]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // Modified by Greg Jones, Jan 2009 | |
4 | // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011 | |
5 | // Modified by piwi, Oct 2018 | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support ISO 15693. This includes both the reader software and | |
12 | // the `fake tag' modes. | |
13 | //----------------------------------------------------------------------------- | |
14 | ||
15 | // The ISO 15693 describes two transmission modes from reader to tag, and four | |
16 | // transmission modes from tag to reader. As of Oct 2018 this code supports | |
17 | // both reader modes and the high speed variant with one subcarrier from card to reader. | |
18 | // As long as the card fully support ISO 15693 this is no problem, since the | |
19 | // reader chooses both data rates, but some non-standard tags do not. | |
20 | // For card simulation, the code supports both high and low speed modes with one subcarrier. | |
21 | // | |
22 | // VCD (reader) -> VICC (tag) | |
23 | // 1 out of 256: | |
24 | // data rate: 1,66 kbit/s (fc/8192) | |
25 | // used for long range | |
26 | // 1 out of 4: | |
27 | // data rate: 26,48 kbit/s (fc/512) | |
28 | // used for short range, high speed | |
29 | // | |
30 | // VICC (tag) -> VCD (reader) | |
31 | // Modulation: | |
32 | // ASK / one subcarrier (423,75 khz) | |
33 | // FSK / two subcarriers (423,75 khz && 484,28 khz) | |
34 | // Data Rates / Modes: | |
35 | // low ASK: 6,62 kbit/s | |
36 | // low FSK: 6.67 kbit/s | |
37 | // high ASK: 26,48 kbit/s | |
38 | // high FSK: 26,69 kbit/s | |
39 | //----------------------------------------------------------------------------- | |
40 | ||
41 | ||
42 | // Random Remarks: | |
43 | // *) UID is always used "transmission order" (LSB), which is reverse to display order | |
44 | ||
45 | // TODO / BUGS / ISSUES: | |
46 | // *) signal decoding is unable to detect collisions. | |
47 | // *) add anti-collision support for inventory-commands | |
48 | // *) read security status of a block | |
49 | // *) sniffing and simulation do not support two subcarrier modes. | |
50 | // *) remove or refactor code under "deprecated" | |
51 | // *) document all the functions | |
52 | ||
53 | #include "iso15693.h" | |
54 | ||
55 | #include "proxmark3.h" | |
56 | #include "util.h" | |
57 | #include "apps.h" | |
58 | #include "string.h" | |
59 | #include "iso15693tools.h" | |
60 | #include "protocols.h" | |
61 | #include "cmd.h" | |
62 | #include "BigBuf.h" | |
63 | #include "fpgaloader.h" | |
64 | ||
65 | #define arraylen(x) (sizeof(x)/sizeof((x)[0])) | |
66 | ||
67 | static int DEBUG = 0; | |
68 | ||
69 | /////////////////////////////////////////////////////////////////////// | |
70 | // ISO 15693 Part 2 - Air Interface | |
71 | // This section basically contains transmission and receiving of bits | |
72 | /////////////////////////////////////////////////////////////////////// | |
73 | ||
74 | // buffers | |
75 | #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2 | |
76 | #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet | |
77 | #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet | |
78 | ||
79 | // --------------------------- | |
80 | // Signal Processing | |
81 | // --------------------------- | |
82 | ||
83 | // prepare data using "1 out of 4" code for later transmission | |
84 | // resulting data rate is 26.48 kbit/s (fc/512) | |
85 | // cmd ... data | |
86 | // n ... length of data | |
87 | static void CodeIso15693AsReader(uint8_t *cmd, int n) | |
88 | { | |
89 | int i, j; | |
90 | ||
91 | ToSendReset(); | |
92 | ||
93 | // Give it a bit of slack at the beginning | |
94 | for(i = 0; i < 24; i++) { | |
95 | ToSendStuffBit(1); | |
96 | } | |
97 | ||
98 | // SOF for 1of4 | |
99 | ToSendStuffBit(0); | |
100 | ToSendStuffBit(1); | |
101 | ToSendStuffBit(1); | |
102 | ToSendStuffBit(1); | |
103 | ToSendStuffBit(1); | |
104 | ToSendStuffBit(0); | |
105 | ToSendStuffBit(1); | |
106 | ToSendStuffBit(1); | |
107 | for(i = 0; i < n; i++) { | |
108 | for(j = 0; j < 8; j += 2) { | |
109 | int these = (cmd[i] >> j) & 3; | |
110 | switch(these) { | |
111 | case 0: | |
112 | ToSendStuffBit(1); | |
113 | ToSendStuffBit(0); | |
114 | ToSendStuffBit(1); | |
115 | ToSendStuffBit(1); | |
116 | ToSendStuffBit(1); | |
117 | ToSendStuffBit(1); | |
118 | ToSendStuffBit(1); | |
119 | ToSendStuffBit(1); | |
120 | break; | |
121 | case 1: | |
122 | ToSendStuffBit(1); | |
123 | ToSendStuffBit(1); | |
124 | ToSendStuffBit(1); | |
125 | ToSendStuffBit(0); | |
126 | ToSendStuffBit(1); | |
127 | ToSendStuffBit(1); | |
128 | ToSendStuffBit(1); | |
129 | ToSendStuffBit(1); | |
130 | break; | |
131 | case 2: | |
132 | ToSendStuffBit(1); | |
133 | ToSendStuffBit(1); | |
134 | ToSendStuffBit(1); | |
135 | ToSendStuffBit(1); | |
136 | ToSendStuffBit(1); | |
137 | ToSendStuffBit(0); | |
138 | ToSendStuffBit(1); | |
139 | ToSendStuffBit(1); | |
140 | break; | |
141 | case 3: | |
142 | ToSendStuffBit(1); | |
143 | ToSendStuffBit(1); | |
144 | ToSendStuffBit(1); | |
145 | ToSendStuffBit(1); | |
146 | ToSendStuffBit(1); | |
147 | ToSendStuffBit(1); | |
148 | ToSendStuffBit(1); | |
149 | ToSendStuffBit(0); | |
150 | break; | |
151 | } | |
152 | } | |
153 | } | |
154 | // EOF | |
155 | ToSendStuffBit(1); | |
156 | ToSendStuffBit(1); | |
157 | ToSendStuffBit(0); | |
158 | ToSendStuffBit(1); | |
159 | ||
160 | // Fill remainder of last byte with 1 | |
161 | for(i = 0; i < 4; i++) { | |
162 | ToSendStuffBit(1); | |
163 | } | |
164 | ||
165 | ToSendMax++; | |
166 | } | |
167 | ||
168 | // encode data using "1 out of 256" scheme | |
169 | // data rate is 1,66 kbit/s (fc/8192) | |
170 | // is designed for more robust communication over longer distances | |
171 | static void CodeIso15693AsReader256(uint8_t *cmd, int n) | |
172 | { | |
173 | int i, j; | |
174 | ||
175 | ToSendReset(); | |
176 | ||
177 | // Give it a bit of slack at the beginning | |
178 | for(i = 0; i < 24; i++) { | |
179 | ToSendStuffBit(1); | |
180 | } | |
181 | ||
182 | // SOF for 1of256 | |
183 | ToSendStuffBit(0); | |
184 | ToSendStuffBit(1); | |
185 | ToSendStuffBit(1); | |
186 | ToSendStuffBit(1); | |
187 | ToSendStuffBit(1); | |
188 | ToSendStuffBit(1); | |
189 | ToSendStuffBit(1); | |
190 | ToSendStuffBit(0); | |
191 | ||
192 | for(i = 0; i < n; i++) { | |
193 | for (j = 0; j<=255; j++) { | |
194 | if (cmd[i]==j) { | |
195 | ToSendStuffBit(1); | |
196 | ToSendStuffBit(0); | |
197 | } else { | |
198 | ToSendStuffBit(1); | |
199 | ToSendStuffBit(1); | |
200 | } | |
201 | } | |
202 | } | |
203 | // EOF | |
204 | ToSendStuffBit(1); | |
205 | ToSendStuffBit(1); | |
206 | ToSendStuffBit(0); | |
207 | ToSendStuffBit(1); | |
208 | ||
209 | // Fill remainder of last byte with 1 | |
210 | for(i = 0; i < 4; i++) { | |
211 | ToSendStuffBit(1); | |
212 | } | |
213 | ||
214 | ToSendMax++; | |
215 | } | |
216 | ||
217 | ||
218 | // static uint8_t encode4Bits(const uint8_t b) { | |
219 | // uint8_t c = b & 0xF; | |
220 | // // OTA, the least significant bits first | |
221 | // // The columns are | |
222 | // // 1 - Bit value to send | |
223 | // // 2 - Reversed (big-endian) | |
224 | // // 3 - Manchester Encoded | |
225 | // // 4 - Hex values | |
226 | ||
227 | // switch(c){ | |
228 | // // 1 2 3 4 | |
229 | // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 | |
230 | // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 | |
231 | // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 | |
232 | // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 | |
233 | // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 | |
234 | // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 | |
235 | // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 | |
236 | // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 | |
237 | // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 | |
238 | // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 | |
239 | // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 | |
240 | // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 | |
241 | // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a | |
242 | // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a | |
243 | // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a | |
