; // drops become 1s ;-) |
| 273 | if(bit) { |
| 274 | // should have been high or at least (4 * 128) / fc |
| 275 | // according to ISO this should be at least (9 * 128 + 20) / fc |
| 276 | if(Uart.highCnt == 8) { |
| 277 | // we went low, so this could be start of communication |
| 278 | // it turns out to be safer to choose a less significant |
| 279 | // syncbit... so we check whether the neighbour also represents the drop |
| 280 | Uart.posCnt = 1; // apparently we are busy with our first half bit period |
| 281 | Uart.syncBit = bit & 8; |
| 282 | Uart.samples = 3; |
| 283 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } |
| 284 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } |
| 285 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } |
| 286 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } |
| 287 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; |
| 288 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { |
| 289 | Uart.syncBit = 8; |
| 290 | |
| 291 | // the first half bit period is expected in next sample |
| 292 | Uart.posCnt = 0; |
| 293 | Uart.samples = 3; |
| 294 | } |
| 295 | } |
| 296 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } |
| 297 | |
| 298 | Uart.syncBit <<= 4; |
| 299 | Uart.state = STATE_START_OF_COMMUNICATION; |
| 300 | Uart.bitCnt = 0; |
| 301 | Uart.byteCnt = 0; |
| 302 | Uart.nOutOfCnt = 0; |
| 303 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 |
| 304 | Uart.dropPosition = 0; |
| 305 | Uart.shiftReg = 0; |
| 306 | //error = 0; |
| 307 | } |
| 308 | else { |
| 309 | Uart.highCnt = 0; |
| 310 | } |
| 311 | } |
| 312 | else { |
| 313 | if(Uart.highCnt < 8) { |
| 314 | Uart.highCnt++; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | return FALSE; |
| 320 | } |
| 321 | |
| 322 | //============================================================================= |
| 323 | // Manchester |
| 324 | //============================================================================= |
| 325 | |
| 326 | static struct { |
| 327 | enum { |
| 328 | DEMOD_UNSYNCD, |
| 329 | DEMOD_START_OF_COMMUNICATION, |
| 330 | DEMOD_START_OF_COMMUNICATION2, |
| 331 | DEMOD_START_OF_COMMUNICATION3, |
| 332 | DEMOD_SOF_COMPLETE, |
| 333 | DEMOD_MANCHESTER_D, |
| 334 | DEMOD_MANCHESTER_E, |
| 335 | DEMOD_END_OF_COMMUNICATION, |
| 336 | DEMOD_END_OF_COMMUNICATION2, |
| 337 | DEMOD_MANCHESTER_F, |
| 338 | DEMOD_ERROR_WAIT |
| 339 | } state; |
| 340 | int bitCount; |
| 341 | int posCount; |
| 342 | int syncBit; |
| 343 | uint16_t shiftReg; |
| 344 | int buffer; |
| 345 | int buffer2; |
| 346 | int buffer3; |
| 347 | int buff; |
| 348 | int samples; |
| 349 | int len; |
| 350 | enum { |
| 351 | SUB_NONE, |
| 352 | SUB_FIRST_HALF, |
| 353 | SUB_SECOND_HALF, |
| 354 | SUB_BOTH |
| 355 | } sub; |
| 356 | uint8_t *output; |
| 357 | } Demod; |
| 358 | |
| 359 | static RAMFUNC int ManchesterDecoding(int v) |
| 360 | { |
| 361 | int bit; |
| 362 | int modulation; |
| 363 | int error = 0; |
| 364 | |
| 365 | bit = Demod.buffer; |
| 366 | Demod.buffer = Demod.buffer2; |
| 367 | Demod.buffer2 = Demod.buffer3; |
| 368 | Demod.buffer3 = v; |
| 369 | |
| 370 | if(Demod.buff < 3) { |
| 371 | Demod.buff++; |
| 372 | return FALSE; |
| 373 | } |
| 374 | |
| 375 | if(Demod.state==DEMOD_UNSYNCD) { |
| 376 | Demod.output[Demod.len] = 0xfa; |
| 377 | Demod.syncBit = 0; |
| 378 | //Demod.samples = 0; |
| 379 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part |
| 380 | |
| 381 | if(bit & 0x08) { |
| 382 | Demod.syncBit = 0x08; |
| 383 | } |
| 384 | |
| 385 | if(bit & 0x04) { |
| 386 | if(Demod.syncBit) { |
| 387 | bit <<= 4; |
| 388 | } |
| 389 | Demod.syncBit = 0x04; |
| 390 | } |
| 391 | |
| 392 | if(bit & 0x02) { |
| 393 | if(Demod.syncBit) { |
| 394 | bit <<= 2; |
| 395 | } |
| 396 | Demod.syncBit = 0x02; |
| 397 | } |
| 398 | |
| 399 | if(bit & 0x01 && Demod.syncBit) { |
| 400 | Demod.syncBit = 0x01; |
| 401 | } |
| 402 | |
| 403 | if(Demod.syncBit) { |
| 404 | Demod.len = 0; |
| 405 | Demod.state = DEMOD_START_OF_COMMUNICATION; |
| 406 | Demod.sub = SUB_FIRST_HALF; |
| 407 | Demod.bitCount = 0; |
| 408 | Demod.shiftReg = 0; |
| 409 | Demod.samples = 0; |
| 410 | if(Demod.posCount) { |
| 411 | //if(trigger) LED_A_OFF(); // Not useful in this case... |
| 412 | switch(Demod.syncBit) { |
| 413 | case 0x08: Demod.samples = 3; break; |
| 414 | case 0x04: Demod.samples = 2; break; |
| 415 | case 0x02: Demod.samples = 1; break; |
| 416 | case 0x01: Demod.samples = 0; break; |
| 417 | } |
| 418 | // SOF must be long burst... otherwise stay unsynced!!! |
| 419 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { |
| 420 | Demod.state = DEMOD_UNSYNCD; |
| 421 | } |
| 422 | } |
| 423 | else { |
| 424 | // SOF must be long burst... otherwise stay unsynced!!! |
| 425 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { |
| 426 | Demod.state = DEMOD_UNSYNCD; |
| 427 | error = 0x88; |
| 428 | } |
| 429 | |
| 430 | } |
| 431 | error = 0; |
| 432 | |
| 433 | } |
| 434 | } |
| 435 | else { |
| 436 | modulation = bit & Demod.syncBit; |
| 437 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
| 438 | |
| 439 | Demod.samples += 4; |
| 440 | |
| 441 | if(Demod.posCount==0) { |
| 442 | Demod.posCount = 1; |
| 443 | if(modulation) { |
| 444 | Demod.sub = SUB_FIRST_HALF; |
| 445 | } |
| 446 | else { |
| 447 | Demod.sub = SUB_NONE; |
| 448 | } |
| 449 | } |
| 450 | else { |
| 451 | Demod.posCount = 0; |
| 452 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { |
| 453 | if(Demod.state!=DEMOD_ERROR_WAIT) { |
| 454 | Demod.state = DEMOD_ERROR_WAIT; |
| 455 | Demod.output[Demod.len] = 0xaa; |
| 456 | error = 0x01; |
| 457 | } |
| 458 | }*/ |
| 459 | //else if(modulation) { |
| 460 | if(modulation) { |
| 461 | if(Demod.sub == SUB_FIRST_HALF) { |
| 462 | Demod.sub = SUB_BOTH; |
| 463 | } |
| 464 | else { |
| 465 | Demod.sub = SUB_SECOND_HALF; |
| 466 | } |
| 467 | } |
| 468 | else if(Demod.sub == SUB_NONE) { |
| 469 | if(Demod.state == DEMOD_SOF_COMPLETE) { |
| 470 | Demod.output[Demod.len] = 0x0f; |
| 471 | Demod.len++; |
| 472 | Demod.state = DEMOD_UNSYNCD; |
| 473 | // error = 0x0f; |
| 474 | return TRUE; |
| 475 | } |
| 476 | else { |
| 477 | Demod.state = DEMOD_ERROR_WAIT; |
| 478 | error = 0x33; |
| 479 | } |
| 480 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { |
| 481 | Demod.state = DEMOD_ERROR_WAIT; |
| 482 | Demod.output[Demod.len] = 0xaa; |
| 483 | error = 0x01; |
| 484 | }*/ |
| 485 | } |
| 486 | |
| 487 | switch(Demod.state) { |
| 488 | case DEMOD_START_OF_COMMUNICATION: |
| 489 | if(Demod.sub == SUB_BOTH) { |
| 490 | //Demod.state = DEMOD_MANCHESTER_D; |
| 491 | Demod.state = DEMOD_START_OF_COMMUNICATION2; |
| 492 | Demod.posCount = 1; |
| 493 | Demod.sub = SUB_NONE; |
| 494 | } |
| 495 | else { |
| 496 | Demod.output[Demod.len] = 0xab; |
| 497 | Demod.state = DEMOD_ERROR_WAIT; |
| 498 | error = 0xd2; |
| 499 | } |
| 500 | break; |
| 501 | case DEMOD_START_OF_COMMUNICATION2: |
| 502 | if(Demod.sub == SUB_SECOND_HALF) { |
| 503 | Demod.state = DEMOD_START_OF_COMMUNICATION3; |
| 504 | } |
| 505 | else { |
| 506 | Demod.output[Demod.len] = 0xab; |
| 507 | Demod.state = DEMOD_ERROR_WAIT; |
| 508 | error = 0xd3; |
| 509 | } |
| 510 | break; |
| 511 | case DEMOD_START_OF_COMMUNICATION3: |
| 512 | if(Demod.sub == SUB_SECOND_HALF) { |
| 513 | // Demod.state = DEMOD_MANCHESTER_D; |
| 514 | Demod.state = DEMOD_SOF_COMPLETE; |
| 515 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
| 516 | //Demod.len++; |
| 517 | } |
| 518 | else { |
| 519 | Demod.output[Demod.len] = 0xab; |
| 520 | Demod.state = DEMOD_ERROR_WAIT; |
| 521 | error = 0xd4; |
| 522 | } |
| 523 | break; |
| 524 | case DEMOD_SOF_COMPLETE: |
| 525 | case DEMOD_MANCHESTER_D: |
| 526 | case DEMOD_MANCHESTER_E: |
