]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "iclass.h" | |
40 | ||
41 | #include "proxmark3.h" | |
42 | #include "apps.h" | |
43 | #include "util.h" | |
44 | #include "string.h" | |
45 | #include "printf.h" | |
46 | #include "common.h" | |
47 | #include "cmd.h" | |
48 | #include "iso14443a.h" | |
49 | #include "iso15693.h" | |
50 | // Needed for CRC in emulation mode; | |
51 | // same construction as in ISO 14443; | |
52 | // different initial value (CRC_ICLASS) | |
53 | #include "iso14443crc.h" | |
54 | #include "iso15693tools.h" | |
55 | #include "protocols.h" | |
56 | #include "optimized_cipher.h" | |
57 | #include "usb_cdc.h" // for usb_poll_validate_length | |
58 | #include "fpgaloader.h" | |
59 | ||
60 | static int timeout = 4096; | |
61 | ||
62 | // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after | |
63 | // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. | |
64 | // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. | |
65 | // 56,64us = 24 ssp_clk_cycles | |
66 | #define DELAY_ICLASS_VCD_TO_VICC_SIM 140 | |
67 | #define TAG_SOF_UNMODULATED 24 | |
68 | ||
69 | //----------------------------------------------------------------------------- | |
70 | // The software UART that receives commands from the reader, and its state | |
71 | // variables. | |
72 | //----------------------------------------------------------------------------- | |
73 | static struct { | |
74 | enum { | |
75 | STATE_UNSYNCD, | |
76 | STATE_START_OF_COMMUNICATION, | |
77 | STATE_RECEIVING | |
78 | } state; | |
79 | uint16_t shiftReg; | |
80 | int bitCnt; | |
81 | int byteCnt; | |
82 | int byteCntMax; | |
83 | int posCnt; | |
84 | int nOutOfCnt; | |
85 | int OutOfCnt; | |
86 | int syncBit; | |
87 | int samples; | |
88 | int highCnt; | |
89 | int swapper; | |
90 | int counter; | |
91 | int bitBuffer; | |
92 | int dropPosition; | |
93 | uint8_t *output; | |
94 | } Uart; | |
95 | ||
96 | static RAMFUNC int OutOfNDecoding(int bit) { | |
97 | //int error = 0; | |
98 | int bitright; | |
99 | ||
100 | if (!Uart.bitBuffer) { | |
101 | Uart.bitBuffer = bit ^ 0xFF0; | |
102 | return false; | |
103 | } else { | |
104 | Uart.bitBuffer <<= 4; | |
105 | Uart.bitBuffer ^= bit; | |
106 | } | |
107 | ||
108 | /*if (Uart.swapper) { | |
109 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
110 | Uart.byteCnt++; | |
111 | Uart.swapper = 0; | |
112 | if (Uart.byteCnt > 15) { return true; } | |
113 | } | |
114 | else { | |
115 | Uart.swapper = 1; | |
116 | }*/ | |
117 | ||
118 | if (Uart.state != STATE_UNSYNCD) { | |
119 | Uart.posCnt++; | |
120 | ||
121 | if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
122 | bit = 0x00; | |
123 | } else { | |
124 | bit = 0x01; | |
125 | } | |
126 | if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
127 | bitright = 0x00; | |
128 | } else { | |
129 | bitright = 0x01; | |
130 | } | |
131 | if (bit != bitright) { | |
132 | bit = bitright; | |
133 | } | |
134 | ||
135 | ||
136 | // So, now we only have to deal with *bit*, lets see... | |
137 | if (Uart.posCnt == 1) { | |
138 | // measurement first half bitperiod | |
139 | if (!bit) { | |
140 | // Drop in first half means that we are either seeing | |
141 | // an SOF or an EOF. | |
142 | ||
143 | if (Uart.nOutOfCnt == 1) { | |
144 | // End of Communication | |
145 | Uart.state = STATE_UNSYNCD; | |
146 | Uart.highCnt = 0; | |
147 | if (Uart.byteCnt == 0) { | |
148 | // Its not straightforward to show single EOFs | |
149 | // So just leave it and do not return true | |
150 | Uart.output[0] = 0xf0; | |
151 | Uart.byteCnt++; | |
152 | } else { | |
153 | return true; | |
154 | } | |
155 | } else if (Uart.state != STATE_START_OF_COMMUNICATION) { | |
156 | // When not part of SOF or EOF, it is an error | |
157 | Uart.state = STATE_UNSYNCD; | |
158 | Uart.highCnt = 0; | |
159 | //error = 4; | |
160 | } | |
161 | } | |
162 | } else { | |
163 | // measurement second half bitperiod | |
164 | // Count the bitslot we are in... (ISO 15693) | |
165 | Uart.nOutOfCnt++; | |
166 | ||
167 | if (!bit) { | |
168 | if (Uart.dropPosition) { | |
169 | if (Uart.state == STATE_START_OF_COMMUNICATION) { | |
170 | //error = 1; | |
171 | } else { | |
172 | //error = 7; | |
173 | } | |
174 | // It is an error if we already have seen a drop in current frame | |
175 | Uart.state = STATE_UNSYNCD; | |
176 | Uart.highCnt = 0; | |
177 | } else { | |
178 | Uart.dropPosition = Uart.nOutOfCnt; | |
179 | } | |
180 | } | |
181 | ||
182 | Uart.posCnt = 0; | |
183 | ||
184 | ||
185 | if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
186 | Uart.nOutOfCnt = 0; | |
187 | ||
188 | if (Uart.state == STATE_START_OF_COMMUNICATION) { | |
189 | if (Uart.dropPosition == 4) { | |
190 | Uart.state = STATE_RECEIVING; | |
191 | Uart.OutOfCnt = 256; | |
192 | } else if (Uart.dropPosition == 3) { | |
193 | Uart.state = STATE_RECEIVING; | |
194 | Uart.OutOfCnt = 4; | |
195 | //Uart.output[Uart.byteCnt] = 0xdd; | |
196 | //Uart.byteCnt++; | |
197 | } else { | |
198 | Uart.state = STATE_UNSYNCD; | |
199 | Uart.highCnt = 0; | |
200 | } | |
201 | Uart.dropPosition = 0; | |
202 | } else { | |
203 | // RECEIVING DATA | |
204 | // 1 out of 4 | |
205 | if (!Uart.dropPosition) { | |
206 | Uart.state = STATE_UNSYNCD; | |
207 | Uart.highCnt = 0; | |
208 | //error = 9; | |
209 | } else { | |
210 | Uart.shiftReg >>= 2; | |
211 | ||
212 | // Swap bit order | |
213 | Uart.dropPosition--; | |
214 | //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
215 | //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
216 | ||
217 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
218 | Uart.bitCnt += 2; | |
219 | Uart.dropPosition = 0; | |
220 | ||
221 | if (Uart.bitCnt == 8) { | |
222 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
223 | Uart.byteCnt++; | |
224 | Uart.bitCnt = 0; | |
225 | Uart.shiftReg = 0; | |
226 | } | |
227 | } | |
228 | } | |
229 | } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { | |
230 | // RECEIVING DATA | |
231 | // 1 out of 256 | |
232 | if (!Uart.dropPosition) { | |
233 | Uart.state = STATE_UNSYNCD; | |
234 | Uart.highCnt = 0; | |
235 | //error = 3; | |
236 | } else { | |
237 | Uart.dropPosition--; | |
238 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
239 | Uart.byteCnt++; | |
240 | Uart.bitCnt = 0; | |
241 | Uart.shiftReg = 0; | |
242 | Uart.nOutOfCnt = 0; | |
243 | Uart.dropPosition = 0; | |
244 | } | |
245 | } | |
246 | ||
247 | /*if (error) { | |
248 | Uart.output[Uart.byteCnt] = 0xAA; | |
249 | Uart.byteCnt++; | |
250 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
251 | Uart.byteCnt++; | |
252 | Uart.output[Uart.byteCnt] = 0xAA; | |
253 | Uart.byteCnt++; | |
254 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
255 | Uart.byteCnt++; | |
256 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
257 | Uart.byteCnt++; | |
258 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
259 | Uart.byteCnt++; | |
260 | Uart.output[Uart.byteCnt] = 0xAA; | |
261 | Uart.byteCnt++; | |
262 | return true; | |
263 | }*/ | |
264 | } | |
265 | ||
266 | } else { | |
267 | bit = Uart.bitBuffer & 0xf0; | |
268 | bit >>= 4; | |
269 | bit ^= 0x0F; // drops become 1s ;-) | |
270 | if (bit) { | |
271 | // should have been high or at least (4 * 128) / fc | |
272 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
273 | if (Uart.highCnt == 8) { | |
274 | // we went low, so this could be start of communication | |
275 | // it turns out to be safer to choose a less significant | |
276 | // syncbit... so we check whether the neighbour also represents the drop | |
277 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
278 | Uart.syncBit = bit & 8; | |
279 | Uart.samples = 3; | |
280 | if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
281 | else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
282 | if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
283 | else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
284 | if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
285 | if (Uart.syncBit && (Uart.bitBuffer & 8)) { | |
286 | Uart.syncBit = 8; | |
287 | ||
288 | // the first half bit period is expected in next sample | |
289 | Uart.posCnt = 0; | |
290 | Uart.samples = 3; | |
291 | } | |
292 | } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
293 | ||
294 | Uart.syncBit <<= 4; | |
295 | Uart.state = STATE_START_OF_COMMUNICATION; | |
296 | Uart.bitCnt = 0; | |
297 | Uart.byteCnt = 0; | |
298 | Uart.nOutOfCnt = 0; | |
299 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
300 | Uart.dropPosition = 0; | |
301 | Uart.shiftReg = 0; | |
302 | //error = 0; | |
303 | } else { | |
304 | Uart.highCnt = 0; | |
305 | } | |
306 | } else if (Uart.highCnt < 8) { | |
307 | Uart.highCnt++; | |
308 | } | |
309 | } | |
310 | ||
311 | return false; | |
312 | } | |
313 | ||
314 | ||
315 | //============================================================================= | |
316 | // Manchester | |
317 | //============================================================================= | |
318 | ||
319 | static struct { | |
320 | enum { | |
321 | DEMOD_UNSYNCD, | |
322 | DEMOD_START_OF_COMMUNICATION, | |
323 | DEMOD_START_OF_COMMUNICATION2, | |
324 | DEMOD_START_OF_COMMUNICATION3, | |
325 | DEMOD_SOF_COMPLETE, | |
326 | DEMOD_MANCHESTER_D, | |
327 | DEMOD_MANCHESTER_E, | |
328 | DEMOD_END_OF_COMMUNICATION, | |
329 | DEMOD_END_OF_COMMUNICATION2, | |
330 | DEMOD_MANCHESTER_F, | |
331 | DEMOD_ERROR_WAIT | |
332 | } state; | |
333 | int bitCount; | |
334 | int posCount; | |
335 | int syncBit; | |
336 | uint16_t shiftReg; | |
337 | int buffer; | |
338 | int buffer2; | |
339 | int buffer3; | |
340 | int buff; | |
341 | int samples; | |
342 | int len; | |
343 | enum { | |
344 | SUB_NONE, | |
345 | SUB_FIRST_HALF, | |
346 | SUB_SECOND_HALF, | |
347 | SUB_BOTH | |
348 | } sub; | |
349 | uint8_t *output; | |
350 | } Demod; | |
351 | ||
352 | static RAMFUNC int ManchesterDecoding(int v) { | |
353 | int bit; | |
354 | int modulation; | |
355 | int error = 0; | |
356 | ||
357 | bit = Demod.buffer; | |
358 | Demod.buffer = Demod.buffer2; | |
359 | Demod.buffer2 = Demod.buffer3; | |
360 | Demod.buffer3 = v; | |
361 | ||
362 | if (Demod.buff < 3) { | |
363 | Demod.buff++; | |
364 | return false; | |
365 | } | |
366 | ||
367 | if (Demod.state==DEMOD_UNSYNCD) { | |
368 | Demod.output[Demod.len] = 0xfa; | |
369 | Demod.syncBit = 0; | |
370 | //Demod.samples = 0; | |
371 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
372 | ||
373 | if (bit & 0x08) { | |
374 | Demod.syncBit = 0x08; | |
375 | } | |
376 | ||
377 | if (bit & 0x04) { | |
378 | if (Demod.syncBit) { | |
379 | bit <<= 4; | |
380 | } | |
381 | Demod.syncBit = 0x04; | |
382 | } | |
383 | ||
384 | if (bit & 0x02) { | |
385 | if (Demod.syncBit) { | |
386 | bit <<= 2; | |
387 | } | |
388 | Demod.syncBit = 0x02; | |
389 | } | |
390 | ||
391 | if (bit & 0x01 && Demod.syncBit) { | |
392 | Demod.syncBit = 0x01; | |
393 | } | |
394 | ||
395 | if (Demod.syncBit) { | |
396 | Demod.len = 0; | |
397 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
398 | Demod.sub = SUB_FIRST_HALF; | |
399 | Demod.bitCount = 0; | |
400 | Demod.shiftReg = 0; | |
401 | Demod.samples = 0; | |
402 | if (Demod.posCount) { | |
403 | switch (Demod.syncBit) { | |
404 | case 0x08: Demod.samples = 3; break; | |
405 | case 0x04: Demod.samples = 2; break; | |
406 | case 0x02: Demod.samples = 1; break; | |
407 | case 0x01: Demod.samples = 0; break; | |
408 | } | |
409 | // SOF must be long burst... otherwise stay unsynced!!! | |
410 | if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
411 | Demod.state = DEMOD_UNSYNCD; | |
412 | } | |
413 | } else { | |
414 | // SOF must be long burst... otherwise stay unsynced!!! | |
415 | if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
416 | Demod.state = DEMOD_UNSYNCD; | |
417 | error = 0x88; | |
418 | } | |
419 | ||
420 | } | |
421 | error = 0; | |
422 | ||
423 | } | |
424 | } else { | |
425 | // state is DEMOD is in SYNC from here on. | |
426 | modulation = bit & Demod.syncBit; | |
427 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
428 | ||
429 | Demod.samples += 4; | |
430 | ||
431 | if (Demod.posCount == 0) { | |
432 | Demod.posCount = 1; | |
433 | if (modulation) { | |
434 | Demod.sub = SUB_FIRST_HALF; | |
435 | } else { | |
436 | Demod.sub = SUB_NONE; | |
437 | } | |
438 | } else { | |
439 | Demod.posCount = 0; | |
440 | if (modulation) { | |
441 | if (Demod.sub == SUB_FIRST_HALF) { | |
442 | Demod.sub = SUB_BOTH; | |
443 | } else { | |
444 | Demod.sub = SUB_SECOND_HALF; | |
445 | } | |
446 | } else if (Demod.sub == SUB_NONE) { | |
447 | if (Demod.state == DEMOD_SOF_COMPLETE) { | |
448 | Demod.output[Demod.len] = 0x0f; | |
449 | Demod.len++; | |
450 | Demod.state = DEMOD_UNSYNCD; | |
451 | return true; | |
452 | } else { | |
453 | Demod.state = DEMOD_ERROR_WAIT; | |
454 | error = 0x33; | |
455 | } | |
456 | } | |
457 | ||
458 | switch(Demod.state) { | |
459 | case DEMOD_START_OF_COMMUNICATION: | |
460 | if (Demod.sub == SUB_BOTH) { | |
461 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
462 | Demod.posCount = 1; | |
463 | Demod.sub = SUB_NONE; | |
464 | } else { | |
465 | Demod.output[Demod.len] = 0xab; | |
466 | Demod.state = DEMOD_ERROR_WAIT; | |
467 | error = 0xd2; | |
468 | } | |
469 | break; | |
470 | case DEMOD_START_OF_COMMUNICATION2: | |
471 | if (Demod.sub == SUB_SECOND_HALF) { | |
472 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
473 | } else { | |
474 | Demod.output[Demod.len] = 0xab; | |
475 | Demod.state = DEMOD_ERROR_WAIT; | |
476 | error = 0xd3; | |
477 | } | |
478 | break; | |
479 | case DEMOD_START_OF_COMMUNICATION3: | |
480 | if (Demod.sub == SUB_SECOND_HALF) { | |
481 | Demod.state = DEMOD_SOF_COMPLETE; | |
482 | } else { | |
483 | Demod.output[Demod.len] = 0xab; | |
484 | Demod.state = DEMOD_ERROR_WAIT; | |
485 | error = 0xd4; | |
486 | } | |
487 | break; | |
488 | case DEMOD_SOF_COMPLETE: | |
489 | case DEMOD_MANCHESTER_D: | |
490 | case DEMOD_MANCHESTER_E: | |
491 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
492 | // 00001111 = 1 (0 in 14443) | |
493 | if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
494 | Demod.bitCount++; | |
495 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
496 | Demod.state = DEMOD_MANCHESTER_D; | |
497 | } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
498 | Demod.bitCount++; | |
499 | Demod.shiftReg >>= 1; | |
500 | Demod.state = DEMOD_MANCHESTER_E; | |
501 | } else if (Demod.sub == SUB_BOTH) { | |
502 | Demod.state = DEMOD_MANCHESTER_F; | |
503 | } else { | |
504 | Demod.state = DEMOD_ERROR_WAIT; | |
505 | error = 0x55; | |
506 | } | |
507 | break; | |
508 | ||
509 | case DEMOD_MANCHESTER_F: | |
510 | // Tag response does not need to be a complete byte! | |
511 | if (Demod.len > 0 || Demod.bitCount > 0) { | |
512 | if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
513 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align data | |
514 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
515 | Demod.len++; | |
516 | } | |
517 | ||
518 | Demod.state = DEMOD_UNSYNCD; | |
519 | return true; | |
520 | } else { | |
521 | Demod.output[Demod.len] = 0xad; | |
522 | Demod.state = DEMOD_ERROR_WAIT; | |
523 | error = 0x03; | |
524 | } | |
525 | break; | |
526 | ||
527 | case DEMOD_ERROR_WAIT: | |
528 | Demod.state = DEMOD_UNSYNCD; | |
529 | break; | |
530 | ||
531 | default: | |
532 | Demod.output[Demod.len] = 0xdd; | |
533 | Demod.state = DEMOD_UNSYNCD; | |
534 | break; | |
535 | } | |
536 | ||
537 | if (Demod.bitCount >= 8) { | |
538 | Demod.shiftReg >>= 1; | |
539 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
540 | Demod.len++; | |
541 | Demod.bitCount = 0; | |
542 | Demod.shiftReg = 0; | |
543 | } | |
544 | ||
545 | if (error) { | |
546 | Demod.output[Demod.len] = 0xBB; | |
547 | Demod.len++; | |
548 | Demod.output[Demod.len] = error & 0xFF; | |
549 | Demod.len++; | |
550 | Demod.output[Demod.len] = 0xBB; | |
551 | Demod.len++; | |
552 | Demod.output[Demod.len] = bit & 0xFF; | |
553 | Demod.len++; | |
554 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
555 | Demod.len++; | |
556 | // Look harder ;-) | |
557 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
558 | Demod.len++; | |
559 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
560 | Demod.len++; | |
561 | Demod.output[Demod.len] = 0xBB; | |
562 | Demod.len++; | |
563 | return true; | |
564 | } | |
565 | ||
566 | } | |
567 | ||
568 | } // end (state != UNSYNCED) | |
569 | ||
570 | return false; | |
571 | } | |
572 | ||
573 | //============================================================================= | |
574 | // Finally, a `sniffer' for iClass communication | |
575 | // Both sides of communication! | |
576 | //============================================================================= | |
577 | ||
578 | //----------------------------------------------------------------------------- | |
579 | // Record the sequence of commands sent by the reader to the tag, with | |
580 | // triggering so that we start recording at the point that the tag is moved | |
581 | // near the reader. | |
582 | //----------------------------------------------------------------------------- | |
583 | void RAMFUNC SnoopIClass(void) { | |
584 | ||
585 | // We won't start recording the frames that we acquire until we trigger; | |
586 | // a good trigger condition to get started is probably when we see a | |
587 | // response from the tag. | |
588 | //int triggered = false; // false to wait first for card | |
589 | ||