244 | // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa | |
245 | ||
246 | // } | |
247 | // } | |
248 | ||
249 | static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 }; | |
250 | ||
251 | void CodeIso15693AsTag(uint8_t *cmd, size_t len) { | |
252 | /* | |
253 | * SOF comprises 3 parts; | |
254 | * * An unmodulated time of 56.64 us | |
255 | * * 24 pulses of 423.75 kHz (fc/32) | |
256 | * * A logic 1, which starts with an unmodulated time of 18.88us | |
257 | * followed by 8 pulses of 423.75kHz (fc/32) | |
258 | * | |
259 | * EOF comprises 3 parts: | |
260 | * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated | |
261 | * time of 18.88us. | |
262 | * - 24 pulses of fc/32 | |
263 | * - An unmodulated time of 56.64 us | |
264 | * | |
265 | * A logic 0 starts with 8 pulses of fc/32 | |
266 | * followed by an unmodulated time of 256/fc (~18,88us). | |
267 | * | |
268 | * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by | |
269 | * 8 pulses of fc/32 (also 18.88us) | |
270 | * | |
271 | * A bit here becomes 8 pulses of fc/32. Therefore: | |
272 | * The SOF can be written as 00011101 = 0x1D | |
273 | * The EOF can be written as 10111000 = 0xb8 | |
274 | * A logic 1 is 01 | |
275 | * A logic 0 is 10 | |
276 | * | |
277 | * */ | |
278 | ||
279 | ToSendReset(); | |
280 | ||
281 | // SOF | |
282 | ToSend[++ToSendMax] = 0x1D; // 00011101 | |
283 | ||
284 | // data | |
285 | for (int i = 0; i < len; i++) { | |
286 | ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF]; | |
287 | ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4]; | |
288 | } | |
289 | ||
290 | // EOF | |
291 | ToSend[++ToSendMax] = 0xB8; // 10111000 | |
292 | ||
293 | ToSendMax++; | |
294 | } | |
295 | ||
296 | ||
297 | // Transmit the command (to the tag) that was placed in cmd[]. | |
298 | static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time) | |
299 | { | |
300 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD); | |
301 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
302 | ||
303 | while (GetCountSspClk() < start_time) ; | |
304 | ||
305 | LED_B_ON(); | |
306 | for(int c = 0; c < len; c++) { | |
307 | uint8_t data = cmd[c]; | |
308 | for (int i = 0; i < 8; i++) { | |
309 | uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff; | |
310 | while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; | |
311 | AT91C_BASE_SSC->SSC_THR = send_word; | |
312 | while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; | |
313 | AT91C_BASE_SSC->SSC_THR = send_word; | |
314 | data <<= 1; | |
315 | } | |
316 | WDT_HIT(); | |
317 | } | |
318 | LED_B_OFF(); | |
319 | } | |
320 | ||
321 | ||
322 | //----------------------------------------------------------------------------- | |
323 | // Transmit the tag response (to the reader) that was placed in cmd[]. | |
324 | //----------------------------------------------------------------------------- | |
325 | void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) { | |
326 | // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk() | |
327 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K); | |
328 | ||
329 | uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF | |
330 | ||
331 | while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time | |
332 | if (slot_time) { | |
333 | modulation_start_time += slot_time; // use next available slot | |
334 | } else { | |
335 | modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time | |
336 | } | |
337 | } | |
338 | ||
339 | while (GetCountSspClk() < (modulation_start_time & 0xfffffff8)) | |
340 | /* wait */ ; | |
341 | ||
342 | uint8_t shift_delay = modulation_start_time & 0x00000007; | |
343 | ||
344 | *start_time = modulation_start_time - 3 * 8; | |
345 | ||
346 | LED_C_ON(); | |
347 | uint8_t bits_to_shift = 0x00; | |
348 | uint8_t bits_to_send = 0x00; | |
349 | for (size_t c = 0; c < len; c++) { | |
350 | for (int i = (c==0?4:7); i >= 0; i--) { | |
351 | uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00; | |
352 | for (int j = 0; j < (slow?4:1); ) { | |
353 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
354 | bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay; | |
355 | AT91C_BASE_SSC->SSC_THR = bits_to_send; | |
356 | bits_to_shift = cmd_bits; | |
357 | j++; | |
358 | } | |
359 | } | |
360 | } | |
361 | WDT_HIT(); | |
362 | } | |
363 | // send the remaining bits, padded with 0: | |
364 | bits_to_send = bits_to_shift << (8 - shift_delay); | |
365 | for ( ; ; ) { | |
366 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
367 | AT91C_BASE_SSC->SSC_THR = bits_to_send; | |
368 | break; | |
369 | } | |
370 | } | |
371 | LED_C_OFF(); | |
372 | } | |
373 | ||
374 | ||
375 | //============================================================================= | |
376 | // An ISO 15693 decoder for tag responses (one subcarrier only). | |
377 | // Uses cross correlation to identify each bit and EOF. | |
378 | // This function is called 8 times per bit (every 2 subcarrier cycles). | |
379 | // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us, | |
380 | // i.e. function is called every 4,72us | |
381 | // LED handling: | |
382 | // LED C -> ON once we have received the SOF and are expecting the rest. | |
383 | // LED C -> OFF once we have received EOF or are unsynced | |
384 | // | |
385 | // Returns: true if we received a EOF | |
386 | // false if we are still waiting for some more | |
387 | //============================================================================= | |
388 | ||
389 | #define NOISE_THRESHOLD 160 // don't try to correlate noise | |
390 | ||
391 | typedef struct DecodeTag { | |
392 | enum { | |
393 | STATE_TAG_SOF_LOW, | |
394 | STATE_TAG_SOF_HIGH, | |
395 | STATE_TAG_SOF_HIGH_END, | |
396 | STATE_TAG_RECEIVING_DATA, | |
397 | STATE_TAG_EOF | |
398 | } state; | |
399 | int bitCount; | |
400 | int posCount; | |
401 | enum { | |
402 | LOGIC0, | |
403 | LOGIC1, | |
404 | SOF_PART1, | |
405 | SOF_PART2 | |
406 | } lastBit; | |
407 | uint16_t shiftReg; | |
408 | uint16_t max_len; | |
409 | uint8_t *output; | |
410 | int len; | |
411 | int sum1, sum2; | |
412 | } DecodeTag_t; | |
413 | ||
414 | ||
415 | static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) | |
416 | { | |
417 | switch(DecodeTag->state) { | |
418 | case STATE_TAG_SOF_LOW: | |
419 | // waiting for 12 times low (11 times low is accepted as well) | |
420 | if (amplitude < NOISE_THRESHOLD) { | |
421 | DecodeTag->posCount++; | |
422 | } else { | |
423 | if (DecodeTag->posCount > 10) { | |
424 | DecodeTag->posCount = 1; | |
425 | DecodeTag->sum1 = 0; | |
426 | DecodeTag->state = STATE_TAG_SOF_HIGH; | |
427 | } else { | |
428 | DecodeTag->posCount = 0; | |
429 | } | |
430 | } | |
431 | break; | |
432 | ||
433 | case STATE_TAG_SOF_HIGH: | |
434 | // waiting for 10 times high. Take average over the last 8 | |
435 | if (amplitude > NOISE_THRESHOLD) { | |
436 | DecodeTag->posCount++; | |
437 | if (DecodeTag->posCount > 2) { | |
438 | DecodeTag->sum1 += amplitude; // keep track of average high value | |
439 | } | |
440 | if (DecodeTag->posCount == 10) { | |
441 | DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples) | |
442 | DecodeTag->state = STATE_TAG_SOF_HIGH_END; | |
443 | } | |
444 | } else { // high phase was too short | |
445 | DecodeTag->posCount = 1; | |
446 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
447 | } | |
448 | break; | |
449 | ||
450 | case STATE_TAG_SOF_HIGH_END: | |
451 | // waiting for a falling edge | |
452 | if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge | |
453 | DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high) | |
454 | DecodeTag->shiftReg = 0; | |
455 | DecodeTag->bitCount = 0; | |
456 | DecodeTag->len = 0; | |
457 | DecodeTag->sum1 = amplitude; | |
458 | DecodeTag->sum2 = 0; | |
459 | DecodeTag->posCount = 2; | |
460 | DecodeTag->state = STATE_TAG_RECEIVING_DATA; | |
461 | LED_C_ON(); | |
462 | } else { | |
463 | DecodeTag->posCount++; | |
464 | if (DecodeTag->posCount > 13) { // high phase too long | |
465 | DecodeTag->posCount = 0; | |
466 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
467 | LED_C_OFF(); | |
468 | } | |
469 | } | |
470 | break; | |
471 | ||
472 | case STATE_TAG_RECEIVING_DATA: | |