| 527 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) |
| 528 | // 00001111 = 1 (0 in 14443) |
| 529 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF |
| 530 | Demod.bitCount++; |
| 531 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; |
| 532 | Demod.state = DEMOD_MANCHESTER_D; |
| 533 | } |
| 534 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF |
| 535 | Demod.bitCount++; |
| 536 | Demod.shiftReg >>= 1; |
| 537 | Demod.state = DEMOD_MANCHESTER_E; |
| 538 | } |
| 539 | else if(Demod.sub == SUB_BOTH) { |
| 540 | Demod.state = DEMOD_MANCHESTER_F; |
| 541 | } |
| 542 | else { |
| 543 | Demod.state = DEMOD_ERROR_WAIT; |
| 544 | error = 0x55; |
| 545 | } |
| 546 | break; |
| 547 | |
| 548 | case DEMOD_MANCHESTER_F: |
| 549 | // Tag response does not need to be a complete byte! |
| 550 | if(Demod.len > 0 || Demod.bitCount > 0) { |
| 551 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF |
| 552 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align data |
| 553 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
| 554 | Demod.len++; |
| 555 | } |
| 556 | |
| 557 | Demod.state = DEMOD_UNSYNCD; |
| 558 | return TRUE; |
| 559 | } |
| 560 | else { |
| 561 | Demod.output[Demod.len] = 0xad; |
| 562 | Demod.state = DEMOD_ERROR_WAIT; |
| 563 | error = 0x03; |
| 564 | } |
| 565 | break; |
| 566 | |
| 567 | case DEMOD_ERROR_WAIT: |
| 568 | Demod.state = DEMOD_UNSYNCD; |
| 569 | break; |
| 570 | |
| 571 | default: |
| 572 | Demod.output[Demod.len] = 0xdd; |
| 573 | Demod.state = DEMOD_UNSYNCD; |
| 574 | break; |
| 575 | } |
| 576 | |
| 577 | /*if(Demod.bitCount>=9) { |
| 578 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
| 579 | Demod.len++; |
| 580 | |
| 581 | Demod.parityBits <<= 1; |
| 582 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); |
| 583 | |
| 584 | Demod.bitCount = 0; |
| 585 | Demod.shiftReg = 0; |
| 586 | }*/ |
| 587 | if(Demod.bitCount>=8) { |
| 588 | Demod.shiftReg >>= 1; |
| 589 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); |
| 590 | Demod.len++; |
| 591 | Demod.bitCount = 0; |
| 592 | Demod.shiftReg = 0; |
| 593 | } |
| 594 | |
| 595 | if(error) { |
| 596 | Demod.output[Demod.len] = 0xBB; |
| 597 | Demod.len++; |
| 598 | Demod.output[Demod.len] = error & 0xFF; |
| 599 | Demod.len++; |
| 600 | Demod.output[Demod.len] = 0xBB; |
| 601 | Demod.len++; |
| 602 | Demod.output[Demod.len] = bit & 0xFF; |
| 603 | Demod.len++; |
| 604 | Demod.output[Demod.len] = Demod.buffer & 0xFF; |
| 605 | Demod.len++; |
| 606 | // Look harder ;-) |
| 607 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; |
| 608 | Demod.len++; |
| 609 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
| 610 | Demod.len++; |
| 611 | Demod.output[Demod.len] = 0xBB; |
| 612 | Demod.len++; |
| 613 | return TRUE; |
| 614 | } |
| 615 | |
| 616 | } |
| 617 | |
| 618 | } // end (state != UNSYNCED) |
| 619 | |
| 620 | return FALSE; |
| 621 | } |
| 622 | |
| 623 | //============================================================================= |
| 624 | // Finally, a `sniffer' for iClass communication |
| 625 | // Both sides of communication! |
| 626 | //============================================================================= |
| 627 | |
| 628 | //----------------------------------------------------------------------------- |
| 629 | // Record the sequence of commands sent by the reader to the tag, with |
| 630 | // triggering so that we start recording at the point that the tag is moved |
| 631 | // near the reader. |
| 632 | //----------------------------------------------------------------------------- |
| 633 | void RAMFUNC SnoopIClass(void) |
| 634 | { |
| 635 | |
| 636 | |
| 637 | // We won't start recording the frames that we acquire until we trigger; |
| 638 | // a good trigger condition to get started is probably when we see a |
| 639 | // response from the tag. |
| 640 | //int triggered = FALSE; // FALSE to wait first for card |
| 641 | |
| 642 | // The command (reader -> tag) that we're receiving. |
| 643 | // The length of a received command will in most cases be no more than 18 bytes. |
| 644 | // So 32 should be enough! |
| 645 | #define ICLASS_BUFFER_SIZE 32 |
| 646 | uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; |
| 647 | // The response (tag -> reader) that we're receiving. |
| 648 | uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; |
| 649 | |
| 650 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 651 | |
| 652 | // free all BigBuf memory |
| 653 | BigBuf_free(); |
| 654 | // The DMA buffer, used to stream samples from the FPGA |
| 655 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
| 656 | |
| 657 | set_tracing(TRUE); |
| 658 | clear_trace(); |
| 659 | iso14a_set_trigger(FALSE); |
| 660 | |
| 661 | int lastRxCounter; |
| 662 | uint8_t *upTo; |
| 663 | int smpl; |
| 664 | int maxBehindBy = 0; |
| 665 | |
| 666 | // Count of samples received so far, so that we can include timing |
| 667 | // information in the trace buffer. |
| 668 | int samples = 0; |
| 669 | rsamples = 0; |
| 670 | |
| 671 | // Set up the demodulator for tag -> reader responses. |
| 672 | Demod.output = tagToReaderResponse; |
| 673 | Demod.len = 0; |
| 674 | Demod.state = DEMOD_UNSYNCD; |
| 675 | |
| 676 | // Setup for the DMA. |
| 677 | FpgaSetupSsc(); |
| 678 | upTo = dmaBuf; |
| 679 | lastRxCounter = DMA_BUFFER_SIZE; |
| 680 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
| 681 | |
| 682 | // And the reader -> tag commands |
| 683 | memset(&Uart, 0, sizeof(Uart)); |
| 684 | Uart.output = readerToTagCmd; |
| 685 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// |
| 686 | Uart.state = STATE_UNSYNCD; |
| 687 | |
| 688 | // And put the FPGA in the appropriate mode |
| 689 | // Signal field is off with the appropriate LED |
| 690 | LED_D_OFF(); |
| 691 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); |
| 692 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
| 693 | |
| 694 | uint32_t time_0 = GetCountSspClk(); |
| 695 | uint32_t time_start = 0; |
| 696 | uint32_t time_stop = 0; |
| 697 | |
| 698 | int div = 0; |
| 699 | //int div2 = 0; |
| 700 | int decbyte = 0; |
| 701 | int decbyter = 0; |
| 702 | |
| 703 | // And now we loop, receiving samples. |
| 704 | for(;;) { |
| 705 | LED_A_ON(); |
| 706 | WDT_HIT(); |
| 707 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
| 708 | (DMA_BUFFER_SIZE-1); |
| 709 | if(behindBy > maxBehindBy) { |
| 710 | maxBehindBy = behindBy; |
| 711 | if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) { |
| 712 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); |
| 713 | goto done; |
| 714 | } |
| 715 | } |
| 716 | if(behindBy < 1) continue; |
| 717 | |
| 718 | LED_A_OFF(); |
| 719 | smpl = upTo[0]; |
| 720 | upTo++; |
| 721 | lastRxCounter -= 1; |
| 722 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { |
| 723 | upTo -= DMA_BUFFER_SIZE; |
| 724 | lastRxCounter += DMA_BUFFER_SIZE; |
| 725 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
| 726 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
| 727 | } |
| 728 | |
| 729 | //samples += 4; |
| 730 | samples += 1; |
| 731 | |
| 732 | if(smpl & 0xF) { |
| 733 | decbyte ^= (1 << (3 - div)); |
| 734 | } |
| 735 | |
| 736 | // FOR READER SIDE COMMUMICATION... |
| 737 | |
| 738 | decbyter <<= 2; |
| 739 | decbyter ^= (smpl & 0x30); |
| 740 | |
| 741 | div++; |
| 742 | |
| 743 | if((div + 1) % 2 == 0) { |
| 744 | smpl = decbyter; |
| 745 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { |
| 746 | rsamples = samples - Uart.samples; |
| 747 | time_stop = (GetCountSspClk()-time_0) << 4; |
| 748 | LED_C_ON(); |
| 749 | |
| 750 | //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; |
| 751 | //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; |
