1 //-----------------------------------------------------------------------------
2 // Routines to support ISO 14443. This includes both the reader software and
3 // the `fake tag' modes. At the moment only the Type B modulation is
5 // Jonathan Westhues, split Nov 2006
6 //-----------------------------------------------------------------------------
11 #include "iso14443crc.h"
13 //static void GetSamplesFor14443(int weTx, int n);
15 #define DEMOD_TRACE_SIZE 4096
16 #define READER_TAG_BUFFER_SIZE 2048
17 #define TAG_READER_BUFFER_SIZE 2048
18 #define DMA_BUFFER_SIZE 1024
20 //=============================================================================
21 // An ISO 14443 Type B tag. We listen for commands from the reader, using
22 // a UART kind of thing that's implemented in software. When we get a
23 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
24 // If it's good, then we can do something appropriate with it, and send
26 //=============================================================================
28 //-----------------------------------------------------------------------------
29 // Code up a string of octets at layer 2 (including CRC, we don't generate
30 // that here) so that they can be transmitted to the reader. Doesn't transmit
31 // them yet, just leaves them ready to send in ToSend[].
32 //-----------------------------------------------------------------------------
33 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
39 // Transmit a burst of ones, as the initial thing that lets the
40 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
41 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
43 for(i
= 0; i
< 20; i
++) {
51 for(i
= 0; i
< 10; i
++) {
57 for(i
= 0; i
< 2; i
++) {
64 for(i
= 0; i
< len
; i
++) {
75 for(j
= 0; j
< 8; j
++) {
98 for(i
= 0; i
< 10; i
++) {
104 for(i
= 0; i
< 10; i
++) {
111 // Convert from last byte pos to length
114 // Add a few more for slop
118 //-----------------------------------------------------------------------------
119 // The software UART that receives commands from the reader, and its state
121 //-----------------------------------------------------------------------------
125 STATE_GOT_FALLING_EDGE_OF_SOF
,
126 STATE_AWAITING_START_BIT
,
127 STATE_RECEIVING_DATA
,
138 /* Receive & handle a bit coming from the reader.
141 * LED A -> ON once we have received the SOF and are expecting the rest.
142 * LED A -> OFF once we have received EOF or are in error state or unsynced
144 * Returns: true if we received a EOF
145 * false if we are still waiting for some more
147 static int Handle14443UartBit(int bit
)
153 // we went low, so this could be the beginning
155 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
161 case STATE_GOT_FALLING_EDGE_OF_SOF
:
163 if(Uart
.posCnt
== 2) {
165 if(Uart
.bitCnt
>= 10) {
166 // we've seen enough consecutive
167 // zeros that it's a valid SOF
170 Uart
.state
= STATE_AWAITING_START_BIT
;
171 LED_A_ON(); // Indicate we got a valid SOF
173 // didn't stay down long enough
174 // before going high, error
175 Uart
.state
= STATE_ERROR_WAIT
;
178 // do nothing, keep waiting
182 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
183 if(Uart
.bitCnt
> 14) {
184 // