]>
Commit | Line | Data |
---|---|---|
1 | /** | |
2 | * \file ecp_internal.h | |
3 | * | |
4 | * \brief Function declarations for alternative implementation of elliptic curve | |
5 | * point arithmetic. | |
6 | */ | |
7 | /* | |
8 | * Copyright (C) 2016, ARM Limited, All Rights Reserved | |
9 | * SPDX-License-Identifier: GPL-2.0 | |
10 | * | |
11 | * This program is free software; you can redistribute it and/or modify | |
12 | * it under the terms of the GNU General Public License as published by | |
13 | * the Free Software Foundation; either version 2 of the License, or | |
14 | * (at your option) any later version. | |
15 | * | |
16 | * This program is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | * GNU General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU General Public License along | |
22 | * with this program; if not, write to the Free Software Foundation, Inc., | |
23 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |
24 | * | |
25 | * This file is part of mbed TLS (https://tls.mbed.org) | |
26 | */ | |
27 | ||
28 | /* | |
29 | * References: | |
30 | * | |
31 | * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. | |
32 | * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> | |
33 | * | |
34 | * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis | |
35 | * for elliptic curve cryptosystems. In : Cryptographic Hardware and | |
36 | * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. | |
37 | * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> | |
38 | * | |
39 | * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to | |
40 | * render ECC resistant against Side Channel Attacks. IACR Cryptology | |
41 | * ePrint Archive, 2004, vol. 2004, p. 342. | |
42 | * <http://eprint.iacr.org/2004/342.pdf> | |
43 | * | |
44 | * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. | |
45 | * <http://www.secg.org/sec2-v2.pdf> | |
46 | * | |
47 | * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic | |
48 | * Curve Cryptography. | |
49 | * | |
50 | * [6] Digital Signature Standard (DSS), FIPS 186-4. | |
51 | * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf> | |
52 | * | |
53 | * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer | |
54 | * Security (TLS), RFC 4492. | |
55 | * <https://tools.ietf.org/search/rfc4492> | |
56 | * | |
57 | * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html> | |
58 | * | |
59 | * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. | |
60 | * Springer Science & Business Media, 1 Aug 2000 | |
61 | */ | |
62 | ||
63 | #ifndef MBEDTLS_ECP_INTERNAL_H | |
64 | #define MBEDTLS_ECP_INTERNAL_H | |
65 | ||
66 | #if defined(MBEDTLS_ECP_INTERNAL_ALT) | |
67 | ||
68 | /** | |
69 | * \brief Indicate if the Elliptic Curve Point module extension can | |
70 | * handle the group. | |
71 | * | |
72 | * \param grp The pointer to the elliptic curve group that will be the | |
73 | * basis of the cryptographic computations. | |
74 | * | |
75 | * \return Non-zero if successful. | |
76 | */ | |
77 | unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ); | |
78 | ||
79 | /** | |
80 | * \brief Initialise the Elliptic Curve Point module extension. | |
81 | * | |
82 | * If mbedtls_internal_ecp_grp_capable returns true for a | |
83 | * group, this function has to be able to initialise the | |
84 | * module for it. | |
85 | * | |
86 | * This module can be a driver to a crypto hardware | |
87 | * accelerator, for which this could be an initialise function. | |
88 | * | |
89 | * \param grp The pointer to the group the module needs to be | |
90 | * initialised for. | |
91 | * | |
92 | * \return 0 if successful. | |
93 | */ | |
94 | int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp ); | |
95 | ||
96 | /** | |
97 | * \brief Frees and deallocates the Elliptic Curve Point module | |
98 | * extension. | |
99 | * | |
100 | * \param grp The pointer to the group the module was initialised for. | |
101 | */ | |
102 | void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp ); | |
103 | ||
104 | #if defined(ECP_SHORTWEIERSTRASS) | |
105 | ||
106 | #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) | |
107 | /** | |
108 | * \brief Randomize jacobian coordinates: | |
109 | * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. | |
110 | * | |
111 | * \param grp Pointer to the group representing the curve. | |
112 | * | |
113 | * \param pt The point on the curve to be randomised, given with Jacobian | |
114 | * coordinates. | |
115 | * | |
116 | * \param f_rng A function pointer to the random number generator. | |
117 | * | |
118 | * \param p_rng A pointer to the random number generator state. | |
119 | * | |
120 | * \return 0 if successful. | |
121 | */ | |
122 | int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp, | |
123 | mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), | |
124 | void *p_rng ); | |
125 | #endif | |
126 | ||
127 | #if defined(MBEDTLS_ECP_ADD_MIXED_ALT) | |
128 | /** | |
129 | * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates. | |
130 | * | |
131 | * The coordinates of Q must be normalized (= affine), | |
132 | * but those of P don't need to. R is not normalized. | |
133 | * | |
134 | * This function is used only as a subrutine of | |
135 | * ecp_mul_comb(). | |
136 | * | |
137 | * Special cases: (1) P or Q is zero, (2) R is zero, | |
138 | * (3) P == Q. | |
139 | * None of these cases can happen as intermediate step in | |
140 | * ecp_mul_comb(): | |
141 | * - at each step, P, Q and R are multiples of the base | |
142 | * point, the factor being less than its order, so none of | |
143 | * them is zero; | |
144 | * - Q is an odd multiple of the base point, P an even | |