473 | if (DecodeTag->posCount == 1) { | |
474 | DecodeTag->sum1 = 0; | |
475 | DecodeTag->sum2 = 0; | |
476 | } | |
477 | if (DecodeTag->posCount <= 4) { | |
478 | DecodeTag->sum1 += amplitude; | |
479 | } else { | |
480 | DecodeTag->sum2 += amplitude; | |
481 | } | |
482 | if (DecodeTag->posCount == 8) { | |
483 | int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1; | |
484 | int32_t corr_0 = -corr_1; | |
485 | int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2; | |
486 | if (corr_EOF > corr_0 && corr_EOF > corr_1) { | |
487 | if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF | |
488 | DecodeTag->state = STATE_TAG_EOF; | |
489 | } else { | |
490 | DecodeTag->posCount = 0; | |
491 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
492 | LED_C_OFF(); | |
493 | } | |
494 | } else if (corr_1 > corr_0) { | |
495 | // logic 1 | |
496 | if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF | |
497 | DecodeTag->lastBit = SOF_PART2; // SOF completed | |
498 | } else { | |
499 | DecodeTag->lastBit = LOGIC1; | |
500 | DecodeTag->shiftReg >>= 1; | |
501 | DecodeTag->shiftReg |= 0x80; | |
502 | DecodeTag->bitCount++; | |
503 | if (DecodeTag->bitCount == 8) { | |
504 | DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; | |
505 | DecodeTag->len++; | |
506 | if (DecodeTag->len > DecodeTag->max_len) { | |
507 | // buffer overflow, give up | |
508 | DecodeTag->posCount = 0; | |
509 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
510 | LED_C_OFF(); | |
511 | } | |
512 | DecodeTag->bitCount = 0; | |
513 | DecodeTag->shiftReg = 0; | |
514 | } | |
515 | } | |
516 | } else { | |
517 | // logic 0 | |
518 | if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF | |
519 | DecodeTag->posCount = 0; | |
520 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
521 | LED_C_OFF(); | |
522 | } else { | |
523 | DecodeTag->lastBit = LOGIC0; | |
524 | DecodeTag->shiftReg >>= 1; | |
525 | DecodeTag->bitCount++; | |
526 | if (DecodeTag->bitCount == 8) { | |
527 | DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; | |
528 | DecodeTag->len++; | |
529 | if (DecodeTag->len > DecodeTag->max_len) { | |
530 | // buffer overflow, give up | |
531 | DecodeTag->posCount = 0; | |
532 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
533 | LED_C_OFF(); | |
534 | } | |
535 | DecodeTag->bitCount = 0; | |
536 | DecodeTag->shiftReg = 0; | |
537 | } | |
538 | } | |
539 | } | |
540 | DecodeTag->posCount = 0; | |
541 | } | |
542 | DecodeTag->posCount++; | |
543 | break; | |
544 | ||
545 | case STATE_TAG_EOF: | |
546 | if (DecodeTag->posCount == 1) { | |
547 | DecodeTag->sum1 = 0; | |
548 | DecodeTag->sum2 = 0; | |
549 | } | |
550 | if (DecodeTag->posCount <= 4) { | |
551 | DecodeTag->sum1 += amplitude; | |
552 | } else { | |
553 | DecodeTag->sum2 += amplitude; | |
554 | } | |
555 | if (DecodeTag->posCount == 8) { | |
556 | int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1; | |
557 | int32_t corr_0 = -corr_1; | |
558 | int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2; | |
559 | if (corr_EOF > corr_0 || corr_1 > corr_0) { | |
560 | DecodeTag->posCount = 0; | |
561 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
562 | LED_C_OFF(); | |
563 | } else { | |
564 | LED_C_OFF(); | |
565 | return true; | |
566 | } | |
567 | } | |
568 | DecodeTag->posCount++; | |
569 | break; | |
570 | ||
571 | } | |
572 | ||
573 | return false; | |
574 | } | |
575 | ||
576 | ||
577 | static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) | |
578 | { | |
579 | DecodeTag->posCount = 0; | |
580 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
581 | DecodeTag->output = data; | |
582 | DecodeTag->max_len = max_len; | |
583 | } | |
584 | ||
585 | ||
586 | static void DecodeTagReset(DecodeTag_t *DecodeTag) | |
587 | { | |
588 | DecodeTag->posCount = 0; | |
589 | DecodeTag->state = STATE_TAG_SOF_LOW; | |
590 | } | |
591 | ||
592 | ||
593 | /* | |
594 | * Receive and decode the tag response, also log to tracebuffer | |
595 | */ | |
596 | static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout) | |
597 | { | |
598 | int samples = 0; | |
599 | bool gotFrame = false; | |
600 | ||
601 | uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t)); | |
602 | ||
603 | // the Decoder data structure | |
604 | DecodeTag_t DecodeTag = { 0 }; | |
605 | DecodeTagInit(&DecodeTag, response, max_len); | |
606 | ||
607 | // wait for last transfer to complete | |
608 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); | |
609 | ||
610 | // And put the FPGA in the appropriate mode | |
611 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); | |
612 | ||
613 | // Setup and start DMA. | |
614 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
615 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
616 | uint16_t *upTo = dmaBuf; | |
617 | ||
618 | for(;;) { | |
619 | uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
620 | ||
621 | if (behindBy == 0) continue; | |
622 | ||
623 | uint16_t tagdata = *upTo++; | |
624 | ||
625 | if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
626 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
627 | if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
628 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
629 | break; | |
630 | } | |
631 | } | |
632 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
633 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
634 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
635 | } | |
636 | ||
637 | samples++; | |
638 | ||
639 | if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) { | |
640 | gotFrame = true; | |
641 | break; | |
642 | } | |
643 | ||
644 | if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) { | |
645 | DecodeTag.len = 0; | |
646 | break; | |
647 | } | |
648 | ||
649 | } | |
650 | ||
651 | FpgaDisableSscDma(); | |
652 | BigBuf_free(); | |
653 | ||
654 | if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", | |
655 | samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount); | |
656 | ||
657 | if (DecodeTag.len > 0) { | |
658 | LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false); | |
659 | } | |
660 | ||
661 | return DecodeTag.len; | |
662 | } | |
663 | ||
664 | ||
665 | //============================================================================= | |
666 | // An ISO15693 decoder for reader commands. | |
667 | // | |
668 | // This function is called 4 times per bit (every 2 subcarrier cycles). | |
669 | // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
670 | // LED handling: | |
671 | // LED B -> ON once we have received the SOF and are expecting the rest. | |
672 | // LED B -> OFF once we have received EOF or are in error state or unsynced | |
673 | // | |
674 | // Returns: true if we received a EOF | |
675 | // false if we are still waiting for some more | |
676 | //============================================================================= | |
677 | ||
678 | typedef struct DecodeReader { | |
679 | enum { | |
680 | STATE_READER_UNSYNCD, | |
681 | STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF, | |
682 | STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF, | |
683 | STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF, | |
684 | STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF, | |
685 | STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4, | |
686 | STATE_READER_RECEIVE_DATA_1_OUT_OF_4, | |
687 | STATE_READER_RECEIVE_DATA_1_OUT_OF_256 | |
688 | } state; | |
689 | enum { | |
690 | CODING_1_OUT_OF_4, | |
691 | CODING_1_OUT_OF_256 | |
692 | } Coding; | |
693 | uint8_t shiftReg; | |
694 | uint8_t bitCount; | |
695 | int byteCount; | |
696 | int byteCountMax; | |
697 | int posCount; | |
698 | int sum1, sum2; | |
699 | uint8_t *output; | |
700 | } DecodeReader_t; | |
701 | ||
702 | ||
703 | static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len) | |
704 | { | |
705 | DecodeReader->output = data; | |
706 | DecodeReader->byteCountMax = max_len; | |
707 | DecodeReader->state = STATE_READER_UNSYNCD; | |
708 | DecodeReader->byteCount = 0; | |
709 | DecodeReader->bitCount = 0; | |
710 | DecodeReader->posCount = 1; | |
711 | DecodeReader->shiftReg = 0; | |
712 | } | |
713 | ||
714 | ||
715 | static void DecodeReaderReset(DecodeReader_t* DecodeReader) | |
716 | { | |
717 | DecodeReader->state = STATE_READER_UNSYNCD; | |
718 | } | |
719 | ||
720 | ||
721 | static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader) | |
722 | { | |
723 | switch (DecodeReader->state) { | |
724 | case STATE_READER_UNSYNCD: | |
725 | // wait for unmodulated carrier | |
726 | if (bit) { | |
727 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
728 | } | |
729 | break; | |
730 | ||
731 | case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF: | |
732 | if (!bit) { | |
733 | // we went low, so this could be the beginning of a SOF | |
734 | DecodeReader->posCount = 1; | |
735 | DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF; | |
736 | } | |
737 | break; | |
738 | ||
739 | case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF: | |
740 | DecodeReader->posCount++; | |
741 | if (bit) { // detected rising edge | |
742 | if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5) | |
743 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
744 | } else { // SOF | |
745 | DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF; | |
746 | } | |
747 | } else { | |
748 | if (DecodeReader->posCount > 5) { // stayed low for too long | |
749 | DecodeReaderReset(DecodeReader); | |
750 | } else { | |
751 | // do nothing, keep waiting | |
752 | } | |
753 | } | |
754 | break; | |
755 | ||
756 | case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF: | |
757 | DecodeReader->posCount++; | |
758 | if (!bit) { // detected a falling edge | |
759 | if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest) | |
760 | DecodeReaderReset(DecodeReader); | |
761 | } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding | |
762 | DecodeReader->Coding = CODING_1_OUT_OF_4; | |
763 | DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; | |
764 | } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest) | |
765 | DecodeReaderReset(DecodeReader); | |
766 | } else { // SOF for 1 out of 256 coding | |
767 | DecodeReader->Coding = CODING_1_OUT_OF_256; | |
768 | DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; | |
769 | } | |
770 | } else { | |
771 | if (DecodeReader->posCount > 29) { // stayed high for too long | |
772 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
773 | } else { | |
774 | // do nothing, keep waiting | |
775 | } | |
776 | } | |
777 | break; | |
778 | ||
779 | case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF: | |
780 | DecodeReader->posCount++; | |
781 | if (bit) { // detected rising edge | |
782 | if (DecodeReader->Coding == CODING_1_OUT_OF_256) { | |
783 | if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33) | |
784 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
785 | } else { | |
786 | DecodeReader->posCount = 1; | |
787 | DecodeReader->bitCount = 0; | |
788 | DecodeReader->byteCount = 0; | |
789 | DecodeReader->sum1 = 1; | |
790 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; | |
791 | LED_B_ON(); | |
792 | } | |
793 | } else { // CODING_1_OUT_OF_4 | |
794 | if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25) | |
795 | DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; | |
796 | } else { | |
797 | DecodeReader->posCount = 1; | |
798 | DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4; | |
799 | } | |
800 | } | |
801 | } else { | |
802 | if (DecodeReader->Coding == CODING_1_OUT_OF_256) { | |
803 | if (DecodeReader->posCount > 34) { // signal stayed low for too long | |
804 | DecodeReaderReset(DecodeReader); | |
805 | } else { | |
806 | // do nothing, keep waiting | |
807 | } | |
808 | } else { // CODING_1_OUT_OF_4 | |
809 | if (DecodeReader->posCount > 26) { // signal stayed low for too long | |
810 | DecodeReaderReset(DecodeReader); | |
811 | } else { | |
812 | // do nothing, keep waiting | |
813 | } | |
814 | } | |
815 | } | |
816 | break; | |
817 | ||
818 | case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4: | |
819 | DecodeReader->posCount++; | |
820 | if (bit) { | |
821 | if (DecodeReader->posCount == 9) { | |
822 | DecodeReader->posCount = 1; | |
823 | DecodeReader->bitCount = 0; | |
824 | DecodeReader->byteCount = 0; | |
825 | DecodeReader->sum1 = 1; | |
826 | DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; | |
827 | LED_B_ON(); | |
828 | } else { | |
829 | // do nothing, keep waiting | |
830 | } | |
831 | } else { // unexpected falling edge | |
832 | DecodeReaderReset(DecodeReader); | |
833 | } | |
834 | break; | |
835 | ||
836 | case STATE_READER_RECEIVE_DATA_1_OUT_OF_4: | |
837 | bit = !!bit; | |
838 | DecodeReader->posCount++; | |
839 | if (DecodeReader->posCount == 1) { | |
840 | DecodeReader->sum1 = bit; | |
841 | } else if (DecodeReader->posCount <= 4) { | |
842 | DecodeReader->sum1 += bit; | |
843 | } else if (DecodeReader->posCount == 5) { | |
844 | DecodeReader->sum2 = bit; | |
845 | } else { | |
846 | DecodeReader->sum2 += bit; | |
847 | } | |
848 | if (DecodeReader->posCount == 8) { | |
849 | DecodeReader->posCount = 0; | |
850 | if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF | |
851 | LED_B_OFF(); // Finished receiving | |
852 | DecodeReaderReset(DecodeReader); | |
853 | if (DecodeReader->byteCount != 0) { | |
854 | return true; | |
855 | } | |
856 | } | |
857 | if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position | |
858 | DecodeReader->shiftReg >>= 2; | |
859 | DecodeReader->shiftReg |= (DecodeReader->bitCount << 6); | |
860 | } | |
861 | if (DecodeReader->bitCount == 15) { // we have a full byte | |
862 | DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; | |
863 | if (DecodeReader->byteCount > DecodeReader->byteCountMax) { | |
864 | // buffer overflow, give up | |
865 | LED_B_OFF(); | |
866 | DecodeReaderReset(DecodeReader); | |
867 | } | |
868 | DecodeReader->bitCount = 0; | |
869 | DecodeReader->shiftReg = 0; | |
870 | } else { | |
871 | DecodeReader->bitCount++; | |
872 | } | |
873 | } | |
874 | break; | |
875 | ||
876 | case STATE_READER_RECEIVE_DATA_1_OUT_OF_256: | |
877 | bit = !!bit; | |
878 | DecodeReader->posCount++; | |
879 | if (DecodeReader->posCount == 1) { | |
880 | DecodeReader->sum1 = bit; | |
881 | } else if (DecodeReader->posCount <= 4) { | |
882 | DecodeReader->sum1 += bit; | |
883 | } else if (DecodeReader->posCount == 5) { | |
884 | DecodeReader->sum2 = bit; | |
885 | } else { | |
886 | DecodeReader->sum2 += bit; | |
887 | } | |
888 | if (DecodeReader->posCount == 8) { | |
889 | DecodeReader->posCount = 0; | |
890 | if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF | |
891 | LED_B_OFF(); // Finished receiving | |
892 | DecodeReaderReset(DecodeReader); | |
893 | if (DecodeReader->byteCount != 0) { | |
894 | return true; | |
895 | } | |
896 | } | |
897 | if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position | |
898 | DecodeReader->shiftReg = DecodeReader->bitCount; | |
899 | } | |
900 | if (DecodeReader->bitCount == 255) { // we have a full byte | |
901 | DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; | |
902 | if (DecodeReader->byteCount > DecodeReader->byteCountMax) { | |
903 | // buffer overflow, give up | |
904 | LED_B_OFF(); | |
905 | DecodeReaderReset(DecodeReader); | |
906 | } | |
907 | } | |
908 | DecodeReader->bitCount++; | |
909 | } | |
910 | break; | |
911 | ||
912 | default: | |
913 | LED_B_OFF(); | |
914 | DecodeReaderReset(DecodeReader); | |
915 | break; | |
916 | } | |
917 | ||
918 | return false; | |
919 | } | |
920 | ||
921 | ||
922 | //----------------------------------------------------------------------------- | |
923 | // Receive a command (from the reader to us, where we are the simulated tag), | |
924 | // and store it in the given buffer, up to the given maximum length. Keeps | |
925 | // spinning, waiting for a well-framed command, until either we get one | |
926 | // (returns len) or someone presses the pushbutton on the board (returns -1). | |
927 | // | |
928 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
929 | // correctly. | |
930 | //----------------------------------------------------------------------------- | |
931 | ||
932 | int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) { | |
933 | int samples = 0; | |
934 | bool gotFrame = false; | |
935 | uint8_t b; | |
936 | ||
937 | uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE]; | |
938 | ||
939 | // the decoder data structure | |
940 | DecodeReader_t DecodeReader = {0}; | |
941 | DecodeReaderInit(&DecodeReader, received, max_len); | |
942 | ||
943 | // wait for last transfer to complete | |
944 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); | |
945 | ||
946 | LED_D_OFF(); | |
947 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
948 | ||
949 | // clear receive register and wait for next transfer | |
950 | uint32_t temp = AT91C_BASE_SSC->SSC_RHR; | |
951 | (void) temp; | |
952 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; | |
953 | ||
954 | uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8; | |
955 | ||
956 | // Setup and start DMA. | |
957 | FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
958 | uint8_t *upTo = dmaBuf; | |
959 | ||
960 | for (;;) { | |
961 | uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
962 | ||
963 | if (behindBy == 0) continue; | |
964 | ||
965 | b = *upTo++; | |
966 | if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
967 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
968 | if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
969 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
970 | break; | |
971 | } | |
972 | } | |
973 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
974 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
975 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
976 | } | |
977 | ||
978 | for (int i = 7; i >= 0; i--) { | |
979 | if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) { | |
980 | *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF | |
981 | gotFrame = true; | |
982 | break; | |
983 | } | |
984 | samples++; | |
985 | } | |
986 | ||
987 | if (gotFrame) { | |
988 | break; | |
989 | } | |
990 | ||
991 | if (BUTTON_PRESS()) { | |
992 | DecodeReader.byteCount = -1; | |
993 | break; | |
994 | } | |
995 | ||
996 | WDT_HIT(); | |
997 | } | |
998 | ||
999 | FpgaDisableSscDma(); | |
1000 | ||
1001 | if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", | |
1002 | samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount); | |
1003 | ||
1004 | if (DecodeReader.byteCount > 0) { | |
1005 | uint32_t sof_time = *eof_time | |
1006 | - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers | |
1007 | - 32 // time for SOF transfer | |
1008 | - 16; // time for EOF transfer | |
1009 | LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true); | |
1010 | } | |
1011 | ||
1012 | return DecodeReader.byteCount; | |
1013 | } | |
1014 | ||
1015 | ||
1016 | // Encode (into the ToSend buffers) an identify request, which is the first | |
1017 | // thing that you must send to a tag to get a response. | |
1018 | static void BuildIdentifyRequest(void) | |
1019 | { | |
1020 | uint8_t cmd[5]; | |
1021 | ||
1022 | uint16_t crc; | |
1023 | // one sub-carrier, inventory, 1 slot, fast rate | |
1024 | // AFI is at bit 5 (1<<4) when doing an INVENTORY | |
1025 | cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); | |
1026 | // inventory command code | |
1027 | cmd[1] = 0x01; | |
1028 | // no mask | |
1029 | cmd[2] = 0x00; | |
1030 | //Now the CRC | |
1031 | crc = Iso15693Crc(cmd, 3); | |
1032 | cmd[3] = crc & 0xff; | |
1033 | cmd[4] = crc >> 8; | |
1034 | ||
1035 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1036 | } | |
1037 | ||
1038 | ||
1039 | //----------------------------------------------------------------------------- | |
1040 | // Start to read an ISO 15693 tag. We send an identify request, then wait | |
1041 | // for the response. The response is not demodulated, just left in the buffer | |
1042 | // so that it can be downloaded to a PC and processed there. | |
1043 | //----------------------------------------------------------------------------- | |
1044 | void AcquireRawAdcSamplesIso15693(void) | |
1045 | { | |
1046 | LEDsoff(); | |
1047 | LED_A_ON(); | |
1048 | ||
1049 | uint8_t *dest = BigBuf_get_addr(); | |
1050 | ||
1051 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1052 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1053 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1054 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1055 | ||
1056 | BuildIdentifyRequest(); | |
1057 | ||
1058 | // Give the tags time to energize | |
1059 | LED_D_ON(); | |
1060 | SpinDelay(100); | |
1061 | ||
1062 | // Now send the command | |
1063 | TransmitTo15693Tag(ToSend, ToSendMax, 0); | |
1064 | ||
1065 | // wait for last transfer to complete | |
1066 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ; | |
1067 | ||
1068 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); | |
1069 | ||
1070 | for(int c = 0; c < 4000; ) { | |
1071 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1072 | uint16_t r = AT91C_BASE_SSC->SSC_RHR; | |
1073 | dest[c++] = r >> 5; | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1078 | LEDsoff(); | |
1079 | } | |
1080 | ||
1081 | ||
1082 | void SnoopIso15693(void) | |
1083 | { | |
1084 | LED_A_ON(); | |
1085 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1086 | BigBuf_free(); | |
1087 | ||
1088 | clear_trace(); | |
1089 | set_tracing(true); | |
1090 | ||
1091 | // The DMA buffer, used to stream samples from the FPGA | |
1092 | uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t)); | |
1093 | uint16_t *upTo; | |
1094 | ||
1095 | // Count of samples received so far, so that we can include timing | |
1096 | // information in the trace buffer. | |
1097 | int samples = 0; | |
1098 | ||
1099 | DecodeTag_t DecodeTag = {0}; | |
1100 | uint8_t response[ISO15693_MAX_RESPONSE_LENGTH]; | |
1101 | DecodeTagInit(&DecodeTag, response, sizeof(response)); | |
1102 | ||
1103 | DecodeReader_t DecodeReader = {0};; | |
1104 | uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; | |
1105 | DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd)); | |
1106 | ||
1107 | // Print some debug information about the buffer sizes | |
1108 | if (DEBUG) { | |
1109 | Dbprintf("Snooping buffers initialized:"); | |
1110 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1111 | Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH); | |
1112 | Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH); | |
1113 | Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t)); | |
1114 | } | |
1115 | Dbprintf("Snoop started. Press PM3 Button to stop."); | |
1116 | ||
1117 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); | |
1118 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1119 | ||
1120 | // Setup for the DMA. | |
1121 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1122 | upTo = dmaBuf; | |
1123 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1124 | ||
1125 | bool TagIsActive = false; | |
1126 | bool ReaderIsActive = false; | |
1127 | bool ExpectTagAnswer = false; | |
1128 | ||
1129 | // And now we loop, receiving samples. | |
1130 | for(;;) { | |
1131 | uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); | |
1132 | ||
1133 | if (behindBy == 0) continue; | |
1134 | ||
1135 | uint16_t snoopdata = *upTo++; | |
1136 | ||
1137 | if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
1138 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
1139 | if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { | |
1140 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples); | |
1141 | break; | |
1142 | } | |
1143 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
1144 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
1145 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
1146 | WDT_HIT(); | |
1147 | if(BUTTON_PRESS()) { | |
1148 | DbpString("Snoop stopped."); | |
1149 | break; | |
1150 | } | |
1151 | } | |
1152 | } | |
1153 | samples++; | |
1154 | ||
1155 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
1156 | if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) { | |
1157 | FpgaDisableSscDma(); | |
1158 | ExpectTagAnswer = true; | |
1159 | LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true); | |
1160 | /* And ready to receive another command. */ | |
1161 | DecodeReaderReset(&DecodeReader); | |
1162 | /* And also reset the demod code, which might have been */ | |
1163 | /* false-triggered by the commands from the reader. */ | |
1164 | DecodeTagReset(&DecodeTag); | |
1165 | upTo = dmaBuf; | |
1166 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1167 | } | |
1168 | if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) { | |
1169 | FpgaDisableSscDma(); | |
1170 | ExpectTagAnswer = true; | |
1171 | LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true); | |
1172 | /* And ready to receive another command. */ | |
1173 | DecodeReaderReset(&DecodeReader); | |
1174 | /* And also reset the demod code, which might have been */ | |
1175 | /* false-triggered by the commands from the reader. */ | |
1176 | DecodeTagReset(&DecodeTag); | |
1177 | upTo = dmaBuf; | |
1178 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1179 | } | |
1180 | ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF); | |
1181 | } | |
1182 | ||
1183 | if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet | |
1184 | if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) { | |
1185 | FpgaDisableSscDma(); | |
1186 | //Use samples as a time measurement | |
1187 | LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false); | |
1188 | // And ready to receive another response. | |
1189 | DecodeTagReset(&DecodeTag); | |
1190 | DecodeReaderReset(&DecodeReader); | |
1191 | ExpectTagAnswer = false; | |
1192 | upTo = dmaBuf; | |
1193 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); | |
1194 | } | |
1195 | TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA); | |
1196 | } | |
1197 | ||
1198 | } | |
1199 | ||
1200 | FpgaDisableSscDma(); | |
1201 | BigBuf_free(); | |
1202 | ||
1203 | LEDsoff(); | |
1204 | ||
1205 | DbpString("Snoop statistics:"); | |
1206 | Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer); | |
1207 | Dbprintf(" DecodeTag State: %d", DecodeTag.state); | |
1208 | Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len); | |
1209 | Dbprintf(" DecodeReader State: %d", DecodeReader.state); | |
1210 | Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount); | |
1211 | Dbprintf(" Trace length: %d", BigBuf_get_traceLen()); | |
1212 | } | |
1213 | ||
1214 | ||
1215 | // Initialize the proxmark as iso15k reader | |
1216 | static void Iso15693InitReader() { | |
1217 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1218 | // Setup SSC | |
1219 | // FpgaSetupSsc(); | |
1220 | ||
1221 | // Start from off (no field generated) | |
1222 | LED_D_OFF(); | |
1223 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1224 | SpinDelay(10); | |
1225 | ||
1226 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1227 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1228 | ||
1229 | // Give the tags time to energize | |
1230 | LED_D_ON(); | |
1231 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1232 | SpinDelay(250); | |
1233 | } | |
1234 | ||
1235 | /////////////////////////////////////////////////////////////////////// | |
1236 | // ISO 15693 Part 3 - Air Interface | |
1237 | // This section basically contains transmission and receiving of bits | |
1238 | /////////////////////////////////////////////////////////////////////// | |
1239 | ||
1240 | ||
1241 | // uid is in transmission order (which is reverse of display order) | |
1242 | static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber ) | |
1243 | { | |
1244 | uint8_t cmd[13]; | |
1245 | ||
1246 | uint16_t crc; | |
1247 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1248 | // followed by the block data | |
1249 | cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH; | |
1250 | // READ BLOCK command code | |
1251 | cmd[1] = ISO15693_READBLOCK; | |
1252 | // UID may be optionally specified here | |
1253 | // 64-bit UID | |
1254 | cmd[2] = uid[0]; | |
1255 | cmd[3] = uid[1]; | |
1256 | cmd[4] = uid[2]; | |
1257 | cmd[5] = uid[3]; | |
1258 | cmd[6] = uid[4]; | |
1259 | cmd[7] = uid[5]; | |
1260 | cmd[8] = uid[6]; | |
1261 | cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique) | |
1262 | // Block number to read | |
1263 | cmd[10] = blockNumber; | |
1264 | //Now the CRC | |
1265 | crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes | |
1266 | cmd[11] = crc & 0xff; | |
1267 | cmd[12] = crc >> 8; | |
1268 | ||
1269 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1270 | } | |
1271 | ||
1272 | ||
1273 | // Now the VICC>VCD responses when we are simulating a tag | |
1274 | static void BuildInventoryResponse(uint8_t *uid) | |
1275 | { | |
1276 | uint8_t cmd[12]; | |
1277 | ||
1278 | uint16_t crc; | |
1279 | ||
1280 | cmd[0] = 0; // No error, no protocol format extension | |
1281 | cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported | |
1282 | // 64-bit UID | |
1283 | cmd[2] = uid[7]; //0x32; | |
1284 | cmd[3] = uid[6]; //0x4b; | |
1285 | cmd[4] = uid[5]; //0x03; | |
1286 | cmd[5] = uid[4]; //0x01; | |
1287 | cmd[6] = uid[3]; //0x00; | |
1288 | cmd[7] = uid[2]; //0x10; | |
1289 | cmd[8] = uid[1]; //0x05; | |
1290 | cmd[9] = uid[0]; //0xe0; | |
1291 | //Now the CRC | |
1292 | crc = Iso15693Crc(cmd, 10); | |
1293 | cmd[10] = crc & 0xff; | |
1294 | cmd[11] = crc >> 8; | |
1295 | ||
1296 | CodeIso15693AsTag(cmd, sizeof(cmd)); | |
1297 | } | |
1298 | ||
1299 | // Universal Method for sending to and recv bytes from a tag | |
1300 | // init ... should we initialize the reader? | |
1301 | // speed ... 0 low speed, 1 hi speed | |
1302 | // *recv will contain the tag's answer | |
1303 | // return: lenght of received data | |
1304 | int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) { | |
1305 | ||
1306 | LED_A_ON(); | |
1307 | LED_B_OFF(); | |
1308 | LED_C_OFF(); | |
1309 | ||
1310 | if (init) Iso15693InitReader(); | |
1311 | ||
1312 | int answerLen=0; | |
1313 | ||
1314 | if (!speed) { | |
1315 | // low speed (1 out of 256) | |
1316 | CodeIso15693AsReader256(send, sendlen); | |
1317 | } else { | |
1318 | // high speed (1 out of 4) | |
1319 | CodeIso15693AsReader(send, sendlen); | |
1320 | } | |
1321 | ||
1322 | TransmitTo15693Tag(ToSend, ToSendMax, start_time); | |
1323 | ||
1324 | // Now wait for a response | |
1325 | if (recv != NULL) { | |
1326 | answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2); | |
1327 | } | |
1328 | ||
1329 | LED_A_OFF(); | |
1330 | ||
1331 | return answerLen; | |
1332 | } | |
1333 | ||
1334 | ||
1335 | // -------------------------------------------------------------------- | |
1336 | // Debug Functions | |
1337 | // -------------------------------------------------------------------- | |
1338 | ||
1339 | // Decodes a message from a tag and displays its metadata and content | |
1340 | #define DBD15STATLEN 48 | |
1341 | void DbdecodeIso15693Answer(int len, uint8_t *d) { | |
1342 | char status[DBD15STATLEN+1]={0}; | |
1343 | uint16_t crc; | |
1344 | ||
1345 | if (len > 3) { | |
1346 | if (d[0] & ISO15693_RES_EXT) | |
1347 | strncat(status,"ProtExt ", DBD15STATLEN); | |
1348 | if (d[0] & ISO15693_RES_ERROR) { | |
1349 | // error | |
1350 | strncat(status,"Error ", DBD15STATLEN); | |
1351 | switch (d[1]) { | |
1352 | case 0x01: | |
1353 | strncat(status,"01:notSupp", DBD15STATLEN); | |
1354 | break; | |
1355 | case 0x02: | |
1356 | strncat(status,"02:notRecog", DBD15STATLEN); | |
1357 | break; | |
1358 | case 0x03: | |
1359 | strncat(status,"03:optNotSupp", DBD15STATLEN); | |
1360 | break; | |
1361 | case 0x0f: | |
1362 | strncat(status,"0f:noInfo", DBD15STATLEN); | |
1363 | break; | |
1364 | case 0x10: | |
1365 | strncat(status,"10:doesn'tExist", DBD15STATLEN); | |
1366 | break; | |
1367 | case 0x11: | |
1368 | strncat(status,"11:lockAgain", DBD15STATLEN); | |
1369 | break; | |
1370 | case 0x12: | |
1371 | strncat(status,"12:locked", DBD15STATLEN); | |
1372 | break; | |
1373 | case 0x13: | |
1374 | strncat(status,"13:progErr", DBD15STATLEN); | |
1375 | break; | |
1376 | case 0x14: | |
1377 | strncat(status,"14:lockErr", DBD15STATLEN); | |
1378 | break; | |
1379 | default: | |
1380 | strncat(status,"unknownErr", DBD15STATLEN); | |
1381 | } | |
1382 | strncat(status," ", DBD15STATLEN); | |
1383 | } else { | |
1384 | strncat(status,"NoErr ", DBD15STATLEN); | |
1385 | } | |
1386 | ||
1387 | crc=Iso15693Crc(d,len-2); | |
1388 | if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) ) | |
1389 | strncat(status,"CrcOK",DBD15STATLEN); | |
1390 | else | |
1391 | strncat(status,"CrcFail!",DBD15STATLEN); | |
1392 | ||
1393 | Dbprintf("%s",status); | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | ||
1398 | ||
1399 | /////////////////////////////////////////////////////////////////////// | |
1400 | // Functions called via USB/Client | |
1401 | /////////////////////////////////////////////////////////////////////// | |
1402 | ||
1403 | void SetDebugIso15693(uint32_t debug) { | |
1404 | DEBUG=debug; | |
1405 | Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off"); | |
1406 | return; | |
1407 | } | |
1408 | ||
1409 | ||
1410 | //--------------------------------------------------------------------------------------- | |
1411 | // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector. | |
1412 | // all demodulation performed in arm rather than host. - greg | |
1413 | //--------------------------------------------------------------------------------------- | |
1414 | void ReaderIso15693(uint32_t parameter) | |
1415 | { | |
1416 | LEDsoff(); | |
1417 | LED_A_ON(); | |
1418 | ||
1419 | set_tracing(true); | |
1420 | ||
1421 | int answerLen = 0; | |
1422 | uint8_t TagUID[8] = {0x00}; | |
1423 | ||
1424 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1425 | ||
1426 | uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH]; | |
1427 | ||
1428 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1429 | // Setup SSC | |
1430 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); | |
1431 | ||
1432 | // Start from off (no field generated) | |
1433 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1434 | SpinDelay(200); | |
1435 | ||
1436 | // Give the tags time to energize | |
1437 | LED_D_ON(); | |
1438 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); | |
1439 | SpinDelay(200); | |
1440 | StartCountSspClk(); | |
1441 | ||
1442 | ||
1443 | // FIRST WE RUN AN INVENTORY TO GET THE TAG UID | |
1444 | // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME | |
1445 | ||
1446 | // Now send the IDENTIFY command | |
1447 | BuildIdentifyRequest(); | |
1448 | TransmitTo15693Tag(ToSend, ToSendMax, 0); | |
1449 | ||
1450 | // Now wait for a response | |
1451 | answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ; | |
1452 | uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1453 | ||
1454 | if (answerLen >=12) // we should do a better check than this | |
1455 | { | |
1456 | TagUID[0] = answer[2]; | |
1457 | TagUID[1] = answer[3]; | |
1458 | TagUID[2] = answer[4]; | |
1459 | TagUID[3] = answer[5]; | |
1460 | TagUID[4] = answer[6]; | |
1461 | TagUID[5] = answer[7]; | |
1462 | TagUID[6] = answer[8]; // IC Manufacturer code | |
1463 | TagUID[7] = answer[9]; // always E0 | |
1464 | ||
1465 | } | |
1466 | ||
1467 | Dbprintf("%d octets read from IDENTIFY request:", answerLen); | |
1468 | DbdecodeIso15693Answer(answerLen, answer); | |
1469 | Dbhexdump(answerLen, answer, false); | |
1470 | ||
1471 | // UID is reverse | |
1472 | if (answerLen >= 12) | |
1473 | Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX", | |
1474 | TagUID[7],TagUID[6],TagUID[5],TagUID[4], | |
1475 | TagUID[3],TagUID[2],TagUID[1],TagUID[0]); | |
1476 | ||
1477 | ||
1478 | // Dbprintf("%d octets read from SELECT request:", answerLen2); | |
1479 | // DbdecodeIso15693Answer(answerLen2,answer2); | |
1480 | // Dbhexdump(answerLen2,answer2,true); | |
1481 | ||
1482 | // Dbprintf("%d octets read from XXX request:", answerLen3); | |
1483 | // DbdecodeIso15693Answer(answerLen3,answer3); | |
1484 | // Dbhexdump(answerLen3,answer3,true); | |
1485 | ||
1486 | // read all pages | |
1487 | if (answerLen >= 12 && DEBUG) { | |
1488 | for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages | |
1489 | BuildReadBlockRequest(TagUID, i); | |
1490 | TransmitTo15693Tag(ToSend, ToSendMax, start_time); | |
1491 | int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2); | |
1492 | start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1493 | if (answerLen > 0) { | |
1494 | Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen); | |
1495 | DbdecodeIso15693Answer(answerLen, answer); | |
1496 | Dbhexdump(answerLen, answer, false); | |
1497 | if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr | |
1498 | } | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | // for the time being, switch field off to protect rdv4.0 | |
1503 | // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway | |
1504 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1505 | LED_D_OFF(); | |
1506 | ||
1507 | LED_A_OFF(); | |
1508 | } | |
1509 | ||
1510 | ||
1511 | // Simulate an ISO15693 TAG. | |
1512 | // For Inventory command: print command and send Inventory Response with given UID | |
1513 | // TODO: interpret other reader commands and send appropriate response | |
1514 | void SimTagIso15693(uint32_t parameter, uint8_t *uid) | |
1515 | { | |
1516 | LEDsoff(); | |
1517 | LED_A_ON(); | |
1518 | ||
1519 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1520 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1521 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
1522 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
1523 | ||
1524 | StartCountSspClk(); | |
1525 | ||
1526 | uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; | |
1527 | ||
1528 | // Build a suitable response to the reader INVENTORY command | |
1529 | BuildInventoryResponse(uid); | |
1530 | ||
1531 | // Listen to reader | |
1532 | while (!BUTTON_PRESS()) { | |
1533 | uint32_t eof_time = 0, start_time = 0; | |
1534 | int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time); | |
1535 | ||
1536 | if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags | |
1537 | bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH); | |
1538 | start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM; | |
1539 | TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow); | |
1540 | } | |
1541 | ||
1542 | Dbprintf("%d bytes read from reader:", cmd_len); | |
1543 | Dbhexdump(cmd_len, cmd, false); | |
1544 | } | |
1545 | ||
1546 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1547 | LEDsoff(); | |
1548 | } | |
1549 | ||
1550 | ||
1551 | // Since there is no standardized way of reading the AFI out of a tag, we will brute force it | |
1552 | // (some manufactures offer a way to read the AFI, though) | |
1553 | void BruteforceIso15693Afi(uint32_t speed) | |
1554 | { | |
1555 | LEDsoff(); | |
1556 | LED_A_ON(); | |
1557 | ||
1558 | uint8_t data[6]; | |
1559 | uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH]; | |
1560 | ||
1561 | int datalen=0, recvlen=0; | |
1562 | ||
1563 | Iso15693InitReader(); | |
1564 | StartCountSspClk(); | |
1565 | ||
1566 | // first without AFI | |
1567 | // Tags should respond without AFI and with AFI=0 even when AFI is active | |
1568 | ||
1569 | data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1; | |
1570 | data[1] = ISO15693_INVENTORY; | |
1571 | data[2] = 0; // mask length | |
1572 | datalen = Iso15693AddCrc(data,3); | |
1573 | recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0); | |
1574 | uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1575 | WDT_HIT(); | |
1576 | if (recvlen>=12) { | |
1577 | Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2])); | |
1578 | } | |
1579 | ||
1580 | // now with AFI | |
1581 | ||
1582 | data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1; | |
1583 | data[1] = ISO15693_INVENTORY; | |
1584 | data[2] = 0; // AFI | |
1585 | data[3] = 0; // mask length | |
1586 | ||
1587 | for (int i = 0; i < 256; i++) { | |
1588 | data[2] = i & 0xFF; | |
1589 | datalen = Iso15693AddCrc(data,4); | |
1590 | recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time); | |
1591 | start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER; | |
1592 | WDT_HIT(); | |
1593 | if (recvlen >= 12) { | |
1594 | Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2])); | |
1595 | } | |
1596 | } | |
1597 | Dbprintf("AFI Bruteforcing done."); | |
1598 | ||
1599 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1600 | LEDsoff(); | |
1601 | } | |
1602 | ||
1603 | // Allows to directly send commands to the tag via the client | |
1604 | void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) { | |
1605 | ||
1606 | int recvlen = 0; | |
1607 | uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; | |
1608 | ||
