1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void BufferClear(void)
47 memset(BigBuf
,0,sizeof(BigBuf
));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendBit
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
88 void DbpIntegers(int x1
, int x2
, int x3
)
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
94 void Dbprintf(const char *fmt
, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string
[128];
100 kvsprintf(fmt
, output_string
, 10, ap
);
103 DbpString(output_string
);
106 // prints HEX & ASCII
107 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
120 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
123 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
125 Dbprintf("%*D",l
,d
," ");
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch
)
142 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
143 AT91C_BASE_ADC
->ADC_MR
=
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
149 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
150 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
152 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
157 int AvgAdc(int ch
) // was static - merlok
162 for(i
= 0; i
< 32; i
++) {
166 return (a
+ 15) >> 5;
169 void MeasureAntennaTuning(void)
171 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
172 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
173 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
176 DbpString("Measuring antenna characteristics, please wait...");
177 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
180 * Sweeps the useful LF range of the proxmark from
181 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
182 * read the voltage in the antenna, the result left
183 * in the buffer is a graph which should clearly show
184 * the resonating frequency of your LF antenna
185 * ( hopefully around 95 if it is tuned to 125kHz!)
188 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
190 for (i
=255; i
>19; i
--) {
192 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
194 // Vref = 3.3V, and a 10000:240 voltage divider on the input
195 // can measure voltages up to 137500 mV
196 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
197 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
198 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
200 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
218 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
219 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
221 // c.arg[2] = peakf | (peakv << 16);
223 DbpString("Measuring complete, sending report back to host");
224 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
225 // UsbSendPacket((uint8_t *)&c, sizeof(c));
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
232 void MeasureAntennaTuningHf(void)
234 int vHf
= 0; // in mV
236 DbpString("Measuring HF antenna, press button to exit");
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
247 Dbprintf("%d mV",vHf
);
248 if (BUTTON_PRESS()) break;
250 DbpString("cancelled");
254 void SimulateTagHfListen(void)
256 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
273 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
274 AT91C_BASE_SSC
->SSC_THR
= 0xff;
276 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
277 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
291 if(i
>= FREE_BUFFER_SIZE
) {
297 DbpString("simulate tag (now type bitsamples)");
300 void ReadMem(int addr
)
302 const uint8_t *data
= ((uint8_t *)addr
);
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
308 /* osimage version information is linked in */
309 extern struct version_information version_information
;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
312 void SendVersion(void)
314 char temp
[512]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
321 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
322 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
323 DbpString("bootrom version information appears invalid");
325 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
329 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
332 FpgaGatherVersion(temp
, sizeof(temp
));
335 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
339 // samy's sniff and repeat routine
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
345 // 3 possible options? no just 2 for now
348 int high
[OPTS
], low
[OPTS
];
350 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_ORANGE
, 200);
354 LED(LED_ORANGE
, 200);
356 LED(LED_ORANGE
, 200);
358 LED(LED_ORANGE
, 200);
365 // Turn on selected LED
366 LED(selected
+ 1, 0);
373 // Was our button held down or pressed?
374 int button_pressed
= BUTTON_HELD(1000);
377 // Button was held for a second, begin recording
378 if (button_pressed
> 0 && cardRead
== 0)
381 LED(selected
+ 1, 0);
385 DbpString("Starting recording");
387 // wait for button to be released
388 while(BUTTON_PRESS())
391 /* need this delay to prevent catching some weird data */
394 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
395 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
398 LED(selected
+ 1, 0);
399 // Finished recording
401 // If we were previously playing, set playing off
402 // so next button push begins playing what we recorded
409 else if (button_pressed
> 0 && cardRead
== 1)
412 LED(selected
+ 1, 0);
416 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
418 // wait for button to be released
419 while(BUTTON_PRESS())
422 /* need this delay to prevent catching some weird data */
425 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
426 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
429 LED(selected
+ 1, 0);
430 // Finished recording
432 // If we were previously playing, set playing off
433 // so next button push begins playing what we recorded
440 // Change where to record (or begin playing)
441 else if (button_pressed
)
443 // Next option if we were previously playing
445 selected
= (selected
+ 1) % OPTS
;
449 LED(selected
+ 1, 0);
451 // Begin transmitting
455 DbpString("Playing");
456 // wait for button to be released
457 while(BUTTON_PRESS())
459 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
460 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
461 DbpString("Done playing");
462 if (BUTTON_HELD(1000) > 0)
464 DbpString("Exiting");
469 /* We pressed a button so ignore it here with a delay */
472 // when done, we're done playing, move to next option
473 selected
= (selected
+ 1) % OPTS
;
476 LED(selected
+ 1, 0);
479 while(BUTTON_PRESS())