145 | * multiple, due to the choice of precomputed points in the | |
146 | * modified comb method. | |
147 | * So branches for these cases do not leak secret information. | |
148 | * | |
149 | * We accept Q->Z being unset (saving memory in tables) as | |
150 | * meaning 1. | |
151 | * | |
152 | * Cost in field operations if done by [5] 3.22: | |
153 | * 1A := 8M + 3S | |
154 | * | |
155 | * \param grp Pointer to the group representing the curve. | |
156 | * | |
157 | * \param R Pointer to a point structure to hold the result. | |
158 | * | |
159 | * \param P Pointer to the first summand, given with Jacobian | |
160 | * coordinates | |
161 | * | |
162 | * \param Q Pointer to the second summand, given with affine | |
163 | * coordinates. | |
164 | * | |
165 | * \return 0 if successful. | |
166 | */ | |
167 | int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp, | |
168 | mbedtls_ecp_point *R, const mbedtls_ecp_point *P, | |
169 | const mbedtls_ecp_point *Q ); | |
170 | #endif | |
171 | ||
172 | /** | |
173 | * \brief Point doubling R = 2 P, Jacobian coordinates. | |
174 | * | |
175 | * Cost: 1D := 3M + 4S (A == 0) | |
176 | * 4M + 4S (A == -3) | |
177 | * 3M + 6S + 1a otherwise | |
178 | * when the implementation is based on the "dbl-1998-cmo-2" | |
179 | * doubling formulas in [8] and standard optimizations are | |
180 | * applied when curve parameter A is one of { 0, -3 }. | |
181 | * | |
182 | * \param grp Pointer to the group representing the curve. | |
183 | * | |
184 | * \param R Pointer to a point structure to hold the result. | |
185 | * | |
186 | * \param P Pointer to the point that has to be doubled, given with | |
187 | * Jacobian coordinates. | |
188 | * | |
189 | * \return 0 if successful. | |
190 | */ | |
191 | #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) | |
192 | int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp, | |
193 | mbedtls_ecp_point *R, const mbedtls_ecp_point *P ); | |
194 | #endif | |
195 | ||
196 | /** | |
197 | * \brief Normalize jacobian coordinates of an array of (pointers to) | |
198 | * points. | |
199 | * | |
200 | * Using Montgomery's trick to perform only one inversion mod P | |
201 | * the cost is: | |
202 | * 1N(t) := 1I + (6t - 3)M + 1S | |
203 | * (See for example Algorithm 10.3.4. in [9]) | |
204 | * | |
205 | * This function is used only as a subrutine of | |
206 | * ecp_mul_comb(). | |
207 | * | |
208 | * Warning: fails (returning an error) if one of the points is | |
209 | * zero! | |
210 | * This should never happen, see choice of w in ecp_mul_comb(). | |
211 | * | |
212 | * \param grp Pointer to the group representing the curve. | |
213 | * | |
214 | * \param T Array of pointers to the points to normalise. | |
215 | * | |
216 | * \param t_len Number of elements in the array. | |
217 | * | |
218 | * \return 0 if successful, | |
219 | * an error if one of the points is zero. | |
220 | */ | |
221 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) | |
222 | int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp, | |
223 | mbedtls_ecp_point *T[], size_t t_len ); | |
224 | #endif | |
225 | ||
226 | /** | |
227 | * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1. | |
228 | * | |
229 | * Cost in field operations if done by [5] 3.2.1: | |
230 | * 1N := 1I + 3M + 1S | |
231 | * | |
232 | * \param grp Pointer to the group representing the curve. | |
233 | * | |
234 | * \param pt pointer to the point to be normalised. This is an | |
235 | * input/output parameter. | |
236 | * | |
237 | * \return 0 if successful. | |
238 | */ | |
239 | #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) | |
240 | int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, | |
241 | mbedtls_ecp_point *pt ); | |
242 | #endif | |
243 | ||
244 | #endif /* ECP_SHORTWEIERSTRASS */ | |
245 | ||
246 | #if defined(ECP_MONTGOMERY) | |
247 | ||
248 | #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) | |
249 | int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp, | |
250 | mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P, | |
251 | const mbedtls_ecp_point *Q, const mbedtls_mpi *d ); | |
252 | #endif | |
253 | ||
254 | /** | |
255 | * \brief Randomize projective x/z coordinates: | |
256 | * (X, Z) -> (l X, l Z) for random l | |
257 | * | |
258 | * \param grp pointer to the group representing the curve | |
259 | * | |
260 | * \param P the point on the curve to be randomised given with | |
261 | * projective coordinates. This is an input/output parameter. | |
262 | * | |
263 | * \param f_rng a function pointer to the random number generator | |
264 | * | |
265 | * \param p_rng a pointer to the random number generator state | |
266 | * | |
267 | * \return 0 if successful | |
268 | */ | |
269 | #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) | |
270 | int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp, | |
271 | mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), | |
272 | void *p_rng ); | |
273 | #endif | |
274 | ||
275 | /** | |
276 | * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. | |
277 | * | |
278 | * \param grp pointer to the group representing the curve | |
279 | * | |
280 | * \param P pointer to the point to be normalised. This is an | |
281 | * input/output parameter. | |
282 | * | |
283 | * \return 0 if successful | |
284 | */ | |
285 | #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) | |
286 | int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, | |
287 | mbedtls_ecp_point *P ); | |
288 | #endif | |
289 | ||
290 | #endif /* ECP_MONTGOMERY */ | |
291 | ||
292 | #endif /* MBEDTLS_ECP_INTERNAL_ALT */ | |
293 | ||
294 | #endif /* ecp_internal.h */ | |
295 |