590 | // The command (reader -> tag) that we're receiving. | |
591 | // The length of a received command will in most cases be no more than 18 bytes. | |
592 | // So 32 should be enough! | |
593 | #define ICLASS_BUFFER_SIZE 32 | |
594 | uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; | |
595 | // The response (tag -> reader) that we're receiving. | |
596 | uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; | |
597 | ||
598 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
599 | ||
600 | // free all BigBuf memory | |
601 | BigBuf_free(); | |
602 | // The DMA buffer, used to stream samples from the FPGA | |
603 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
604 | ||
605 | set_tracing(true); | |
606 | clear_trace(); | |
607 | iso14a_set_trigger(false); | |
608 | ||
609 | int lastRxCounter; | |
610 | uint8_t *upTo; | |
611 | int smpl; | |
612 | int maxBehindBy = 0; | |
613 | ||
614 | // Count of samples received so far, so that we can include timing | |
615 | // information in the trace buffer. | |
616 | int samples = 0; | |
617 | rsamples = 0; | |
618 | ||
619 | // Set up the demodulator for tag -> reader responses. | |
620 | Demod.output = tagToReaderResponse; | |
621 | Demod.len = 0; | |
622 | Demod.state = DEMOD_UNSYNCD; | |
623 | ||
624 | // Setup for the DMA. | |
625 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); | |
626 | upTo = dmaBuf; | |
627 | lastRxCounter = DMA_BUFFER_SIZE; | |
628 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
629 | ||
630 | // And the reader -> tag commands | |
631 | memset(&Uart, 0, sizeof(Uart)); | |
632 | Uart.output = readerToTagCmd; | |
633 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
634 | Uart.state = STATE_UNSYNCD; | |
635 | ||
636 | // And put the FPGA in the appropriate mode | |
637 | // Signal field is off with the appropriate LED | |
638 | LED_D_OFF(); | |
639 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
640 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
641 | ||
642 | uint32_t time_0 = GetCountSspClk(); | |
643 | uint32_t time_start = 0; | |
644 | uint32_t time_stop = 0; | |
645 | ||
646 | int div = 0; | |
647 | //int div2 = 0; | |
648 | int decbyte = 0; | |
649 | int decbyter = 0; | |
650 | ||
651 | // And now we loop, receiving samples. | |
652 | for (;;) { | |
653 | LED_A_ON(); | |
654 | WDT_HIT(); | |
655 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); | |
656 | if (behindBy > maxBehindBy) { | |
657 | maxBehindBy = behindBy; | |
658 | if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { | |
659 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
660 | goto done; | |
661 | } | |
662 | } | |
663 | if (behindBy < 1) continue; | |
664 | ||
665 | LED_A_OFF(); | |
666 | smpl = upTo[0]; | |
667 | upTo++; | |
668 | lastRxCounter -= 1; | |
669 | if (upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
670 | upTo -= DMA_BUFFER_SIZE; | |
671 | lastRxCounter += DMA_BUFFER_SIZE; | |
672 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
673 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
674 | } | |
675 | ||
676 | //samples += 4; | |
677 | samples += 1; | |
678 | ||
679 | if (smpl & 0xF) { | |
680 | decbyte ^= (1 << (3 - div)); | |
681 | } | |
682 | ||
683 | // FOR READER SIDE COMMUMICATION... | |
684 | ||
685 | decbyter <<= 2; | |
686 | decbyter ^= (smpl & 0x30); | |
687 | ||
688 | div++; | |
689 | ||
690 | if ((div + 1) % 2 == 0) { | |
691 | smpl = decbyter; | |
692 | if (OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
693 | rsamples = samples - Uart.samples; | |
694 | time_stop = (GetCountSspClk()-time_0) << 4; | |
695 | LED_C_ON(); | |
696 | ||
697 | //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break; | |
698 | //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; | |
699 | uint8_t parity[MAX_PARITY_SIZE]; | |
700 | GetParity(Uart.output, Uart.byteCnt, parity); | |
701 | LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true); | |
702 | ||
703 | /* And ready to receive another command. */ | |
704 | Uart.state = STATE_UNSYNCD; | |
705 | /* And also reset the demod code, which might have been */ | |
706 | /* false-triggered by the commands from the reader. */ | |
707 | Demod.state = DEMOD_UNSYNCD; | |
708 | LED_B_OFF(); | |
709 | Uart.byteCnt = 0; | |
710 | } else { | |
711 | time_start = (GetCountSspClk()-time_0) << 4; | |
712 | } | |
713 | decbyter = 0; | |
714 | } | |
715 | ||
716 | if (div > 3) { | |
717 | smpl = decbyte; | |
718 | if (ManchesterDecoding(smpl & 0x0F)) { | |
719 | time_stop = (GetCountSspClk()-time_0) << 4; | |
720 | ||
721 | rsamples = samples - Demod.samples; | |
722 | LED_B_ON(); | |
723 | ||
724 | uint8_t parity[MAX_PARITY_SIZE]; | |
725 | GetParity(Demod.output, Demod.len, parity); | |
726 | LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false); | |
727 | ||
728 | // And ready to receive another response. | |
729 | memset(&Demod, 0, sizeof(Demod)); | |
730 | Demod.output = tagToReaderResponse; | |
731 | Demod.state = DEMOD_UNSYNCD; | |
732 | LED_C_OFF(); | |
733 | } else { | |
734 | time_start = (GetCountSspClk()-time_0) << 4; | |
735 | } | |
736 | ||
737 | div = 0; | |
738 | decbyte = 0x00; | |
739 | } | |
740 | ||
741 | if (BUTTON_PRESS()) { | |
742 | DbpString("cancelled_a"); | |
743 | goto done; | |
744 | } | |
745 | } | |
746 | ||
747 | DbpString("COMMAND FINISHED"); | |
748 | ||
749 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
750 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
751 | ||
752 | done: | |
753 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
754 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
755 | Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); | |
756 | LEDsoff(); | |
757 | } | |
758 | ||
759 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
760 | int i; | |
761 | for (i = 0; i < 8; i++) { | |
762 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
763 | } | |
764 | } | |
765 | ||
766 | // Encode SOF only | |
767 | static void CodeIClassTagSOF() { | |
768 | ToSendReset(); | |
769 | ToSend[++ToSendMax] = 0x1D; | |
770 | ToSendMax++; | |
771 | } | |
772 | ||
773 | static void AppendCrc(uint8_t *data, int len) { | |
774 | ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); | |
775 | } | |
776 | ||
777 | ||
778 | /** | |
779 | * @brief Does the actual simulation | |
780 | */ | |
781 | int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { | |
782 | ||
783 | // free eventually allocated BigBuf memory | |
784 | BigBuf_free_keep_EM(); | |
785 | ||
786 | uint16_t page_size = 32 * 8; | |
787 | uint8_t current_page = 0; | |
788 | ||
789 | // maintain cipher states for both credit and debit key for each page | |
790 | State cipher_state_KC[8]; | |
791 | State cipher_state_KD[8]; | |
792 | State *cipher_state = &cipher_state_KD[0]; | |
793 | ||
794 | uint8_t *emulator = BigBuf_get_EM_addr(); | |
795 | uint8_t *csn = emulator; | |
796 | ||
797 | // CSN followed by two CRC bytes | |
798 | uint8_t anticoll_data[10]; | |
799 | uint8_t csn_data[10]; | |
800 | memcpy(csn_data, csn, sizeof(csn_data)); | |
801 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); | |
802 | ||
803 | // Construct anticollision-CSN | |
804 | rotateCSN(csn_data, anticoll_data); | |
805 | ||
806 | // Compute CRC on both CSNs | |
807 | AppendCrc(anticoll_data, 8); | |
808 | AppendCrc(csn_data, 8); | |
809 | ||
810 | uint8_t diversified_key_d[8] = { 0x00 }; | |
811 | uint8_t diversified_key_c[8] = { 0x00 }; | |
812 | uint8_t *diversified_key = diversified_key_d; | |
813 | ||
814 | // configuration block | |
815 | uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; | |
816 | ||
817 | // e-Purse | |
818 | uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; | |
819 | ||
820 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
821 | // initialize from page 0 | |
822 | memcpy(conf_block, emulator + 8 * 1, 8); | |
823 | memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse | |
824 | memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd | |
825 | memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc | |
826 | } | |
827 | ||
828 | AppendCrc(conf_block, 8); | |
829 | ||
830 | // save card challenge for sim2,4 attack | |
831 | if (reader_mac_buf != NULL) { | |
832 | memcpy(reader_mac_buf, card_challenge_data, 8); | |
833 | } | |
834 | ||
835 | if (conf_block[5] & 0x80) { | |
836 | page_size = 256 * 8; | |
837 | } | |
838 | ||
839 | // From PicoPass DS: | |
840 | // When the page is in personalization mode this bit is equal to 1. | |
841 | // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: | |
842 | // the page is then "in application mode". | |
843 | bool personalization_mode = conf_block[7] & 0x80; | |
844 | ||
845 | // chip memory may be divided in 8 pages | |