488 Listen and detect an external reader. Determine the best location
492 Inside the ListenReaderField() function, there is two mode.
493 By default, when you call the function, you will enter mode 1.
494 If you press the PM3 button one time, you will enter mode 2.
495 If you press the PM3 button a second time, you will exit the function.
497 DESCRIPTION OF MODE 1:
498 This mode just listens for an external reader field and lights up green
499 for HF and/or red for LF. This is the original mode of the detectreader
502 DESCRIPTION OF MODE 2:
503 This mode will visually represent, using the LEDs, the actual strength of the
504 current compared to the maximum current detected. Basically, once you know
505 what kind of external reader is present, it will help you spot the best location to place
506 your antenna. You will probably not get some good results if there is a LF and a HF reader
507 at the same place! :-)
511 static const char LIGHT_SCHEME
[] = {
512 0x0, /* ---- | No field detected */
513 0x1, /* X--- | 14% of maximum current detected */
514 0x2, /* -X-- | 29% of maximum current detected */
515 0x4, /* --X- | 43% of maximum current detected */
516 0x8, /* ---X | 57% of maximum current detected */
517 0xC, /* --XX | 71% of maximum current detected */
518 0xE, /* -XXX | 86% of maximum current detected */
519 0xF, /* XXXX | 100% of maximum current detected */
521 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
523 void ListenReaderField(int limit
)
525 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
526 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
527 int mode
=1, display_val
, display_max
, i
;
534 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
536 if(limit
!= HF_ONLY
) {
537 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
541 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
543 if (limit
!= LF_ONLY
) {
544 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
549 if (BUTTON_PRESS()) {
554 DbpString("Signal Strength Mode");
558 DbpString("Stopped");
566 if (limit
!= HF_ONLY
) {
568 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
573 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
574 // see if there's a significant change
575 if(abs(lf_av
- lf_av_new
) > 10) {
576 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
584 if (limit
!= LF_ONLY
) {
586 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
591 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
592 // see if there's a significant change
593 if(abs(hf_av
- hf_av_new
) > 10) {
594 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
603 if (limit
== LF_ONLY
) {
605 display_max
= lf_max
;
606 } else if (limit
== HF_ONLY
) {
608 display_max
= hf_max
;
609 } else { /* Pick one at random */
610 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
612 display_max
= hf_max
;
615 display_max
= lf_max
;
618 for (i
=0; i
<LIGHT_LEN
; i
++) {
619 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
620 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
621 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
622 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
623 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
631 void UsbPacketReceived(uint8_t *packet
, int len
)
633 UsbCommand
*c
= (UsbCommand
*)packet
;
635 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
639 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
640 AcquireRawAdcSamples125k(c
->arg
[0]);
641 cmd_send(CMD_ACK
,0,0,0,0,0);
643 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
644 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
646 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
647 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
648 cmd_send(CMD_ACK
,0,0,0,0,0);
650 case CMD_HID_DEMOD_FSK
:
651 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
653 case CMD_HID_SIM_TAG
:
654 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
656 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
657 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
659 case CMD_IO_DEMOD_FSK
:
660 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
662 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
663 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
665 case CMD_EM410X_WRITE_TAG
:
666 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
668 case CMD_READ_TI_TYPE
:
671 case CMD_WRITE_TI_TYPE
:
672 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
674 case CMD_SIMULATE_TAG_125K
:
676 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
679 case CMD_LF_SIMULATE_BIDIR
:
680 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
682 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
683 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
685 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
686 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
688 case CMD_T55XX_READ_BLOCK
:
689 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
691 case CMD_T55XX_WRITE_BLOCK
:
692 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
694 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
697 case CMD_PCF7931_READ
: // Read PCF7931 tag
699 cmd_send(CMD_ACK
,0,0,0,0,0);
701 case CMD_EM4X_READ_WORD
:
702 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
704 case CMD_EM4X_WRITE_WORD
:
705 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
710 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
711 SnoopHitag(c
->arg
[0]);
713 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
714 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
716 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
717 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
722 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
723 AcquireRawAdcSamplesIso15693();
725 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
726 RecordRawAdcSamplesIso15693();
729 case CMD_ISO_15693_COMMAND
:
730 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
733 case CMD_ISO_15693_FIND_AFI
:
734 BruteforceIso15693Afi(c
->arg
[0]);
737 case CMD_ISO_15693_DEBUG
:
738 SetDebugIso15693(c
->arg
[0]);
741 case CMD_READER_ISO_15693
:
742 ReaderIso15693(c
->arg
[0]);
744 case CMD_SIMTAG_ISO_15693
:
745 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
750 case CMD_SIMULATE_TAG_LEGIC_RF
:
751 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
754 case CMD_WRITER_LEGIC_RF
:
755 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
758 case CMD_READER_LEGIC_RF
:
759 LegicRfReader(c
->arg
[0], c
->arg
[1]);
763 #ifdef WITH_ISO14443b
764 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