| 752 | if(tracing) { |
| 753 | uint8_t parity[MAX_PARITY_SIZE]; |
| 754 | GetParity(Uart.output, Uart.byteCnt, parity); |
| 755 | LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); |
| 756 | } |
| 757 | |
| 758 | |
| 759 | /* And ready to receive another command. */ |
| 760 | Uart.state = STATE_UNSYNCD; |
| 761 | /* And also reset the demod code, which might have been */ |
| 762 | /* false-triggered by the commands from the reader. */ |
| 763 | Demod.state = DEMOD_UNSYNCD; |
| 764 | LED_B_OFF(); |
| 765 | Uart.byteCnt = 0; |
| 766 | }else{ |
| 767 | time_start = (GetCountSspClk()-time_0) << 4; |
| 768 | } |
| 769 | decbyter = 0; |
| 770 | } |
| 771 | |
| 772 | if(div > 3) { |
| 773 | smpl = decbyte; |
| 774 | if(ManchesterDecoding(smpl & 0x0F)) { |
| 775 | time_stop = (GetCountSspClk()-time_0) << 4; |
| 776 | |
| 777 | rsamples = samples - Demod.samples; |
| 778 | LED_B_ON(); |
| 779 | |
| 780 | if(tracing) { |
| 781 | uint8_t parity[MAX_PARITY_SIZE]; |
| 782 | GetParity(Demod.output, Demod.len, parity); |
| 783 | LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); |
| 784 | } |
| 785 | |
| 786 | // And ready to receive another response. |
| 787 | memset(&Demod, 0, sizeof(Demod)); |
| 788 | Demod.output = tagToReaderResponse; |
| 789 | Demod.state = DEMOD_UNSYNCD; |
| 790 | LED_C_OFF(); |
| 791 | }else{ |
| 792 | time_start = (GetCountSspClk()-time_0) << 4; |
| 793 | } |
| 794 | |
| 795 | div = 0; |
| 796 | decbyte = 0x00; |
| 797 | } |
| 798 | //} |
| 799 | |
| 800 | if(BUTTON_PRESS()) { |
| 801 | DbpString("cancelled_a"); |
| 802 | goto done; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | DbpString("COMMAND FINISHED"); |
| 807 | |
| 808 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
| 809 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); |
| 810 | |
| 811 | done: |
| 812 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
| 813 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
| 814 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); |
| 815 | LED_A_OFF(); |
| 816 | LED_B_OFF(); |
| 817 | LED_C_OFF(); |
| 818 | LED_D_OFF(); |
| 819 | } |
| 820 | |
| 821 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { |
| 822 | int i; |
| 823 | for(i = 0; i < 8; i++) { |
| 824 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | //----------------------------------------------------------------------------- |
| 829 | // Wait for commands from reader |
| 830 | // Stop when button is pressed |
| 831 | // Or return TRUE when command is captured |
| 832 | //----------------------------------------------------------------------------- |
| 833 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) |
| 834 | { |
| 835 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
| 836 | // only, since we are receiving, not transmitting). |
| 837 | // Signal field is off with the appropriate LED |
| 838 | LED_D_OFF(); |
| 839 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
| 840 | |
| 841 | // Now run a `software UART' on the stream of incoming samples. |
| 842 | Uart.output = received; |
| 843 | Uart.byteCntMax = maxLen; |
| 844 | Uart.state = STATE_UNSYNCD; |
| 845 | |
| 846 | for(;;) { |
| 847 | WDT_HIT(); |
| 848 | |
| 849 | if(BUTTON_PRESS()) return FALSE; |
| 850 | |
| 851 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 852 | AT91C_BASE_SSC->SSC_THR = 0x00; |
| 853 | } |
| 854 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 855 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 856 | |
| 857 | if(OutOfNDecoding(b & 0x0f)) { |
| 858 | *len = Uart.byteCnt; |
| 859 | return TRUE; |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | static uint8_t encode4Bits(const uint8_t b) |
| 866 | { |
| 867 | uint8_t c = b & 0xF; |
| 868 | // OTA, the least significant bits first |
| 869 | // The columns are |
| 870 | // 1 - Bit value to send |
| 871 | // 2 - Reversed (big-endian) |
| 872 | // 3 - Encoded |
| 873 | // 4 - Hex values |
| 874 | |
| 875 | switch(c){ |
| 876 | // 1 2 3 4 |
| 877 | case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 |
| 878 | case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 |
| 879 | case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 |
| 880 | case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 |
| 881 | case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 |
| 882 | case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 |
| 883 | case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 |
| 884 | case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 |
| 885 | case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 |
| 886 | case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 |
| 887 | case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 |
| 888 | case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 |
| 889 | case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a |
| 890 | case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a |
| 891 | case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a |
| 892 | default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa |
| 893 | |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | //----------------------------------------------------------------------------- |
| 898 | // Prepare tag messages |
| 899 | //----------------------------------------------------------------------------- |
| 900 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) |
| 901 | { |
| 902 | |
| 903 | /* |
| 904 | * SOF comprises 3 parts; |
| 905 | * * An unmodulated time of 56.64 us |
| 906 | * * 24 pulses of 423.75 KHz (fc/32) |
| 907 | * * A logic 1, which starts with an unmodulated time of 18.88us |
| 908 | * followed by 8 pulses of 423.75kHz (fc/32) |
| 909 | * |
| 910 | * |
| 911 | * EOF comprises 3 parts: |
| 912 | * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated |
| 913 | * time of 18.88us. |
| 914 | * - 24 pulses of fc/32 |
| 915 | * - An unmodulated time of 56.64 us |
| 916 | * |
| 917 | * |
| 918 | * A logic 0 starts with 8 pulses of fc/32 |
| 919 | * followed by an unmodulated time of 256/fc (~18,88us). |
| 920 | * |
| 921 | * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by |
| 922 | * 8 pulses of fc/32 (also 18.88us) |
| 923 | * |
| 924 | * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, |
| 925 | * works like this. |
| 926 | * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). |
| 927 | * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us |
| 928 | * |
| 929 | * In this mode the SOF can be written as 00011101 = 0x1D |
| 930 | * The EOF can be written as 10111000 = 0xb8 |
| 931 | * A logic 1 is 01 |
| 932 | * A logic 0 is 10 |
| 933 | * |
| 934 | * */ |
| 935 | |
| 936 | int i; |
| 937 | |
| 938 | ToSendReset(); |
| 939 | |
| 940 | // Send SOF |
| 941 | ToSend[++ToSendMax] = 0x1D; |
| 942 | |
| 943 | for(i = 0; i < len; i++) { |
| 944 | uint8_t b = cmd[i]; |
| 945 | ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half |
| 946 | ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half |
| 947 | } |
| 948 | |
| 949 | // Send EOF |
| 950 | ToSend[++ToSendMax] = 0xB8; |
| 951 | //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end |
| 952 | // Convert from last byte pos to length |
| 953 | ToSendMax++; |
| 954 | } |
| 955 | |
| 956 | // Only SOF |
| 957 | static void CodeIClassTagSOF() |
| 958 | { |
| 959 | //So far a dummy implementation, not used |
| 960 | //int lastProxToAirDuration =0; |
| 961 | |
| 962 | ToSendReset(); |
| 963 | // Send SOF |
| 964 | ToSend[++ToSendMax] = 0x1D; |
| 965 | // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning |
| 966 | |
| 967 | // Convert from last byte pos to length |
| 968 | ToSendMax++; |
| 969 | } |