846 | uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7; | |
847 | ||
848 | // Precalculate the cipher states, feeding it the CC | |
849 | cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
850 | cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
851 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
852 | for (int i = 1; i < max_page; i++) { | |
853 | uint8_t *epurse = emulator + i*page_size + 8*2; | |
854 | uint8_t *Kd = emulator + i*page_size + 8*3; | |
855 | uint8_t *Kc = emulator + i*page_size + 8*4; | |
856 | cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd); | |
857 | cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc); | |
858 | } | |
859 | } | |
860 | ||
861 | int exitLoop = 0; | |
862 | // Reader 0a | |
863 | // Tag 0f | |
864 | // Reader 0c | |
865 | // Tag anticoll. CSN | |
866 | // Reader 81 anticoll. CSN | |
867 | // Tag CSN | |
868 | ||
869 | uint8_t *modulated_response; | |
870 | int modulated_response_size = 0; | |
871 | uint8_t *trace_data = NULL; | |
872 | int trace_data_size = 0; | |
873 | ||
874 | // Respond SOF -- takes 1 bytes | |
875 | uint8_t *resp_sof = BigBuf_malloc(1); | |
876 | int resp_sof_Len; | |
877 | ||
878 | // Anticollision CSN (rotated CSN) | |
879 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
880 | uint8_t *resp_anticoll = BigBuf_malloc(22); | |
881 | int resp_anticoll_len; | |
882 | ||
883 | // CSN (block 0) | |
884 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
885 | uint8_t *resp_csn = BigBuf_malloc(22); | |
886 | int resp_csn_len; | |
887 | ||
888 | // configuration (block 1) picopass 2ks | |
889 | uint8_t *resp_conf = BigBuf_malloc(22); | |
890 | int resp_conf_len; | |
891 | ||
892 | // e-Purse (block 2) | |
893 | // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) | |
894 | uint8_t *resp_cc = BigBuf_malloc(18); | |
895 | int resp_cc_len; | |
896 | ||
897 | // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only | |
898 | uint8_t *resp_ff = BigBuf_malloc(22); | |
899 | int resp_ff_len; | |
900 | uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; | |
901 | AppendCrc(ff_data, 8); | |
902 | ||
903 | // Application Issuer Area (block 5) | |
904 | uint8_t *resp_aia = BigBuf_malloc(22); | |
905 | int resp_aia_len; | |
906 | uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; | |
907 | AppendCrc(aia_data, 8); | |
908 | ||
909 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
910 | int len; | |
911 | ||
912 | // Prepare card messages | |
913 | ||
914 | // First card answer: SOF only | |
915 | CodeIClassTagSOF(); | |
916 | memcpy(resp_sof, ToSend, ToSendMax); | |
917 | resp_sof_Len = ToSendMax; | |
918 | ||
919 | // Anticollision CSN | |
920 | CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); | |
921 | memcpy(resp_anticoll, ToSend, ToSendMax); | |
922 | resp_anticoll_len = ToSendMax; | |
923 | ||
924 | // CSN (block 0) | |
925 | CodeIso15693AsTag(csn_data, sizeof(csn_data)); | |
926 | memcpy(resp_csn, ToSend, ToSendMax); | |
927 | resp_csn_len = ToSendMax; | |
928 | ||
929 | // Configuration (block 1) | |
930 | CodeIso15693AsTag(conf_block, sizeof(conf_block)); | |
931 | memcpy(resp_conf, ToSend, ToSendMax); | |
932 | resp_conf_len = ToSendMax; | |
933 | ||
934 | // e-Purse (block 2) | |
935 | CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); | |
936 | memcpy(resp_cc, ToSend, ToSendMax); | |
937 | resp_cc_len = ToSendMax; | |
938 | ||
939 | // Kd, Kc (blocks 3 and 4) | |
940 | CodeIso15693AsTag(ff_data, sizeof(ff_data)); | |
941 | memcpy(resp_ff, ToSend, ToSendMax); | |
942 | resp_ff_len = ToSendMax; | |
943 | ||
944 | // Application Issuer Area (block 5) | |
945 | CodeIso15693AsTag(aia_data, sizeof(aia_data)); | |
946 | memcpy(resp_aia, ToSend, ToSendMax); | |
947 | resp_aia_len = ToSendMax; | |
948 | ||
949 | //This is used for responding to READ-block commands or other data which is dynamically generated | |
950 | uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer | |
951 | uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2); | |
952 | ||
953 | bool buttonPressed = false; | |
954 | enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; | |
955 | ||
956 | while (!exitLoop) { | |
957 | WDT_HIT(); | |
958 | ||
959 | uint32_t reader_eof_time = 0; | |
960 | len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); | |
961 | if (len < 0) { | |
962 | buttonPressed = true; | |
963 | break; | |
964 | } | |
965 | ||
966 | // Now look at the reader command and provide appropriate responses | |
967 | // default is no response: | |
968 | modulated_response = NULL; | |
969 | modulated_response_size = 0; | |
970 | trace_data = NULL; | |
971 | trace_data_size = 0; | |
972 | ||
973 | if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) { | |
974 | // Reader in anticollision phase | |
975 | if (chip_state != HALTED) { | |
976 | modulated_response = resp_sof; | |
977 | modulated_response_size = resp_sof_Len; | |
978 | chip_state = ACTIVATED; | |
979 | } | |
980 | ||
981 | } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify | |
982 | // Reader asks for anticollision CSN | |
983 | if (chip_state == SELECTED || chip_state == ACTIVATED) { | |
984 | modulated_response = resp_anticoll; | |
985 | modulated_response_size = resp_anticoll_len; | |
986 | trace_data = anticoll_data; | |
987 | trace_data_size = sizeof(anticoll_data); | |
988 | } | |
989 | ||
990 | } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) { | |
991 | // Reader selects anticollision CSN. | |
992 | // Tag sends the corresponding real CSN | |
993 | if (chip_state == ACTIVATED || chip_state == SELECTED) { | |
994 | if (!memcmp(receivedCmd+1, anticoll_data, 8)) { | |
995 | modulated_response = resp_csn; | |
996 | modulated_response_size = resp_csn_len; | |
997 | trace_data = csn_data; | |
998 | trace_data_size = sizeof(csn_data); | |
999 | chip_state = SELECTED; | |
1000 | } else { | |
1001 | chip_state = IDLE; | |
1002 | } | |
1003 | } else if (chip_state == HALTED) { | |
1004 | // RESELECT with CSN | |
1005 | if (!memcmp(receivedCmd+1, csn_data, 8)) { | |
1006 | modulated_response = resp_csn; | |
1007 | modulated_response_size = resp_csn_len; | |
1008 | trace_data = csn_data; | |
1009 | trace_data_size = sizeof(csn_data); | |
1010 | chip_state = SELECTED; | |
1011 | } | |
1012 | } | |
1013 | ||
1014 | } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block | |
1015 | uint16_t blockNo = receivedCmd[1]; | |
1016 | if (chip_state == SELECTED) { | |
1017 | if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { | |
1018 | // provide defaults for blocks 0 ... 5 | |
1019 | switch (blockNo) { | |
1020 | case 0: // csn (block 00) | |
1021 | modulated_response = resp_csn; | |
1022 | modulated_response_size = resp_csn_len; | |
1023 | trace_data = csn_data; | |
1024 | trace_data_size = sizeof(csn_data); | |
1025 | break; | |
1026 | case 1: // configuration (block 01) | |
1027 | modulated_response = resp_conf; | |
1028 | modulated_response_size = resp_conf_len; | |
1029 | trace_data = conf_block; | |
1030 | trace_data_size = sizeof(conf_block); | |
1031 | break; | |
1032 | case 2: // e-purse (block 02) | |
1033 | modulated_response = resp_cc; | |
1034 | modulated_response_size = resp_cc_len; | |
1035 | trace_data = card_challenge_data; | |
1036 | trace_data_size = sizeof(card_challenge_data); | |
1037 | // set epurse of sim2,4 attack | |
1038 | if (reader_mac_buf != NULL) { | |
1039 | memcpy(reader_mac_buf, card_challenge_data, 8); | |
1040 | } | |
1041 | break; | |
1042 | case 3: | |
1043 | case 4: // Kd, Kc, always respond with 0xff bytes | |
1044 | modulated_response = resp_ff; | |
1045 | modulated_response_size = resp_ff_len; | |
1046 | trace_data = ff_data; | |
1047 | trace_data_size = sizeof(ff_data); | |
1048 | break; | |
1049 | case 5: // Application Issuer Area (block 05) | |
1050 | modulated_response = resp_aia; | |
1051 | modulated_response_size = resp_aia_len; | |
1052 | trace_data = aia_data; | |
1053 | trace_data_size = sizeof(aia_data); | |
1054 | break; | |
1055 | // default: don't respond | |
1056 | } | |
1057 | } else if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1058 | if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes | |
1059 | modulated_response = resp_ff; | |
1060 | modulated_response_size = resp_ff_len; | |
1061 | trace_data = ff_data; | |
1062 | trace_data_size = sizeof(ff_data); | |
1063 | } else { // use data from emulator memory | |
1064 | memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8); | |
1065 | AppendCrc(data_generic_trace, 8); | |
1066 | trace_data = data_generic_trace; | |
1067 | trace_data_size = 10; | |
1068 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1069 | memcpy(data_response, ToSend, ToSendMax); | |
1070 | modulated_response = data_response; | |
1071 | modulated_response_size = ToSendMax; | |
1072 | } | |
1073 | } | |
1074 | } | |
1075 | ||
1076 | } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD | |
1077 | || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) { | |
1078 | // Read e-purse (88 02 || 18 02) | |
1079 | if (chip_state == SELECTED) { | |
1080 | if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){ | |
1081 | cipher_state = &cipher_state_KD[current_page]; | |
1082 | diversified_key = diversified_key_d; | |
1083 | } else { | |
1084 | cipher_state = &cipher_state_KC[current_page]; | |
1085 | diversified_key = diversified_key_c; | |
1086 | } | |
1087 | modulated_response = resp_cc; | |
1088 | modulated_response_size = resp_cc_len; | |
1089 | trace_data = card_challenge_data; | |
1090 | trace_data_size = sizeof(card_challenge_data); | |
1091 | } | |
1092 | ||
1093 | } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC | |
1094 | || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) { | |
1095 | // Reader random and reader MAC!!! | |
1096 | if (chip_state == SELECTED) { | |
1097 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1098 | //NR, from reader, is in receivedCmd+1 | |
1099 | opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key); | |
1100 | trace_data = data_generic_trace; | |
1101 | trace_data_size = 4; | |
1102 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1103 | memcpy(data_response, ToSend, ToSendMax); | |
1104 | modulated_response = data_response; | |
1105 | modulated_response_size = ToSendMax; | |
1106 | //exitLoop = true; | |
1107 | } else { // Not fullsim, we don't respond | |
1108 | // We do not know what to answer, so lets keep quiet | |
1109 | if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { | |
1110 | if (reader_mac_buf != NULL) { | |
1111 | // save NR and MAC for sim 2,4 | |
1112 | memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); | |
1113 | } | |
1114 | exitLoop = true; | |
1115 | } | |
1116 | } | |
1117 | } | |
1118 | ||
1119 | } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { | |
1120 | if (chip_state == SELECTED) { | |
1121 | // Reader ends the session | |
1122 | modulated_response = resp_sof; | |
1123 | modulated_response_size = resp_sof_Len; | |
1124 | chip_state = HALTED; | |
1125 | } | |
1126 | ||
1127 | } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 | |
1128 | //Read 4 blocks | |
1129 | if (chip_state == SELECTED) { | |
1130 | uint8_t blockNo = receivedCmd[1]; | |
1131 | memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4); | |
1132 | AppendCrc(data_generic_trace, 8 * 4); | |
1133 | trace_data = data_generic_trace; | |
1134 | trace_data_size = 8 * 4 + 2; | |
1135 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1136 | memcpy(data_response, ToSend, ToSendMax); | |
1137 | modulated_response = data_response; | |
1138 | modulated_response_size = ToSendMax; | |
1139 | } | |
1140 | ||
1141 | } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { | |
1142 | // We're expected to respond with the data+crc, exactly what's already in the receivedCmd | |
1143 | // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b | |
1144 | if (chip_state == SELECTED) { | |
1145 | uint8_t blockNo = receivedCmd[1]; | |
1146 | if (blockNo == 2) { // update e-purse | |
1147 | memcpy(card_challenge_data, receivedCmd+2, 8); | |
1148 | CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); | |
1149 | memcpy(resp_cc, ToSend, ToSendMax); | |
1150 | resp_cc_len = ToSendMax; | |
1151 | cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
1152 | cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
1153 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1154 | memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8); | |
1155 | } | |
1156 | } else if (blockNo == 3) { // update Kd | |
1157 | for (int i = 0; i < 8; i++) { | |
1158 | if (personalization_mode) { | |
1159 | diversified_key_d[i] = receivedCmd[2 + i]; | |
1160 | } else { | |
1161 | diversified_key_d[i] ^= receivedCmd[2 + i]; | |
1162 | } | |
1163 | } | |
1164 | cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); | |
1165 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1166 | memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8); | |
1167 | } | |
1168 | } else if (blockNo == 4) { // update Kc | |
1169 | for (int i = 0; i < 8; i++) { | |
1170 | if (personalization_mode) { | |
1171 | diversified_key_c[i] = receivedCmd[2 + i]; | |
1172 | } else { | |
1173 | diversified_key_c[i] ^= receivedCmd[2 + i]; | |
1174 | } | |
1175 | } | |
1176 | cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); | |
1177 | if (simulationMode == ICLASS_SIM_MODE_FULL) { | |
1178 | memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8); | |
1179 | } | |
1180 | } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block | |
1181 | memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8); | |
1182 | } | |
1183 | memcpy(data_generic_trace, receivedCmd + 2, 8); | |
1184 | AppendCrc(data_generic_trace, 8); | |
1185 | trace_data = data_generic_trace; | |
1186 | trace_data_size = 10; | |
1187 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1188 | memcpy(data_response, ToSend, ToSendMax); | |
1189 | modulated_response = data_response; | |
1190 | modulated_response_size = ToSendMax; | |
1191 | } | |
1192 | ||
1193 | } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) { | |
1194 | // Pagesel | |
1195 | // Chips with a single page will not answer to this command | |
1196 | // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC | |
1197 | if (chip_state == SELECTED) { | |
1198 | if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { | |
1199 | current_page = receivedCmd[1]; | |
1200 | memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8); | |
1201 | memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8); | |
1202 | memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8); | |
1203 | cipher_state = &cipher_state_KD[current_page]; | |
1204 | personalization_mode = data_generic_trace[7] & 0x80; | |
1205 | AppendCrc(data_generic_trace, 8); | |
1206 | trace_data = data_generic_trace; | |
1207 | trace_data_size = 10; | |
1208 | CodeIso15693AsTag(trace_data, trace_data_size); | |
1209 | memcpy(data_response, ToSend, ToSendMax); | |
1210 | modulated_response = data_response; | |
1211 | modulated_response_size = ToSendMax; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | } else if (receivedCmd[0] == 0x26 && len == 5) { | |
1216 | // standard ISO15693 INVENTORY command. Ignore. | |
1217 | ||
1218 | } else { | |
1219 | // don't know how to handle this command | |
1220 | char debug_message[250]; // should be enough | |
1221 | sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); | |
1222 | for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { | |
1223 | sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]); | |
1224 | } | |
1225 | Dbprintf("%s", debug_message); | |
1226 | // Do not respond | |
1227 | } | |
1228 | ||
1229 | /** | |
1230 | A legit tag has about 273,4us delay between reader EOT and tag SOF. | |
1231 | **/ | |
1232 | if (modulated_response_size > 0) { | |
1233 | uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM - TAG_SOF_UNMODULATED - DELAY_ARM_TO_READER_SIM; | |
1234 | TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); | |
1235 | LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false); | |
1236 | } | |
1237 | ||
1238 | } | |
1239 | ||
1240 | if (buttonPressed) | |
1241 | { | |
1242 | DbpString("Button pressed"); | |
1243 | } | |
1244 | return buttonPressed; | |
1245 | } | |
1246 | ||
1247 | /** | |
1248 | * @brief SimulateIClass simulates an iClass card. | |
1249 | * @param arg0 type of simulation | |
1250 | * - 0 uses the first 8 bytes in usb data as CSN | |
1251 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified | |
1252 | * in the usb data. This mode collects MAC from the reader, in order to do an offline | |
1253 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. | |
1254 | * - Other : Uses the default CSN (031fec8af7ff12e0) | |
1255 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) | |
1256 | * @param arg2 | |
1257 | * @param datain | |
1258 | */ | |
1259 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { | |
1260 | ||
1261 | LED_A_ON(); | |
1262 | ||
1263 | uint32_t simType = arg0; | |
1264 | uint32_t numberOfCSNS = arg1; | |
1265 | ||
1266 | // setup hardware for simulation: | |
1267 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1268 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1269 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
1270 | LED_D_OFF(); | |
1271 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
1272 | StartCountSspClk(); | |
1273 | ||
1274 | // Enable and clear the trace | |
1275 | set_tracing(true); | |
1276 | clear_trace(); | |
1277 | //Use the emulator memory for SIM | |
1278 | uint8_t *emulator = BigBuf_get_EM_addr(); | |
1279 | ||
1280 | if (simType == ICLASS_SIM_MODE_CSN) { | |
1281 | // Use the CSN from commandline | |
1282 | memcpy(emulator, datain, 8); | |
1283 | doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); | |
1284 | } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) { | |
1285 | //Default CSN | |
1286 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
1287 | // Use the CSN from commandline | |
1288 | memcpy(emulator, csn_crc, 8); | |
1289 | doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); | |
1290 | } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) { | |
1291 | uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; | |
1292 | Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); | |
1293 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time | |
1294 | // in order to collect MAC's from the reader. This can later be used in an offline-attack | |
1295 | // in order to obtain the keys, as in the "dismantling iclass"-paper. | |
1296 | int i; | |
1297 | for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) { | |
1298 | // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response). | |
1299 | memcpy(emulator, datain+(i*8), 8); | |
1300 | if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) { | |
1301 | // Button pressed | |
1302 | break; | |
1303 | } | |
1304 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1305 | datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], | |
1306 | datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); | |
1307 | Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1308 | mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11], | |
1309 | mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]); | |
1310 | SpinDelay(100); // give the reader some time to prepare for next CSN | |
1311 | } | |
1312 | cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); | |
1313 | } else if (simType == ICLASS_SIM_MODE_FULL) { | |
1314 | //This is 'full sim' mode, where we use the emulator storage for data. | |
1315 | doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL); | |
1316 | } else { | |
1317 | // We may want a mode here where we hardcode the csns to use (from proxclone). | |
1318 | // That will speed things up a little, but not required just yet. | |
1319 | Dbprintf("The mode is not implemented, reserved for future use"); | |
1320 | } | |
1321 | ||
1322 | Dbprintf("Done..."); | |
1323 | ||
1324 | LED_A_OFF(); | |
1325 | } | |
1326 | ||
1327 | ||
1328 | /// THE READER CODE | |
1329 | ||
1330 | //----------------------------------------------------------------------------- | |
1331 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1332 | //----------------------------------------------------------------------------- | |
1333 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { | |
1334 | int c; | |
1335 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1336 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1337 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); | |
1338 | ||
1339 | if (wait) { | |
1340 | if (*wait < 10) *wait = 10; | |
1341 | ||
1342 | for (c = 0; c < *wait;) { | |
1343 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1344 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1345 | c++; | |
1346 | } | |
1347 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1348 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1349 | (void)r; | |
1350 | } | |
1351 | WDT_HIT(); | |
1352 | } | |
1353 | } | |
1354 | ||
1355 | uint8_t sendbyte; | |
1356 | bool firstpart = true; | |
1357 | c = 0; | |
1358 | for (;;) { | |
1359 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1360 | ||
1361 | // DOUBLE THE SAMPLES! | |
1362 | if (firstpart) { | |
1363 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1364 | } else { | |
1365 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1366 | c++; | |
1367 | } | |
1368 | if (sendbyte == 0xff) { | |
1369 | sendbyte = 0xfe; | |
1370 | } | |
1371 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1372 | firstpart = !firstpart; | |
1373 | ||
1374 | if (c >= len) { | |
1375 | break; | |
1376 | } | |
1377 | } | |
1378 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1379 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1380 | (void)r; | |
1381 | } | |
1382 | WDT_HIT(); | |
1383 | } | |
1384 | if (samples && wait) *samples = (c + *wait) << 3; | |
1385 | } | |
1386 | ||
1387 | ||
1388 | //----------------------------------------------------------------------------- | |
1389 | // Prepare iClass reader command to send to FPGA | |
1390 | //----------------------------------------------------------------------------- | |
1391 | void CodeIClassCommand(const uint8_t *cmd, int len) { | |
1392 | int i, j, k; | |
1393 | ||
1394 | ToSendReset(); | |
1395 | ||
1396 | // Start of Communication: 1 out of 4 | |
1397 | ToSend[++ToSendMax] = 0xf0; | |
1398 | ToSend[++ToSendMax] = 0x00; | |
1399 | ToSend[++ToSendMax] = 0x0f; | |
1400 | ToSend[++ToSendMax] = 0x00; | |
1401 | ||
1402 | // Modulate the bytes | |
1403 | for (i = 0; i < len; i++) { | |
1404 | uint8_t b = cmd[i]; | |
1405 | for (j = 0; j < 4; j++) { | |
1406 | for (k = 0; k < 4; k++) { | |
1407 | if (k == (b & 3)) { | |
1408 | ToSend[++ToSendMax] = 0x0f; | |
1409 | } else { | |
1410 | ToSend[++ToSendMax] = 0x00; | |
1411 | } | |
1412 | } | |
1413 | b >>= 2; | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | // End of Communication | |
1418 | ToSend[++ToSendMax] = 0x00; | |
1419 | ToSend[++ToSendMax] = 0x00; | |
1420 | ToSend[++ToSendMax] = 0xf0; | |
1421 | ToSend[++ToSendMax] = 0x00; | |
1422 | ||
1423 | // Convert from last character reference to length | |
1424 | ToSendMax++; | |
1425 | } | |
1426 | ||
1427 | static void ReaderTransmitIClass(uint8_t *frame, int len) { | |
1428 | int wait = 0; | |
1429 | int samples = 0; | |
1430 | ||
1431 | // This is tied to other size changes | |
1432 | CodeIClassCommand(frame, len); | |
1433 | ||
1434 | // Select the card | |
1435 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1436 | if (trigger) | |
1437 | LED_A_ON(); | |
1438 | ||
1439 | // Store reader command in buffer | |
1440 | uint8_t par[MAX_PARITY_SIZE]; | |
1441 | GetParity(frame, len, par); | |
1442 | LogTrace(frame, len, rsamples, rsamples, par, true); | |
1443 | } | |
1444 | ||
1445 | //----------------------------------------------------------------------------- | |
1446 | // Wait a certain time for tag response | |
1447 | // If a response is captured return true | |
1448 | // If it takes too long return false | |
1449 | //----------------------------------------------------------------------------- | |
1450 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { | |
1451 | //uint8_t *buffer | |
1452 | // buffer needs to be 512 bytes | |
1453 | int c; | |
1454 | ||
1455 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1456 | // only, since we are receiving, not transmitting). | |
1457 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1458 | ||
1459 | // Now get the answer from the card | |
1460 | Demod.output = receivedResponse; | |
1461 | Demod.len = 0; | |
1462 | Demod.state = DEMOD_UNSYNCD; | |
1463 | ||
1464 | uint8_t b; | |
1465 | if (elapsed) *elapsed = 0; | |
1466 | ||
1467 | bool skip = false; | |
1468 | ||
1469 | c = 0; | |
1470 | for (;;) { | |
1471 | WDT_HIT(); | |
1472 | ||
1473 | if (BUTTON_PRESS()) return false; | |
1474 | ||
1475 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1476 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1477 | if (elapsed) (*elapsed)++; | |
1478 | } | |
1479 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1480 | if (c < timeout) { | |
1481 | c++; | |
1482 | } else { | |
1483 | return false; | |
1484 | } | |
1485 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1486 | skip = !skip; | |
1487 | if (skip) continue; | |
1488 | ||
1489 | if (ManchesterDecoding(b & 0x0f)) { | |
1490 | *samples = c << 3; | |
1491 | return true; | |
1492 | } | |
1493 | } | |
1494 | } | |
1495 | } | |
1496 | ||
1497 | static int ReaderReceiveIClass(uint8_t *receivedAnswer) { | |
1498 | int samples = 0; | |
1499 | if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) { | |
1500 | return false; | |
1501 | } | |
1502 | rsamples += samples; | |
1503 | uint8_t parity[MAX_PARITY_SIZE]; | |
1504 | GetParity(receivedAnswer, Demod.len, parity); | |
1505 | LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false); | |
1506 | if (samples == 0) return false; | |
1507 | return Demod.len; | |
1508 | } | |
1509 | ||
1510 | static void setupIclassReader() { | |
1511 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1512 | // Reset trace buffer | |
1513 | set_tracing(true); | |
1514 | clear_trace(); | |
1515 | ||
1516 | // Setup SSC | |
1517 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); | |
1518 | // Start from off (no field generated) | |
1519 | // Signal field is off with the appropriate LED | |
1520 | LED_D_OFF(); | |
1521 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1522 | SpinDelay(200); | |
1523 | ||
1524 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1525 | ||
1526 | // Now give it time to spin up. | |
1527 | // Signal field is on with the appropriate LED | |
1528 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1529 | SpinDelay(200); | |
1530 | LED_A_ON(); | |
1531 | ||
1532 | } | |
1533 | ||
1534 | static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) { | |
1535 | while (retries-- > 0) { | |
1536 | ReaderTransmitIClass(command, cmdsize); | |
1537 | if (expected_size == ReaderReceiveIClass(resp)) { | |
1538 | return true; | |
1539 | } | |
1540 | } | |
1541 | return false;//Error | |
1542 | } | |
1543 | ||
1544 | /** | |
1545 | * @brief Talks to an iclass tag, sends the commands to get CSN and CC. | |
1546 | * @param card_data where the CSN and CC are stored for return | |
1547 | * @return 0 = fail | |
1548 | * 1 = Got CSN | |
1549 | * 2 = Got CSN and CC | |
1550 | */ | |
1551 | static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) { | |
1552 | static uint8_t act_all[] = { 0x0a }; | |
1553 | //static uint8_t identify[] = { 0x0c }; | |
1554 | static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; | |
1555 | static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1556 | static uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1557 | if (use_credit_key) | |
1558 | readcheck_cc[0] = 0x18; | |
1559 | else | |
1560 | readcheck_cc[0] = 0x88; | |
1561 | ||
1562 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1563 | ||
1564 | uint8_t read_status = 0; | |
1565 | ||
1566 | // Send act_all | |
1567 | ReaderTransmitIClass(act_all, 1); | |
1568 | // Card present? | |
1569 | if (!ReaderReceiveIClass(resp)) return read_status;//Fail | |
1570 | ||
1571 | //Send Identify | |
1572 | ReaderTransmitIClass(identify, 1); | |
1573 | //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC | |
1574 | uint8_t len = ReaderReceiveIClass(resp); | |
1575 | if (len != 10) return read_status;//Fail | |
1576 | ||
1577 | //Copy the Anti-collision CSN to our select-packet | |
1578 | memcpy(&select[1], resp, 8); | |
1579 | //Select the card | |
1580 | ReaderTransmitIClass(select, sizeof(select)); | |
1581 | //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC | |
1582 | len = ReaderReceiveIClass(resp); | |
1583 | if (len != 10) return read_status;//Fail | |
1584 | ||
1585 | //Success - level 1, we got CSN | |
1586 | //Save CSN in response data | |
1587 | memcpy(card_data, resp, 8); | |
1588 | ||
1589 | //Flag that we got to at least stage 1, read CSN | |
1590 | read_status = 1; | |
1591 | ||
1592 | // Card selected, now read e-purse (cc) (only 8 bytes no CRC) | |
1593 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1594 | if (ReaderReceiveIClass(resp) == 8) { | |
1595 | //Save CC (e-purse) in response data | |
1596 | memcpy(card_data+8, resp, 8); | |
1597 | read_status++; | |
1598 | } | |
1599 | ||
1600 | return read_status; | |
1601 | } | |
1602 | ||
1603 | static uint8_t handshakeIclassTag(uint8_t *card_data) { | |
1604 | return handshakeIclassTag_ext(card_data, false); | |
1605 | } | |
1606 | ||
1607 | ||
1608 | // Reader iClass Anticollission | |
1609 | void ReaderIClass(uint8_t arg0) { | |
1610 | ||
1611 | uint8_t card_data[6 * 8] = {0}; | |
1612 | memset(card_data, 0xFF, sizeof(card_data)); | |
1613 | uint8_t last_csn[8] = {0,0,0,0,0,0,0,0}; | |
1614 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1615 | memset(resp, 0xFF, sizeof(resp)); | |
1616 | //Read conf block CRC(0x01) => 0xfa 0x22 | |
1617 | uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; | |
1618 | //Read App Issuer Area block CRC(0x05) => 0xde 0x64 | |
1619 | uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; | |
1620 | ||
1621 | int read_status= 0; | |
1622 | uint8_t result_status = 0; | |
1623 | // flag to read until one tag is found successfully | |
1624 | bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; | |
1625 | // flag to only try 5 times to find one tag then return | |
1626 | bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; | |
1627 | // if neither abort_after_read nor try_once then continue reading until button pressed. | |
1628 | ||
1629 | bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; | |
1630 | // test flags for what blocks to be sure to read | |
1631 | uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; | |
1632 | uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; | |
1633 | uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; | |
1634 | ||
1635 | set_tracing(true); | |
1636 | setupIclassReader(); | |
1637 | ||
1638 | uint16_t tryCnt = 0; | |
1639 | bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); | |
1640 | while (!userCancelled) { | |
1641 | // if only looking for one card try 2 times if we missed it the first time | |
1642 | if (try_once && tryCnt > 2) { | |
1643 | break; | |
1644 | } | |
1645 | tryCnt++; | |
1646 | if (!get_tracing()) { | |
1647 | DbpString("Trace full"); | |
1648 | break; | |
1649 | } | |
1650 | WDT_HIT(); | |
1651 | ||
1652 | read_status = handshakeIclassTag_ext(card_data, use_credit_key); | |
1653 | ||
1654 | if (read_status == 0) continue; | |
1655 | if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; | |
1656 | if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; | |
1657 | ||
1658 | // handshakeIclass returns CSN|CC, but the actual block | |
1659 | // layout is CSN|CONFIG|CC, so here we reorder the data, | |
1660 | // moving CC forward 8 bytes | |
1661 | memcpy(card_data+16, card_data+8, 8); | |
1662 | //Read block 1, config | |
1663 | if (flagReadConfig) { | |
1664 | if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) { | |
1665 | result_status |= FLAG_ICLASS_READER_CONF; | |
1666 | memcpy(card_data+8, resp, 8); | |
1667 | } else { | |
1668 | Dbprintf("Failed to dump config block"); | |
1669 | } | |
1670 | } | |
1671 | ||
1672 | //Read block 5, AA | |
1673 | if (flagReadAA) { | |
1674 | if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) { | |
1675 | result_status |= FLAG_ICLASS_READER_AA; | |
1676 | memcpy(card_data + (8*5), resp, 8); | |
1677 | } else { | |
1678 | //Dbprintf("Failed to dump AA block"); | |
1679 | } | |
1680 | } | |
1681 | ||
1682 | // 0 : CSN | |
1683 | // 1 : Configuration | |
1684 | // 2 : e-purse | |
1685 | // 3 : kd / debit / aa2 (write-only) | |
1686 | // 4 : kc / credit / aa1 (write-only) | |
1687 | // 5 : AIA, Application issuer area | |
1688 | //Then we can 'ship' back the 6 * 8 bytes of data, | |
1689 | // with 0xFF:s in block 3 and 4. | |
1690 | ||
1691 | LED_B_ON(); | |
1692 | //Send back to client, but don't bother if we already sent this - | |
1693 | // only useful if looping in arm (not try_once && not abort_after_read) | |
1694 | if (memcmp(last_csn, card_data, 8) != 0) { | |
1695 | // If caller requires that we get Conf, CC, AA, continue until we got it | |
1696 | if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { | |
1697 | cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); | |
1698 | if (abort_after_read) { | |
1699 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1700 | LED_A_OFF(); | |
1701 | LED_B_OFF(); | |
1702 | return; | |
1703 | } | |
1704 | //Save that we already sent this.... | |
1705 | memcpy(last_csn, card_data, 8); | |
1706 | } | |
1707 | ||
1708 | } | |
1709 | LED_B_OFF(); | |
1710 | userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); | |
1711 | } | |
1712 | if (userCancelled) { | |
1713 | cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0); | |
1714 | } else { | |
1715 | cmd_send(CMD_ACK, 0, 0, 0, card_data, 0); | |
1716 | } | |
1717 | LED_A_OFF(); | |
1718 | } | |
1719 | ||
1720 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { | |
1721 | ||
1722 | uint8_t card_data[USB_CMD_DATA_SIZE]={0}; | |
1723 | uint16_t block_crc_LUT[255] = {0}; | |
1724 | ||
1725 | //Generate a lookup table for block crc | |
1726 | for (int block = 0; block < 255; block++){ | |
1727 | char bl = block; | |
1728 | block_crc_LUT[block] = iclass_crc16(&bl ,1); | |
1729 | } | |
1730 | //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); | |
1731 | ||
1732 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1733 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1734 | ||
1735 | uint16_t crc = 0; | |
1736 | uint8_t cardsize = 0; | |
1737 | uint8_t mem = 0; | |
1738 | ||
1739 | static struct memory_t { | |
1740 | int k16; | |