765 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
767 case CMD_READ_SRI512_TAG
:
768 ReadSTMemoryIso14443(0x0F);
770 case CMD_READ_SRIX4K_TAG
:
771 ReadSTMemoryIso14443(0x7F);
773 case CMD_SNOOP_ISO_14443
:
776 case CMD_SIMULATE_TAG_ISO_14443
:
777 SimulateIso14443Tag();
779 case CMD_ISO_14443B_COMMAND
:
780 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
784 #ifdef WITH_ISO14443a
785 case CMD_SNOOP_ISO_14443a
:
786 SnoopIso14443a(c
->arg
[0]);
788 case CMD_READER_ISO_14443a
:
791 case CMD_SIMULATE_TAG_ISO_14443a
:
792 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
795 case CMD_EPA_PACE_COLLECT_NONCE
:
796 EPA_PACE_Collect_Nonce(c
);
803 case CMD_READER_MIFARE
:
804 ReaderMifare(c
->arg
[0]);
806 case CMD_MIFARE_READBL
:
807 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
809 case CMD_MIFAREU_READBL
:
810 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
812 case CMD_MIFAREUC_AUTH1
:
813 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
815 case CMD_MIFAREUC_AUTH2
:
816 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
818 case CMD_MIFAREU_READCARD
:
819 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
821 case CMD_MIFAREUC_READCARD
:
822 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
824 case CMD_MIFARE_READSC
:
825 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFARE_WRITEBL
:
828 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFAREU_WRITEBL_COMPAT
:
831 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
833 case CMD_MIFAREU_WRITEBL
:
834 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
836 case CMD_MIFARE_NESTED
:
837 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
839 case CMD_MIFARE_CHKKEYS
:
840 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
842 case CMD_SIMULATE_MIFARE_CARD
:
843 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 case CMD_MIFARE_SET_DBGMODE
:
848 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
850 case CMD_MIFARE_EML_MEMCLR
:
851 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
853 case CMD_MIFARE_EML_MEMSET
:
854 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 case CMD_MIFARE_EML_MEMGET
:
857 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 case CMD_MIFARE_EML_CARDLOAD
:
860 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 // Work with "magic Chinese" card
864 case CMD_MIFARE_EML_CSETBLOCK
:
865 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_MIFARE_EML_CGETBLOCK
:
868 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
872 case CMD_MIFARE_SNIFFER
:
873 SniffMifare(c
->arg
[0]);
877 case CMD_MIFARE_DESFIRE_READBL
:
879 case CMD_MIFARE_DESFIRE_WRITEBL
:
881 case CMD_MIFARE_DESFIRE_AUTH1
:
882 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_MIFARE_DESFIRE_AUTH2
:
885 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
887 // case CMD_MIFARE_DES_READER:
888 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
890 case CMD_MIFARE_DESFIRE_INFO
:
891 MifareDesfireGetInformation();
893 case CMD_MIFARE_DESFIRE
:
894 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
900 // Makes use of ISO14443a FPGA Firmware
901 case CMD_SNOOP_ICLASS
:
904 case CMD_SIMULATE_TAG_ICLASS
:
905 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
907 case CMD_READER_ICLASS
:
908 ReaderIClass(c
->arg
[0]);
910 case CMD_READER_ICLASS_REPLAY
:
911 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
915 case CMD_SIMULATE_TAG_HF_LISTEN
:
916 SimulateTagHfListen();
923 case CMD_MEASURE_ANTENNA_TUNING
:
924 MeasureAntennaTuning();
927 case CMD_MEASURE_ANTENNA_TUNING_HF
:
928 MeasureAntennaTuningHf();
931 case CMD_LISTEN_READER_FIELD
:
932 ListenReaderField(c
->arg
[0]);
935 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
936 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
938 LED_D_OFF(); // LED D indicates field ON or OFF
941 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
944 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
945 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
946 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
948 // Trigger a finish downloading signal with an ACK frame
949 cmd_send(CMD_ACK
,0,0,0,0,0);
953 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
954 uint8_t *b
= (uint8_t *)BigBuf
;
955 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
956 cmd_send(CMD_ACK
,0,0,0,0,0);
963 case CMD_SET_LF_DIVISOR
:
964 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
965 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
968 case CMD_SET_ADC_MUX
:
970 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
971 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
972 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
973 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
989 case CMD_SETUP_WRITE
:
990 case CMD_FINISH_WRITE
:
991 case CMD_HARDWARE_RESET
:
995 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
997 // We're going to reset, and the bootrom will take control.
1001 case CMD_START_FLASH
:
1002 if(common_area
.flags
.bootrom_present
) {
1003 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1006 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1010 case CMD_DEVICE_INFO
: {
1011 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1012 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1013 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1017 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1022 void __attribute__((noreturn
)) AppMain(void)
1026 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1027 /* Initialize common area */
1028 memset(&common_area
, 0, sizeof(common_area
));
1029 common_area
.magic
= COMMON_AREA_MAGIC
;
1030 common_area
.version
= 1;
1032 common_area
.flags
.osimage_present
= 1;
1042 // The FPGA gets its clock from us from PCK0 output, so set that up.
1043 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1044 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1045 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1046 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1047 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1048 AT91C_PMC_PRES_CLK_4
;
1049 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1052 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1054 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1056 // Load the FPGA image, which we have stored in our flash.
1057 // (the HF version by default)
1058 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1066 byte_t rx
[sizeof(UsbCommand
)];
1071 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1073 UsbPacketReceived(rx
,rx_len
);
1079 if (BUTTON_HELD(1000) > 0)