| 970 | #define MODE_SIM_CSN 0 |
| 971 | #define MODE_EXIT_AFTER_MAC 1 |
| 972 | #define MODE_FULLSIM 2 |
| 973 | |
| 974 | int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); |
| 975 | /** |
| 976 | * @brief SimulateIClass simulates an iClass card. |
| 977 | * @param arg0 type of simulation |
| 978 | * - 0 uses the first 8 bytes in usb data as CSN |
| 979 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified |
| 980 | * in the usb data. This mode collects MAC from the reader, in order to do an offline |
| 981 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. |
| 982 | * - Other : Uses the default CSN (031fec8af7ff12e0) |
| 983 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) |
| 984 | * @param arg2 |
| 985 | * @param datain |
| 986 | */ |
| 987 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) |
| 988 | { |
| 989 | uint32_t simType = arg0; |
| 990 | uint32_t numberOfCSNS = arg1; |
| 991 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 992 | |
| 993 | // Enable and clear the trace |
| 994 | set_tracing(TRUE); |
| 995 | clear_trace(); |
| 996 | //Use the emulator memory for SIM |
| 997 | uint8_t *emulator = BigBuf_get_EM_addr(); |
| 998 | |
| 999 | if(simType == 0) { |
| 1000 | // Use the CSN from commandline |
| 1001 | memcpy(emulator, datain, 8); |
| 1002 | doIClassSimulation(MODE_SIM_CSN,NULL); |
| 1003 | }else if(simType == 1) |
| 1004 | { |
| 1005 | //Default CSN |
| 1006 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; |
| 1007 | // Use the CSN from commandline |
| 1008 | memcpy(emulator, csn_crc, 8); |
| 1009 | doIClassSimulation(MODE_SIM_CSN,NULL); |
| 1010 | } |
| 1011 | else if(simType == 2) |
| 1012 | { |
| 1013 | |
| 1014 | uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; |
| 1015 | Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); |
| 1016 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time |
| 1017 | // in order to collect MAC's from the reader. This can later be used in an offlne-attack |
| 1018 | // in order to obtain the keys, as in the "dismantling iclass"-paper. |
| 1019 | int i = 0; |
| 1020 | for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) |
| 1021 | { |
| 1022 | // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. |
| 1023 | |
| 1024 | memcpy(emulator, datain+(i*8), 8); |
| 1025 | if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) |
| 1026 | { |
| 1027 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); |
| 1028 | return; // Button pressed |
| 1029 | } |
| 1030 | } |
| 1031 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); |
| 1032 | |
| 1033 | }else if(simType == 3){ |
| 1034 | //This is 'full sim' mode, where we use the emulator storage for data. |
| 1035 | doIClassSimulation(MODE_FULLSIM, NULL); |
| 1036 | } |
| 1037 | else{ |
| 1038 | // We may want a mode here where we hardcode the csns to use (from proxclone). |
| 1039 | // That will speed things up a little, but not required just yet. |
| 1040 | Dbprintf("The mode is not implemented, reserved for future use"); |
| 1041 | } |
| 1042 | Dbprintf("Done..."); |
| 1043 | |
| 1044 | } |
| 1045 | void AppendCrc(uint8_t* data, int len) |
| 1046 | { |
| 1047 | ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1); |
| 1048 | } |
| 1049 | |
| 1050 | /** |
| 1051 | * @brief Does the actual simulation |
| 1052 | * @param csn - csn to use |
| 1053 | * @param breakAfterMacReceived if true, returns after reader MAC has been received. |
| 1054 | */ |
| 1055 | int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) |
| 1056 | { |
| 1057 | // free eventually allocated BigBuf memory |
| 1058 | BigBuf_free_keep_EM(); |
| 1059 | |
| 1060 | State cipher_state; |
| 1061 | // State cipher_state_reserve; |
| 1062 | uint8_t *csn = BigBuf_get_EM_addr(); |
| 1063 | uint8_t *emulator = csn; |
| 1064 | uint8_t sof_data[] = { 0x0F} ; |
| 1065 | // CSN followed by two CRC bytes |
| 1066 | uint8_t anticoll_data[10] = { 0 }; |
| 1067 | uint8_t csn_data[10] = { 0 }; |
| 1068 | memcpy(csn_data,csn,sizeof(csn_data)); |
| 1069 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); |
| 1070 | |
| 1071 | // Construct anticollision-CSN |
| 1072 | rotateCSN(csn_data,anticoll_data); |
| 1073 | |
| 1074 | // Compute CRC on both CSNs |
| 1075 | ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); |
| 1076 | ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); |
| 1077 | |
| 1078 | uint8_t diversified_key[8] = { 0 }; |
| 1079 | // e-Purse |
| 1080 | uint8_t card_challenge_data[8] = { 0x00 }; |
| 1081 | if(simulationMode == MODE_FULLSIM) |
| 1082 | { |
| 1083 | //The diversified key should be stored on block 3 |
| 1084 | //Get the diversified key from emulator memory |
| 1085 | memcpy(diversified_key, emulator+(8*3),8); |
| 1086 | |
| 1087 | //Card challenge, a.k.a e-purse is on block 2 |
| 1088 | memcpy(card_challenge_data,emulator + (8 * 2) , 8); |
| 1089 | //Precalculate the cipher state, feeding it the CC |
| 1090 | cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key); |
| 1091 | |
| 1092 | } |
| 1093 | |
| 1094 | int exitLoop = 0; |
| 1095 | // Reader 0a |
| 1096 | // Tag 0f |
| 1097 | // Reader 0c |
| 1098 | // Tag anticoll. CSN |
| 1099 | // Reader 81 anticoll. CSN |
| 1100 | // Tag CSN |
| 1101 | |
| 1102 | uint8_t *modulated_response; |
| 1103 | int modulated_response_size = 0; |
| 1104 | uint8_t* trace_data = NULL; |
| 1105 | int trace_data_size = 0; |
| 1106 | |
| 1107 | |
| 1108 | // Respond SOF -- takes 1 bytes |
| 1109 | uint8_t *resp_sof = BigBuf_malloc(2); |
| 1110 | int resp_sof_Len; |
| 1111 | |
| 1112 | // Anticollision CSN (rotated CSN) |
| 1113 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) |
| 1114 | uint8_t *resp_anticoll = BigBuf_malloc(28); |
| 1115 | int resp_anticoll_len; |
| 1116 | |
| 1117 | // CSN |
| 1118 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) |
| 1119 | uint8_t *resp_csn = BigBuf_malloc(30); |
| 1120 | int resp_csn_len; |
| 1121 | |
| 1122 | // e-Purse |
| 1123 | // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) |
| 1124 | uint8_t *resp_cc = BigBuf_malloc(20); |
| 1125 | int resp_cc_len; |
| 1126 | |
| 1127 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
| 1128 | int len; |
| 1129 | |
| 1130 | // Prepare card messages |
| 1131 | ToSendMax = 0; |
| 1132 | |
| 1133 | // First card answer: SOF |
| 1134 | CodeIClassTagSOF(); |
| 1135 | memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; |
| 1136 | |
| 1137 | // Anticollision CSN |
| 1138 | CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); |
| 1139 | memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; |
| 1140 | |
| 1141 | // CSN |
| 1142 | CodeIClassTagAnswer(csn_data, sizeof(csn_data)); |
| 1143 | memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; |
| 1144 | |
| 1145 | // e-Purse |
| 1146 | CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); |
| 1147 | memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; |
| 1148 | |
| 1149 | //This is used for responding to READ-block commands or other data which is dynamically generated |
| 1150 | //First the 'trace'-data, not encoded for FPGA |
| 1151 | uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer |
| 1152 | //Then storage for the modulated data |
| 1153 | //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) |
| 1154 | uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); |
| 1155 | |
| 1156 | // Start from off (no field generated) |
| 1157 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1158 | //SpinDelay(200); |
| 1159 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
| 1160 | SpinDelay(100); |
| 1161 | StartCountSspClk(); |
| 1162 | // We need to listen to the high-frequency, peak-detected path. |
| 1163 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
| 1164 | FpgaSetupSsc(); |
| 1165 | |
| 1166 | // To control where we are in the protocol |
| 1167 | int cmdsRecvd = 0; |
| 1168 | uint32_t time_0 = GetCountSspClk(); |
| 1169 | uint32_t t2r_time =0; |
| 1170 | uint32_t r2t_time =0; |
| 1171 | |
| 1172 | LED_A_ON(); |
| 1173 | bool buttonPressed = false; |
| 1174 | uint8_t response_delay = 1; |
| 1175 | while(!exitLoop) { |
| 1176 | response_delay = 1; |
| 1177 | LED_B_OFF(); |
| 1178 | //Signal tracer |
| 1179 | // Can be used to get a trigger for an oscilloscope.. |
| 1180 | LED_C_OFF(); |
| 1181 | |
| 1182 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { |
| 1183 | buttonPressed = true; |
| 1184 | break; |
| 1185 | } |
| 1186 | r2t_time = GetCountSspClk(); |
| 1187 | //Signal tracer |
| 1188 | LED_C_ON(); |
| 1189 | |
| 1190 | // Okay, look at the command now. |
| 1191 | if(receivedCmd[0] == ICLASS_CMD_ACTALL ) { |
| 1192 | // Reader in anticollission phase |
| 1193 | modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; |
| 1194 | trace_data = sof_data; |
| 1195 | trace_data_size = sizeof(sof_data); |
| 1196 | } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { |
| 1197 | // Reader asks for anticollission CSN |
| 1198 | modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; |
| 1199 | trace_data = anticoll_data; |
| 1200 | trace_data_size = sizeof(anticoll_data); |
| 1201 | //DbpString("Reader requests anticollission CSN:"); |
| 1202 | } else if(receivedCmd[0] == ICLASS_CMD_SELECT) { |
| 1203 | // Reader selects anticollission CSN. |
| 1204 | // Tag sends the corresponding real CSN |
| 1205 | modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; |
| 1206 | trace_data = csn_data; |
| 1207 | trace_data_size = sizeof(csn_data); |
| 1208 | //DbpString("Reader selects anticollission CSN:"); |
| 1209 | } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { |
| 1210 | // Read e-purse (88 02) |
| 1211 | modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; |
| 1212 | trace_data = card_challenge_data; |
| 1213 | trace_data_size = sizeof(card_challenge_data); |
| 1214 | LED_B_ON(); |
| 1215 | } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { |
| 1216 | // Reader random and reader MAC!!! |
| 1217 | if(simulationMode == MODE_FULLSIM) |
| 1218 | { |
| 1219 | //NR, from reader, is in receivedCmd +1 |
| 1220 | opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); |
| 1221 | |
| 1222 | trace_data = data_generic_trace; |
| 1223 | trace_data_size = 4; |
| 1224 | CodeIClassTagAnswer(trace_data , trace_data_size); |
| 1225 | memcpy(data_response, ToSend, ToSendMax); |
| 1226 | modulated_response = data_response; |
| 1227 | modulated_response_size = ToSendMax; |
| 1228 | response_delay = 0;//We need to hurry here... |
| 1229 | //exitLoop = true; |
| 1230 | }else |
| 1231 | { //Not fullsim, we don't respond |
| 1232 | // We do not know what to answer, so lets keep quiet |
| 1233 | modulated_response = resp_sof; modulated_response_size = 0; |
| 1234 | trace_data = NULL; |
| 1235 | trace_data_size = 0; |
| 1236 | if (simulationMode == MODE_EXIT_AFTER_MAC){ |
| 1237 | // dbprintf:ing ... |
| 1238 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" |
| 1239 | ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); |
| 1240 | Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, |
| 1241 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
| 1242 | receivedCmd[3], receivedCmd[4], receivedCmd[5], |
| 1243 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); |
| 1244 | if (reader_mac_buf != NULL) |
| 1245 | { |
| 1246 | memcpy(reader_mac_buf,receivedCmd+1,8); |
| 1247 | } |
| 1248 | exitLoop = true; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { |
| 1253 | // Reader ends the session |
| 1254 | modulated_response = resp_sof; modulated_response_size = 0; //order = 0; |
| 1255 | trace_data = NULL; |
| 1256 | trace_data_size = 0; |
| 1257 | } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ |
| 1258 | //Read block |
| 1259 | uint16_t blk = receivedCmd[1]; |
| 1260 | //Take the data... |
| 1261 | memcpy(data_generic_trace, emulator+(blk << 3),8); |
| 1262 | //Add crc |
| 1263 | AppendCrc(data_generic_trace, 8); |
| 1264 | trace_data = data_generic_trace; |
| 1265 | trace_data_size = 10; |
| 1266 | CodeIClassTagAnswer(trace_data , trace_data_size); |
| 1267 | memcpy(data_response, ToSend, ToSendMax); |
| 1268 | modulated_response = data_response; |
| 1269 | modulated_response_size = ToSendMax; |
| 1270 | }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) |
| 1271 | {//Probably the reader wants to update the nonce. Let's just ignore that for now. |
| 1272 | // OBS! If this is implemented, don't forget to regenerate the cipher_state |
| 1273 | //We're expected to respond with the data+crc, exactly what's already in the receivedcmd |
| 1274 | //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| |
| 1275 | |
| 1276 | //Take the data... |
| 1277 | memcpy(data_generic_trace, receivedCmd+2,8); |
| 1278 | //Add crc |
| 1279 | AppendCrc(data_generic_trace, 8); |
| 1280 | trace_data = data_generic_trace; |
| 1281 | trace_data_size = 10; |
| 1282 | CodeIClassTagAnswer(trace_data , trace_data_size); |
| 1283 | memcpy(data_response, ToSend, ToSendMax); |
| 1284 | modulated_response = data_response; |
| 1285 | modulated_response_size = ToSendMax; |
| 1286 | } |
| 1287 | else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) |
| 1288 | {//Pagesel |
| 1289 | //Pagesel enables to select a page in the selected chip memory and return its configuration block |
| 1290 | //Chips with a single page will not answer to this command |
| 1291 | // It appears we're fine ignoring this. |
| 1292 | //Otherwise, we should answer 8bytes (block) + 2bytes CRC |
| 1293 | } |
| 1294 | else { |
| 1295 | //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 |
| 1296 | // Never seen this command before |
| 1297 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", |
| 1298 | len, |
| 1299 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
| 1300 | receivedCmd[3], receivedCmd[4], receivedCmd[5], |
| 1301 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); |
| 1302 | // Do not respond |
| 1303 | modulated_response = resp_sof; modulated_response_size = 0; //order = 0; |
| 1304 | trace_data = NULL; |
| 1305 | trace_data_size = 0; |
| 1306 | } |
| 1307 | |
| 1308 | if(cmdsRecvd > 100) { |
| 1309 | //DbpString("100 commands later..."); |
| 1310 | //break; |
| 1311 | } |
| 1312 | else { |
| 1313 | cmdsRecvd++; |
| 1314 | } |
| 1315 | /** |
| 1316 | A legit tag has about 380us delay between reader EOT and tag SOF. |
| 1317 | **/ |
| 1318 | if(modulated_response_size > 0) { |
| 1319 | SendIClassAnswer(modulated_response, modulated_response_size, response_delay); |
| 1320 | t2r_time = GetCountSspClk(); |
| 1321 | } |
| 1322 | |
| 1323 | if (tracing) { |
| 1324 | uint8_t parity[MAX_PARITY_SIZE]; |
| 1325 | GetParity(receivedCmd, len, parity); |
| 1326 | LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); |
| 1327 | |
| 1328 | if (trace_data != NULL) { |
| 1329 | GetParity(trace_data, trace_data_size, parity); |
| 1330 | LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); |
| 1331 | } |
| 1332 | if(!tracing) { |
| 1333 | DbpString("Trace full"); |
| 1334 | //break; |
| 1335 | } |
| 1336 | |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | //Dbprintf("%x", cmdsRecvd); |
| 1341 | LED_A_OFF(); |
| 1342 | LED_B_OFF(); |
| 1343 | LED_C_OFF(); |
| 1344 | |
| 1345 | if(buttonPressed) |
| 1346 | { |
| 1347 | DbpString("Button pressed"); |
| 1348 | } |
| 1349 | return buttonPressed; |
| 1350 | } |
| 1351 | |
| 1352 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) |
| 1353 | { |
| 1354 | int i = 0, d=0;//, u = 0, d = 0; |