1741 | int book; | |
1742 | int k2; | |
1743 | int lockauth; | |
1744 | int keyaccess; | |
1745 | } memory; | |
1746 | ||
1747 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1748 | ||
1749 | setupIclassReader(); | |
1750 | set_tracing(true); | |
1751 | ||
1752 | while (!BUTTON_PRESS()) { | |
1753 | ||
1754 | WDT_HIT(); | |
1755 | ||
1756 | if (!get_tracing()) { | |
1757 | DbpString("Trace full"); | |
1758 | break; | |
1759 | } | |
1760 | ||
1761 | uint8_t read_status = handshakeIclassTag(card_data); | |
1762 | if (read_status < 2) continue; | |
1763 | ||
1764 | //for now replay captured auth (as cc not updated) | |
1765 | memcpy(check+5, MAC, 4); | |
1766 | ||
1767 | if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) { | |
1768 | Dbprintf("Error: Authentication Fail!"); | |
1769 | continue; | |
1770 | } | |
1771 | ||
1772 | //first get configuration block (block 1) | |
1773 | crc = block_crc_LUT[1]; | |
1774 | read[1] = 1; | |
1775 | read[2] = crc >> 8; | |
1776 | read[3] = crc & 0xff; | |
1777 | ||
1778 | if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) { | |
1779 | Dbprintf("Dump config (block 1) failed"); | |
1780 | continue; | |
1781 | } | |
1782 | ||
1783 | mem = resp[5]; | |
1784 | memory.k16 = (mem & 0x80); | |
1785 | memory.book = (mem & 0x20); | |
1786 | memory.k2 = (mem & 0x8); | |
1787 | memory.lockauth = (mem & 0x2); | |
1788 | memory.keyaccess = (mem & 0x1); | |
1789 | ||
1790 | cardsize = memory.k16 ? 255 : 32; | |
1791 | WDT_HIT(); | |
1792 | //Set card_data to all zeroes, we'll fill it with data | |
1793 | memset(card_data, 0x0, USB_CMD_DATA_SIZE); | |
1794 | uint8_t failedRead = 0; | |
1795 | uint32_t stored_data_length = 0; | |
1796 | //then loop around remaining blocks | |
1797 | for (int block = 0; block < cardsize; block++) { | |
1798 | read[1] = block; | |
1799 | crc = block_crc_LUT[block]; | |
1800 | read[2] = crc >> 8; | |
1801 | read[3] = crc & 0xff; | |
1802 | ||
1803 | if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { | |
1804 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1805 | block, resp[0], resp[1], resp[2], | |
1806 | resp[3], resp[4], resp[5], | |
1807 | resp[6], resp[7]); | |
1808 | ||
1809 | //Fill up the buffer | |
1810 | memcpy(card_data+stored_data_length, resp, 8); | |
1811 | stored_data_length += 8; | |
1812 | if (stored_data_length +8 > USB_CMD_DATA_SIZE) { | |
1813 | //Time to send this off and start afresh | |
1814 | cmd_send(CMD_ACK, | |
1815 | stored_data_length,//data length | |
1816 | failedRead,//Failed blocks? | |
1817 | 0,//Not used ATM | |
1818 | card_data, stored_data_length); | |
1819 | //reset | |
1820 | stored_data_length = 0; | |
1821 | failedRead = 0; | |
1822 | } | |
1823 | ||
1824 | } else { | |
1825 | failedRead = 1; | |
1826 | stored_data_length += 8;//Otherwise, data becomes misaligned | |
1827 | Dbprintf("Failed to dump block %d", block); | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | //Send off any remaining data | |
1832 | if (stored_data_length > 0) { | |
1833 | cmd_send(CMD_ACK, | |
1834 | stored_data_length,//data length | |
1835 | failedRead,//Failed blocks? | |
1836 | 0,//Not used ATM | |
1837 | card_data, | |
1838 | stored_data_length); | |
1839 | } | |
1840 | //If we got here, let's break | |
1841 | break; | |
1842 | } | |
1843 | //Signal end of transmission | |
1844 | cmd_send(CMD_ACK, | |
1845 | 0,//data length | |
1846 | 0,//Failed blocks? | |
1847 | 0,//Not used ATM | |
1848 | card_data, | |
1849 | 0); | |
1850 | ||
1851 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1852 | LED_A_OFF(); | |
1853 | } | |
1854 | ||
1855 | void iClass_Authentication(uint8_t *MAC) { | |
1856 | uint8_t check[] = { ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1857 | uint8_t resp[ICLASS_BUFFER_SIZE]; | |
1858 | memcpy(check+5, MAC, 4); | |
1859 | bool isOK; | |
1860 | isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); | |
1861 | cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); | |
1862 | } | |
1863 | ||
1864 | static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { | |
1865 | uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? | |
1866 | char bl = blockNo; | |
1867 | uint16_t rdCrc = iclass_crc16(&bl, 1); | |
1868 | readcmd[2] = rdCrc >> 8; | |
1869 | readcmd[3] = rdCrc & 0xff; | |
1870 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; | |
1871 | bool isOK = false; | |
1872 | ||
1873 | //readcmd[1] = blockNo; | |
1874 | isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); | |
1875 | memcpy(readdata, resp, sizeof(resp)); | |
1876 | ||
1877 | return isOK; | |
1878 | } | |
1879 | ||
1880 | void iClass_ReadBlk(uint8_t blockno) { | |
1881 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1882 | bool isOK = false; | |
1883 | isOK = iClass_ReadBlock(blockno, readblockdata); | |
1884 | cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); | |
1885 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1886 | } | |
1887 | ||
1888 | void iClass_Dump(uint8_t blockno, uint8_t numblks) { | |
1889 | uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; | |
1890 | bool isOK = false; | |
1891 | uint8_t blkCnt = 0; | |
1892 | ||
1893 | BigBuf_free(); | |
1894 | uint8_t *dataout = BigBuf_malloc(255*8); | |
1895 | if (dataout == NULL) { | |
1896 | Dbprintf("out of memory"); | |
1897 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1898 | LED_D_OFF(); | |
1899 | cmd_send(CMD_ACK, 0, 1, 0, 0, 0); | |
1900 | LED_A_OFF(); | |
1901 | return; | |
1902 | } | |
1903 | memset(dataout, 0xFF, 255*8); | |
1904 | ||
1905 | for ( ; blkCnt < numblks; blkCnt++) { | |
1906 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1907 | if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again | |
1908 | isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); | |
1909 | if (!isOK) { | |
1910 | Dbprintf("Block %02X failed to read", blkCnt+blockno); | |
1911 | break; | |
1912 | } | |
1913 | } | |
1914 | memcpy(dataout + (blkCnt*8), readblockdata, 8); | |
1915 | } | |
1916 | //return pointer to dump memory in arg3 | |
1917 | cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); | |
1918 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1919 | LEDsoff(); | |
1920 | BigBuf_free(); | |
1921 | } | |
1922 | ||
1923 | static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { | |
1924 | uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1925 | //uint8_t readblockdata[10]; | |
1926 | //write[1] = blockNo; | |
1927 | memcpy(write+2, data, 12); // data + mac | |
1928 | char *wrCmd = (char *)(write+1); | |
1929 | uint16_t wrCrc = iclass_crc16(wrCmd, 13); | |
1930 | write[14] = wrCrc >> 8; | |
1931 | write[15] = wrCrc & 0xff; | |
1932 | uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; | |
1933 | bool isOK = false; | |
1934 | ||
1935 | isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); | |
1936 | if (isOK) { //if reader responded correctly | |
1937 | //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); | |
1938 | if (memcmp(write+2, resp, 8)) { //if response is not equal to write values | |
1939 | if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) | |
1940 | //error try again | |
1941 | isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); | |
1942 | } | |
1943 | } | |
1944 | } | |
1945 | return isOK; | |
1946 | } | |
1947 | ||
1948 | void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { | |
1949 | bool isOK = iClass_WriteBlock_ext(blockNo, data); | |
1950 | if (isOK){ | |
1951 | Dbprintf("Write block [%02x] successful", blockNo); | |
1952 | } else { | |
1953 | Dbprintf("Write block [%02x] failed", blockNo); | |
1954 | } | |
1955 | cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); | |
1956 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1957 | } | |
1958 | ||
1959 | void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { | |
1960 | int i; | |
1961 | int written = 0; | |
1962 | int total_block = (endblock - startblock) + 1; | |
1963 | for (i = 0; i < total_block; i++) { | |
1964 | // block number | |
1965 | if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ | |
1966 | Dbprintf("Write block [%02x] successful", i + startblock); | |
1967 | written++; | |
1968 | } else { | |
1969 | if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ | |
1970 | Dbprintf("Write block [%02x] successful", i + startblock); | |
1971 | written++; | |
1972 | } else { | |
1973 | Dbprintf("Write block [%02x] failed", i + startblock); | |
1974 | } | |
1975 | } | |
1976 | } | |
1977 | if (written == total_block) | |
1978 | Dbprintf("Clone complete"); | |
1979 | else | |
1980 | Dbprintf("Clone incomplete"); | |
1981 | ||
1982 | cmd_send(CMD_ACK, 1, 0, 0, 0, 0); | |
1983 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1984 | LEDsoff(); | |
1985 | } |