1609 | LED_A_ON(); | |
1610 | ||
1611 | if (DEBUG) { | |
1612 | Dbprintf("SEND:"); | |
1613 | Dbhexdump(datalen, data, false); | |
1614 | } | |
1615 | ||
1616 | recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0); | |
1617 | ||
1618 | if (recv) { | |
1619 | if (DEBUG) { | |
1620 | Dbprintf("RECV:"); | |
1621 | Dbhexdump(recvlen, recvbuf, false); | |
1622 | DbdecodeIso15693Answer(recvlen, recvbuf); | |
1623 | } | |
1624 | ||
1625 | cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH); | |
1626 | ||
1627 | } | |
1628 | ||
1629 | // for the time being, switch field off to protect rdv4.0 | |
1630 | // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway | |
1631 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1632 | LED_D_OFF(); | |
1633 | ||
1634 | LED_A_OFF(); | |
1635 | } | |
1636 | ||
1637 | //----------------------------------------------------------------------------- | |
1638 | // Work with "magic Chinese" card. | |
1639 | // | |
1640 | //----------------------------------------------------------------------------- | |
1641 | ||
1642 | // Set the UID to the tag (based on Iceman work). | |
1643 | void SetTag15693Uid(uint8_t *uid) | |
1644 | { | |
1645 | uint8_t cmd[4][9] = {0x00}; | |
1646 | ||
1647 | uint16_t crc; | |
1648 | ||
1649 | int recvlen = 0; | |
1650 | uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; | |
1651 | ||
1652 | LED_A_ON(); | |
1653 | ||
1654 | // Command 1 : 02213E00000000 | |
1655 | cmd[0][0] = 0x02; | |
1656 | cmd[0][1] = 0x21; | |
1657 | cmd[0][2] = 0x3e; | |
1658 | cmd[0][3] = 0x00; | |
1659 | cmd[0][4] = 0x00; | |
1660 | cmd[0][5] = 0x00; | |
1661 | cmd[0][6] = 0x00; | |
1662 | ||
1663 | // Command 2 : 02213F69960000 | |
1664 | cmd[1][0] = 0x02; | |
1665 | cmd[1][1] = 0x21; | |
1666 | cmd[1][2] = 0x3f; | |
1667 | cmd[1][3] = 0x69; | |
1668 | cmd[1][4] = 0x96; | |
1669 | cmd[1][5] = 0x00; | |
1670 | cmd[1][6] = 0x00; | |
1671 | ||
1672 | // Command 3 : 022138u8u7u6u5 (where uX = uid byte X) | |
1673 | cmd[2][0] = 0x02; | |
1674 | cmd[2][1] = 0x21; | |
1675 | cmd[2][2] = 0x38; | |
1676 | cmd[2][3] = uid[7]; | |
1677 | cmd[2][4] = uid[6]; | |
1678 | cmd[2][5] = uid[5]; | |
1679 | cmd[2][6] = uid[4]; | |
1680 | ||
1681 | // Command 4 : 022139u4u3u2u1 (where uX = uid byte X) | |
1682 | cmd[3][0] = 0x02; | |
1683 | cmd[3][1] = 0x21; | |
1684 | cmd[3][2] = 0x39; | |
1685 | cmd[3][3] = uid[3]; | |
1686 | cmd[3][4] = uid[2]; | |
1687 | cmd[3][5] = uid[1]; | |
1688 | cmd[3][6] = uid[0]; | |
1689 | ||
1690 | for (int i=0; i<4; i++) { | |
1691 | // Add the CRC | |
1692 | crc = Iso15693Crc(cmd[i], 7); | |
1693 | cmd[i][7] = crc & 0xff; | |
1694 | cmd[i][8] = crc >> 8; | |
1695 | ||
1696 | if (DEBUG) { | |
1697 | Dbprintf("SEND:"); | |
1698 | Dbhexdump(sizeof(cmd[i]), cmd[i], false); | |
1699 | } | |
1700 | ||
1701 | recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0); | |
1702 | ||
1703 | if (DEBUG) { | |
1704 | Dbprintf("RECV:"); | |
1705 | Dbhexdump(recvlen, recvbuf, false); | |
1706 | DbdecodeIso15693Answer(recvlen, recvbuf); | |
1707 | } | |
1708 | ||
1709 | cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH); | |
1710 | } | |
1711 | ||
1712 | LED_D_OFF(); | |
1713 | ||
1714 | LED_A_OFF(); | |
1715 | } | |
1716 | ||
1717 | ||
1718 | ||
1719 | // -------------------------------------------------------------------- | |
1720 | // -- Misc & deprecated functions | |
1721 | // -------------------------------------------------------------------- | |
1722 | ||
1723 | /* | |
1724 | ||
1725 | // do not use; has a fix UID | |
1726 | static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid) | |
1727 | { | |
1728 | uint8_t cmd[12]; | |
1729 | ||
1730 | uint16_t crc; | |
1731 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1732 | // followed by the block data | |
1733 | // one sub-carrier, inventory, 1 slot, fast rate | |
1734 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1735 | // System Information command code | |
1736 | cmd[1] = 0x2B; | |
1737 | // UID may be optionally specified here | |
1738 | // 64-bit UID | |
1739 | cmd[2] = 0x32; | |
1740 | cmd[3]= 0x4b; | |
1741 | cmd[4] = 0x03; | |
1742 | cmd[5] = 0x01; | |
1743 | cmd[6] = 0x00; | |
1744 | cmd[7] = 0x10; | |
1745 | cmd[8] = 0x05; | |
1746 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1747 | //Now the CRC | |
1748 | crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes | |
1749 | cmd[10] = crc & 0xff; | |
1750 | cmd[11] = crc >> 8; | |
1751 | ||
1752 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1753 | } | |
1754 | ||
1755 | ||
1756 | // do not use; has a fix UID | |
1757 | static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid) | |
1758 | { | |
1759 | uint8_t cmd[14]; | |
1760 | ||
1761 | uint16_t crc; | |
1762 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1763 | // followed by the block data | |
1764 | // one sub-carrier, inventory, 1 slot, fast rate | |
1765 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1766 | // READ Multi BLOCK command code | |
1767 | cmd[1] = 0x23; | |
1768 | // UID may be optionally specified here | |
1769 | // 64-bit UID | |
1770 | cmd[2] = 0x32; | |
1771 | cmd[3]= 0x4b; | |
1772 | cmd[4] = 0x03; | |
1773 | cmd[5] = 0x01; | |
1774 | cmd[6] = 0x00; | |
1775 | cmd[7] = 0x10; | |
1776 | cmd[8] = 0x05; | |
1777 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1778 | // First Block number to read | |
1779 | cmd[10] = 0x00; | |
1780 | // Number of Blocks to read | |
1781 | cmd[11] = 0x2f; // read quite a few | |
1782 | //Now the CRC | |
1783 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
1784 | cmd[12] = crc & 0xff; | |
1785 | cmd[13] = crc >> 8; | |
1786 | ||
1787 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1788 | } | |
1789 | ||
1790 | // do not use; has a fix UID | |
1791 | static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode) | |
1792 | { | |
1793 | uint8_t cmd[14]; | |
1794 | ||
1795 | uint16_t crc; | |
1796 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1797 | // followed by the block data | |
1798 | // one sub-carrier, inventory, 1 slot, fast rate | |
1799 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1800 | // READ BLOCK command code | |
1801 | cmd[1] = CmdCode; | |
1802 | // UID may be optionally specified here | |
1803 | // 64-bit UID | |
1804 | cmd[2] = 0x32; | |
1805 | cmd[3]= 0x4b; | |
1806 | cmd[4] = 0x03; | |
1807 | cmd[5] = 0x01; | |
1808 | cmd[6] = 0x00; | |
1809 | cmd[7] = 0x10; | |
1810 | cmd[8] = 0x05; | |
1811 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1812 | // Parameter | |
1813 | cmd[10] = 0x00; | |
1814 | cmd[11] = 0x0a; | |
1815 | ||
1816 | // cmd[12] = 0x00; | |
1817 | // cmd[13] = 0x00; //Now the CRC | |
1818 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
1819 | cmd[12] = crc & 0xff; | |
1820 | cmd[13] = crc >> 8; | |
1821 | ||
1822 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1823 | } | |
1824 | ||
1825 | // do not use; has a fix UID | |
1826 | static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode) | |
1827 | { | |
1828 | uint8_t cmd[14]; | |
1829 | ||
1830 | uint16_t crc; | |
1831 | // If we set the Option_Flag in this request, the VICC will respond with the security status of the block | |
1832 | // followed by the block data | |
1833 | // one sub-carrier, inventory, 1 slot, fast rate | |
1834 | cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit | |
1835 | // READ BLOCK command code | |
1836 | cmd[1] = CmdCode; | |
1837 | // UID may be optionally specified here | |
1838 | // 64-bit UID | |
1839 | cmd[2] = 0x32; | |
1840 | cmd[3]= 0x4b; | |
1841 | cmd[4] = 0x03; | |
1842 | cmd[5] = 0x01; | |
1843 | cmd[6] = 0x00; | |
1844 | cmd[7] = 0x10; | |
1845 | cmd[8] = 0x05; | |
1846 | cmd[9]= 0xe0; // always e0 (not exactly unique) | |
1847 | // Parameter | |
1848 | cmd[10] = 0x05; // for custom codes this must be manufacturer code | |
1849 | cmd[11] = 0x00; | |
1850 | ||
1851 | // cmd[12] = 0x00; | |
1852 | // cmd[13] = 0x00; //Now the CRC | |
1853 | crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes | |
1854 | cmd[12] = crc & 0xff; | |
1855 | cmd[13] = crc >> 8; | |
1856 | ||
1857 | CodeIso15693AsReader(cmd, sizeof(cmd)); | |
1858 | } | |
1859 | ||
1860 | ||
1861 | ||
1862 | ||
1863 | */ | |
1864 | ||
1865 |