| 1355 | uint8_t b = 0; |
| 1356 | |
| 1357 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); |
| 1358 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); |
| 1359 | |
| 1360 | AT91C_BASE_SSC->SSC_THR = 0x00; |
| 1361 | FpgaSetupSsc(); |
| 1362 | while(!BUTTON_PRESS()) { |
| 1363 | if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ |
| 1364 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; |
| 1365 | } |
| 1366 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ |
| 1367 | b = 0x00; |
| 1368 | if(d < delay) { |
| 1369 | d++; |
| 1370 | } |
| 1371 | else { |
| 1372 | if( i < respLen){ |
| 1373 | b = resp[i]; |
| 1374 | //Hack |
| 1375 | //b = 0xAC; |
| 1376 | } |
| 1377 | i++; |
| 1378 | } |
| 1379 | AT91C_BASE_SSC->SSC_THR = b; |
| 1380 | } |
| 1381 | |
| 1382 | // if (i > respLen +4) break; |
| 1383 | if (i > respLen +1) break; |
| 1384 | } |
| 1385 | |
| 1386 | return 0; |
| 1387 | } |
| 1388 | |
| 1389 | /// THE READER CODE |
| 1390 | |
| 1391 | //----------------------------------------------------------------------------- |
| 1392 | // Transmit the command (to the tag) that was placed in ToSend[]. |
| 1393 | //----------------------------------------------------------------------------- |
| 1394 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) |
| 1395 | { |
| 1396 | int c; |
| 1397 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
| 1398 | AT91C_BASE_SSC->SSC_THR = 0x00; |
| 1399 | FpgaSetupSsc(); |
| 1400 | |
| 1401 | if (wait) |
| 1402 | { |
| 1403 | if(*wait < 10) *wait = 10; |
| 1404 | |
| 1405 | for(c = 0; c < *wait;) { |
| 1406 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 1407 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! |
| 1408 | c++; |
| 1409 | } |
| 1410 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 1411 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
| 1412 | (void)r; |
| 1413 | } |
| 1414 | WDT_HIT(); |
| 1415 | } |
| 1416 | |
| 1417 | } |
| 1418 | |
| 1419 | |
| 1420 | uint8_t sendbyte; |
| 1421 | bool firstpart = TRUE; |
| 1422 | c = 0; |
| 1423 | for(;;) { |
| 1424 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 1425 | |
| 1426 | // DOUBLE THE SAMPLES! |
| 1427 | if(firstpart) { |
| 1428 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); |
| 1429 | } |
| 1430 | else { |
| 1431 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); |
| 1432 | c++; |
| 1433 | } |
| 1434 | if(sendbyte == 0xff) { |
| 1435 | sendbyte = 0xfe; |
| 1436 | } |
| 1437 | AT91C_BASE_SSC->SSC_THR = sendbyte; |
| 1438 | firstpart = !firstpart; |
| 1439 | |
| 1440 | if(c >= len) { |
| 1441 | break; |
| 1442 | } |
| 1443 | } |
| 1444 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 1445 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
| 1446 | (void)r; |
| 1447 | } |
| 1448 | WDT_HIT(); |
| 1449 | } |
| 1450 | if (samples && wait) *samples = (c + *wait) << 3; |
| 1451 | } |
| 1452 | |
| 1453 | |
| 1454 | //----------------------------------------------------------------------------- |
| 1455 | // Prepare iClass reader command to send to FPGA |
| 1456 | //----------------------------------------------------------------------------- |
| 1457 | void CodeIClassCommand(const uint8_t * cmd, int len) |
| 1458 | { |
| 1459 | int i, j, k; |
| 1460 | uint8_t b; |
| 1461 | |
| 1462 | ToSendReset(); |
| 1463 | |
| 1464 | // Start of Communication: 1 out of 4 |
| 1465 | ToSend[++ToSendMax] = 0xf0; |
| 1466 | ToSend[++ToSendMax] = 0x00; |
| 1467 | ToSend[++ToSendMax] = 0x0f; |
| 1468 | ToSend[++ToSendMax] = 0x00; |
| 1469 | |
| 1470 | // Modulate the bytes |
| 1471 | for (i = 0; i < len; i++) { |
| 1472 | b = cmd[i]; |
| 1473 | for(j = 0; j < 4; j++) { |
| 1474 | for(k = 0; k < 4; k++) { |
| 1475 | if(k == (b & 3)) { |
| 1476 | ToSend[++ToSendMax] = 0x0f; |
| 1477 | } |
| 1478 | else { |
| 1479 | ToSend[++ToSendMax] = 0x00; |
| 1480 | } |
| 1481 | } |
| 1482 | b >>= 2; |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | // End of Communication |
| 1487 | ToSend[++ToSendMax] = 0x00; |
| 1488 | ToSend[++ToSendMax] = 0x00; |
| 1489 | ToSend[++ToSendMax] = 0xf0; |
| 1490 | ToSend[++ToSendMax] = 0x00; |
| 1491 | |
| 1492 | // Convert from last character reference to length |
| 1493 | ToSendMax++; |
| 1494 | } |
| 1495 | |
| 1496 | void ReaderTransmitIClass(uint8_t* frame, int len) |
| 1497 | { |
| 1498 | int wait = 0; |
| 1499 | int samples = 0; |
| 1500 | |
| 1501 | // This is tied to other size changes |
| 1502 | CodeIClassCommand(frame,len); |
| 1503 | |
| 1504 | // Select the card |
| 1505 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); |
| 1506 | if(trigger) |
| 1507 | LED_A_ON(); |
| 1508 | |
| 1509 | // Store reader command in buffer |
| 1510 | if (tracing) { |
| 1511 | uint8_t par[MAX_PARITY_SIZE]; |
| 1512 | GetParity(frame, len, par); |
| 1513 | LogTrace(frame, len, rsamples, rsamples, par, TRUE); |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | //----------------------------------------------------------------------------- |
| 1518 | // Wait a certain time for tag response |
| 1519 | // If a response is captured return TRUE |
| 1520 | // If it takes too long return FALSE |
| 1521 | //----------------------------------------------------------------------------- |
| 1522 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer |
| 1523 | { |
| 1524 | // buffer needs to be 512 bytes |
| 1525 | int c; |
| 1526 | |
| 1527 | // Set FPGA mode to "reader listen mode", no modulation (listen |
| 1528 | // only, since we are receiving, not transmitting). |
| 1529 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); |
| 1530 | |
| 1531 | // Now get the answer from the card |
| 1532 | Demod.output = receivedResponse; |
| 1533 | Demod.len = 0; |
| 1534 | Demod.state = DEMOD_UNSYNCD; |
| 1535 | |
| 1536 | uint8_t b; |
| 1537 | if (elapsed) *elapsed = 0; |
| 1538 | |
| 1539 | bool skip = FALSE; |
| 1540 | |
| 1541 | c = 0; |
| 1542 | for(;;) { |
| 1543 | WDT_HIT(); |
| 1544 | |
| 1545 | if(BUTTON_PRESS()) return FALSE; |
| 1546 | |
| 1547 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
| 1548 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! |
| 1549 | if (elapsed) (*elapsed)++; |
| 1550 | } |
| 1551 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
| 1552 | if(c < timeout) { c++; } else { return FALSE; } |
| 1553 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
| 1554 | skip = !skip; |
| 1555 | if(skip) continue; |
| 1556 | |
| 1557 | if(ManchesterDecoding(b & 0x0f)) { |
| 1558 | *samples = c << 3; |
| 1559 | return TRUE; |
| 1560 | } |
| 1561 | } |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | int ReaderReceiveIClass(uint8_t* receivedAnswer) |
| 1566 | { |
| 1567 | int samples = 0; |
| 1568 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; |
| 1569 | rsamples += samples; |
| 1570 | if (tracing) { |
| 1571 | uint8_t parity[MAX_PARITY_SIZE]; |
| 1572 | GetParity(receivedAnswer, Demod.len, parity); |
| 1573 | LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); |
| 1574 | } |
| 1575 | if(samples == 0) return FALSE; |
| 1576 | return Demod.len; |
| 1577 | } |
| 1578 | |
| 1579 | void setupIclassReader() |
| 1580 | { |
| 1581 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
| 1582 | // Reset trace buffer |
| 1583 | set_tracing(TRUE); |
| 1584 | clear_trace(); |
| 1585 | |
| 1586 | // Setup SSC |
| 1587 | FpgaSetupSsc(); |
| 1588 | // Start from off (no field generated) |
| 1589 | // Signal field is off with the appropriate LED |
| 1590 | LED_D_OFF(); |
| 1591 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1592 | SpinDelay(200); |
| 1593 | |
| 1594 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
| 1595 | |
| 1596 | // Now give it time to spin up. |
| 1597 | // Signal field is on with the appropriate LED |
| 1598 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
| 1599 | SpinDelay(200); |
| 1600 | LED_A_ON(); |
| 1601 | |
| 1602 | } |
| 1603 | |
| 1604 | bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) |
| 1605 | { |
| 1606 | while(retries-- > 0) |
| 1607 | { |
| 1608 | ReaderTransmitIClass(command, cmdsize); |
| 1609 | if(expected_size == ReaderReceiveIClass(resp)){ |
| 1610 | return true; |
| 1611 | } |
| 1612 | } |
| 1613 | return false;//Error |
| 1614 | } |
| 1615 | |
| 1616 | /** |
| 1617 | * @brief Talks to an iclass tag, sends the commands to get CSN and CC. |
| 1618 | * @param card_data where the CSN and CC are stored for return |
| 1619 | * @return 0 = fail |
| 1620 | * 1 = Got CSN |
| 1621 | * 2 = Got CSN and CC |
| 1622 | */ |
| 1623 | uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) |
| 1624 | { |
| 1625 | static uint8_t act_all[] = { 0x0a }; |
| 1626 | //static uint8_t identify[] = { 0x0c }; |
| 1627 | static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; |
| 1628 | static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| 1629 | static uint8_t readcheck_cc[]= { 0x88, 0x02 }; |
| 1630 | if (use_credit_key) |
| 1631 | readcheck_cc[0] = 0x18; |
| 1632 | else |
| 1633 | readcheck_cc[0] = 0x88; |
| 1634 | |
| 1635 | uint8_t resp[ICLASS_BUFFER_SIZE]; |
| 1636 | |
| 1637 | uint8_t read_status = 0; |
| 1638 | |
| 1639 | // Send act_all |
| 1640 | ReaderTransmitIClass(act_all, 1); |
| 1641 | // Card present? |
| 1642 | if(!ReaderReceiveIClass(resp)) return read_status;//Fail |
| 1643 | //Send Identify |
| 1644 | ReaderTransmitIClass(identify, 1); |
| 1645 | //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC |
| 1646 | uint8_t len = ReaderReceiveIClass(resp); |
| 1647 | if(len != 10) return read_status;//Fail |
| 1648 | |
| 1649 | //Copy the Anti-collision CSN to our select-packet |
| 1650 | memcpy(&select[1],resp,8); |
| 1651 | //Select the card |
| 1652 | ReaderTransmitIClass(select, sizeof(select)); |
| 1653 | //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC |
| 1654 | len = ReaderReceiveIClass(resp); |
| 1655 | if(len != 10) return read_status;//Fail |
| 1656 | |
| 1657 | //Success - level 1, we got CSN |
| 1658 | //Save CSN in response data |
| 1659 | memcpy(card_data,resp,8); |
| 1660 | |
| 1661 | //Flag that we got to at least stage 1, read CSN |
| 1662 | read_status = 1; |
| 1663 | |
| 1664 | // Card selected, now read e-purse (cc) |
| 1665 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); |
| 1666 | if(ReaderReceiveIClass(resp) == 8) { |
| 1667 | //Save CC (e-purse) in response data |
| 1668 | memcpy(card_data+8,resp,8); |
| 1669 | read_status++; |
| 1670 | } |
| 1671 | |
| 1672 | return read_status; |
| 1673 | } |
| 1674 | uint8_t handshakeIclassTag(uint8_t *card_data){ |
| 1675 | return handshakeIclassTag_ext(card_data, false); |
| 1676 | } |
| 1677 | |
| 1678 | |
| 1679 | // Reader iClass Anticollission |
| 1680 | void ReaderIClass(uint8_t arg0) { |
| 1681 | |
| 1682 | uint8_t card_data[6 * 8]={0}; |
| 1683 | memset(card_data, 0xFF, sizeof(card_data)); |
| 1684 | uint8_t last_csn[8]={0}; |
| 1685 | |
| 1686 | //Read conf block CRC(0x01) => 0xfa 0x22 |
| 1687 | uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22}; |
| 1688 | //Read conf block CRC(0x05) => 0xde 0x64 |
| 1689 | uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64}; |
| 1690 | |
| 1691 | |
| 1692 | int read_status= 0; |
| 1693 | uint8_t result_status = 0; |
| 1694 | bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; |
| 1695 | bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; |
| 1696 | bool use_credit_key = false; |
| 1697 | if (arg0 & FLAG_ICLASS_READER_CEDITKEY) |
| 1698 | use_credit_key = true; |
| 1699 | set_tracing(TRUE); |
| 1700 | setupIclassReader(); |
| 1701 | |
| 1702 | uint16_t tryCnt=0; |
| 1703 | while(!BUTTON_PRESS()) |
| 1704 | { |
| 1705 | if (try_once && tryCnt > 5) break; |
| 1706 | tryCnt++; |
| 1707 | if(!tracing) { |
| 1708 | DbpString("Trace full"); |
| 1709 | break; |
| 1710 | } |
| 1711 | WDT_HIT(); |
| 1712 | |
| 1713 | read_status = handshakeIclassTag_ext(card_data, use_credit_key); |
| 1714 | |
| 1715 | if(read_status == 0) continue; |
| 1716 | if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN; |
| 1717 | if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC; |
| 1718 | |
| 1719 | // handshakeIclass returns CSN|CC, but the actual block |
| 1720 | // layout is CSN|CONFIG|CC, so here we reorder the data, |
| 1721 | // moving CC forward 8 bytes |
| 1722 | memcpy(card_data+16,card_data+8, 8); |
| 1723 | //Read block 1, config |
| 1724 | if(arg0 & FLAG_ICLASS_READER_CONF) |
| 1725 | { |
| 1726 | if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10)) |
| 1727 | { |
| 1728 | result_status |= FLAG_ICLASS_READER_CONF; |
| 1729 | } else { |
| 1730 | Dbprintf("Failed to dump config block"); |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | //Read block 5, AA |
| 1735 | if(arg0 & FLAG_ICLASS_READER_AA){ |
| 1736 | if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10)) |
| 1737 | { |
| 1738 | result_status |= FLAG_ICLASS_READER_AA; |
| 1739 | } else { |
| 1740 | //Dbprintf("Failed to dump AA block"); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | // 0 : CSN |
| 1745 | // 1 : Configuration |
| 1746 | // 2 : e-purse |
| 1747 | // (3,4 write-only, kc and kd) |
| 1748 | // 5 Application issuer area |
| 1749 | // |
| 1750 | //Then we can 'ship' back the 8 * 5 bytes of data, |
| 1751 | // with 0xFF:s in block 3 and 4. |
| 1752 | |
| 1753 | LED_B_ON(); |
| 1754 | //Send back to client, but don't bother if we already sent this |
| 1755 | if(memcmp(last_csn, card_data, 8) != 0) |
| 1756 | { |
| 1757 | // If caller requires that we get CC, continue until we got it |
| 1758 | if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC)) |
| 1759 | { |
| 1760 | cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data)); |
| 1761 | if(abort_after_read) { |
| 1762 | LED_A_OFF(); |
| 1763 | return; |
| 1764 | } |
| 1765 | //Save that we already sent this.... |
| 1766 | memcpy(last_csn, card_data, 8); |
| 1767 | } |
| 1768 | |
| 1769 | } |
| 1770 | LED_B_OFF(); |
| 1771 | } |
| 1772 | cmd_send(CMD_ACK,0,0,0,card_data, 0); |
| 1773 | LED_A_OFF(); |
| 1774 | } |
| 1775 | |
| 1776 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { |
| 1777 | |
| 1778 | uint8_t card_data[USB_CMD_DATA_SIZE]={0}; |
| 1779 | uint16_t block_crc_LUT[255] = {0}; |
| 1780 | |
| 1781 | {//Generate a lookup table for block crc |
| 1782 | for(int block = 0; block < 255; block++){ |
| 1783 | char bl = block; |
| 1784 | block_crc_LUT[block] = iclass_crc16(&bl ,1); |
| 1785 | } |
| 1786 | } |
| 1787 | //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); |
| 1788 | |
| 1789 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| 1790 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; |
| 1791 | |
| 1792 | uint16_t crc = 0; |
| 1793 | uint8_t cardsize=0; |
| 1794 | uint8_t mem=0; |
| 1795 | |
| 1796 | static struct memory_t{ |
| 1797 | int k16; |
| 1798 | int book; |
| 1799 | int k2; |
| 1800 | int lockauth; |
| 1801 | int keyaccess; |
| 1802 | } memory; |
| 1803 | |
| 1804 | uint8_t resp[ICLASS_BUFFER_SIZE]; |
| 1805 | |
| 1806 | setupIclassReader(); |
| 1807 | set_tracing(TRUE); |
| 1808 | |
| 1809 | while(!BUTTON_PRESS()) { |
| 1810 | |
| 1811 | WDT_HIT(); |
| 1812 | |
| 1813 | if(!tracing) { |
| 1814 | DbpString("Trace full"); |
| 1815 | break; |
| 1816 | } |
| 1817 | |
| 1818 | uint8_t read_status = handshakeIclassTag(card_data); |
| 1819 | if(read_status < 2) continue; |
| 1820 | |
| 1821 | //for now replay captured auth (as cc not updated) |
| 1822 | memcpy(check+5,MAC,4); |
| 1823 | |
| 1824 | if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) |
| 1825 | { |
| 1826 | Dbprintf("Error: Authentication Fail!"); |
| 1827 | continue; |
| 1828 | } |
| 1829 | |
| 1830 | //first get configuration block (block 1) |
| 1831 | crc = block_crc_LUT[1]; |
| 1832 | read[1]=1; |
| 1833 | read[2] = crc >> 8; |
| 1834 | read[3] = crc & 0xff; |
| 1835 | |
| 1836 | if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) |
| 1837 | { |
| 1838 | Dbprintf("Dump config (block 1) failed"); |
| 1839 | continue; |
| 1840 | } |
| 1841 | |
| 1842 | mem=resp[5]; |
| 1843 | memory.k16= (mem & 0x80); |
| 1844 | memory.book= (mem & 0x20); |
| 1845 | memory.k2= (mem & 0x8); |
| 1846 | memory.lockauth= (mem & 0x2); |
| 1847 | memory.keyaccess= (mem & 0x1); |
| 1848 | |
| 1849 | cardsize = memory.k16 ? 255 : 32; |
| 1850 | WDT_HIT(); |
| 1851 | //Set card_data to all zeroes, we'll fill it with data |
| 1852 | memset(card_data,0x0,USB_CMD_DATA_SIZE); |
| 1853 | uint8_t failedRead =0; |
| 1854 | uint32_t stored_data_length =0; |
| 1855 | //then loop around remaining blocks |
| 1856 | for(int block=0; block < cardsize; block++){ |
| 1857 | |
| 1858 | read[1]= block; |
| 1859 | crc = block_crc_LUT[block]; |
| 1860 | read[2] = crc >> 8; |
| 1861 | read[3] = crc & 0xff; |
| 1862 | |
| 1863 | if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) |
| 1864 | { |
| 1865 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", |
| 1866 | block, resp[0], resp[1], resp[2], |
| 1867 | resp[3], resp[4], resp[5], |
| 1868 | resp[6], resp[7]); |
| 1869 | |
| 1870 | //Fill up the buffer |
| 1871 | memcpy(card_data+stored_data_length,resp,8); |
| 1872 | stored_data_length += 8; |
| 1873 | if(stored_data_length +8 > USB_CMD_DATA_SIZE) |
| 1874 | {//Time to send this off and start afresh |
| 1875 | cmd_send(CMD_ACK, |
| 1876 | stored_data_length,//data length |
| 1877 | failedRead,//Failed blocks? |
| 1878 | 0,//Not used ATM |
| 1879 | card_data, stored_data_length); |
| 1880 | //reset |
| 1881 | stored_data_length = 0; |
| 1882 | failedRead = 0; |
| 1883 | } |
| 1884 | |
| 1885 | }else{ |
| 1886 | failedRead = 1; |
| 1887 | stored_data_length +=8;//Otherwise, data becomes misaligned |
| 1888 | Dbprintf("Failed to dump block %d", block); |
| 1889 | } |
| 1890 | } |
| 1891 | |
| 1892 | //Send off any remaining data |
| 1893 | if(stored_data_length > 0) |
| 1894 | { |
| 1895 | cmd_send(CMD_ACK, |
| 1896 | stored_data_length,//data length |
| 1897 | failedRead,//Failed blocks? |
| 1898 | 0,//Not used ATM |
| 1899 | card_data, stored_data_length); |
| 1900 | } |
| 1901 | //If we got here, let's break |
| 1902 | break; |
| 1903 | } |
| 1904 | //Signal end of transmission |
| 1905 | cmd_send(CMD_ACK, |
| 1906 | 0,//data length |
| 1907 | 0,//Failed blocks? |
| 1908 | 0,//Not used ATM |
| 1909 | card_data, 0); |
| 1910 | |
| 1911 | LED_A_OFF(); |
| 1912 | } |
| 1913 | |
| 1914 | void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { |
| 1915 | uint8_t readcheck[] = { keyType, blockNo }; |
| 1916 | uint8_t resp[] = {0,0,0,0,0,0,0,0}; |
| 1917 | size_t isOK = 0; |
| 1918 | isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); |
| 1919 | cmd_send(CMD_ACK,isOK,0,0,0,0); |
| 1920 | } |
| 1921 | |
| 1922 | void iClass_Authentication(uint8_t *MAC) { |
| 1923 | uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| 1924 | uint8_t resp[ICLASS_BUFFER_SIZE]; |
| 1925 | memcpy(check+5,MAC,4); |
| 1926 | bool isOK; |
| 1927 | isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); |
| 1928 | cmd_send(CMD_ACK,isOK,0,0,0,0); |
| 1929 | } |
| 1930 | bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { |
| 1931 | uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? |
| 1932 | char bl = blockNo; |
| 1933 | uint16_t rdCrc = iclass_crc16(&bl, 1); |
| 1934 | readcmd[2] = rdCrc >> 8; |
| 1935 | readcmd[3] = rdCrc & 0xff; |
| 1936 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; |
| 1937 | bool isOK = false; |
| 1938 | |
| 1939 | //readcmd[1] = blockNo; |
| 1940 | isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); |
| 1941 | memcpy(readdata, resp, sizeof(resp)); |
| 1942 | |
| 1943 | return isOK; |
| 1944 | } |
| 1945 | |
| 1946 | void iClass_ReadBlk(uint8_t blockno) { |
| 1947 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; |
| 1948 | bool isOK = false; |
| 1949 | isOK = iClass_ReadBlock(blockno, readblockdata); |
| 1950 | cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); |
| 1951 | } |
| 1952 | |
| 1953 | void iClass_Dump(uint8_t blockno, uint8_t numblks) { |
| 1954 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; |
| 1955 | bool isOK = false; |
| 1956 | uint8_t blkCnt = 0; |
| 1957 | |
| 1958 | BigBuf_free(); |
| 1959 | uint8_t *dataout = BigBuf_malloc(255*8); |
| 1960 | if (dataout == NULL){ |
| 1961 | Dbprintf("out of memory"); |
| 1962 | OnError(1); |
| 1963 | return; |
| 1964 | } |
| 1965 | memset(dataout,0xFF,255*8); |
| 1966 | |
| 1967 | for (;blkCnt < numblks; blkCnt++) { |
| 1968 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); |
| 1969 | if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again |
| 1970 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); |
| 1971 | if (!isOK) { |
| 1972 | Dbprintf("Block %02X failed to read", blkCnt+blockno); |
| 1973 | break; |
| 1974 | } |
| 1975 | } |
| 1976 | memcpy(dataout+(blkCnt*8),readblockdata,8); |
| 1977 | } |
| 1978 | //return pointer to dump memory in arg3 |
| 1979 | cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0); |
| 1980 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 1981 | LEDsoff(); |
| 1982 | BigBuf_free(); |
| 1983 | } |
| 1984 | |
| 1985 | bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { |
| 1986 | uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; |
| 1987 | //uint8_t readblockdata[10]; |
| 1988 | //write[1] = blockNo; |
| 1989 | memcpy(write+2, data, 12); // data + mac |
| 1990 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; |
| 1991 | bool isOK; |
| 1992 | isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); |
| 1993 | if (isOK) { |
| 1994 | //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); |
| 1995 | if (memcmp(write+2,resp,8)) { |
| 1996 | //error try again |
| 1997 | isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); |
| 1998 | } |
| 1999 | } |
| 2000 | return isOK; |
| 2001 | } |
| 2002 | |
| 2003 | void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { |
| 2004 | bool isOK = iClass_WriteBlock_ext(blockNo, data); |
| 2005 | if (isOK){ |
| 2006 | Dbprintf("Write block [%02x] successful",blockNo); |
| 2007 | } else { |
| 2008 | Dbprintf("Write block [%02x] failed",blockNo); |
| 2009 | } |
| 2010 | cmd_send(CMD_ACK,isOK,0,0,0,0); |
| 2011 | } |
| 2012 | |
| 2013 | void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { |
| 2014 | int i; |
| 2015 | int written = 0; |
| 2016 | int total_block = (endblock - startblock) + 1; |
| 2017 | for (i = 0; i < total_block;i++){ |
| 2018 | // block number |
| 2019 | if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ |
| 2020 | Dbprintf("Write block [%02x] successful",i + startblock); |
| 2021 | written++; |
| 2022 | } else { |
| 2023 | if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ |
| 2024 | Dbprintf("Write block [%02x] successful",i + startblock); |
| 2025 | written++; |
| 2026 | } else { |
| 2027 | Dbprintf("Write block [%02x] failed",i + startblock); |
| 2028 | } |
| 2029 | } |
| 2030 | } |
| 2031 | if (written == total_block) |
| 2032 | Dbprintf("Clone complete"); |
| 2033 | else |
| 2034 | Dbprintf("Clone incomplete"); |
| 2035 | |
| 2036 | cmd_send(CMD_ACK,1,0,0,0,0); |
| 2037 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
| 2038 | LEDsoff(); |
| 2039 | } |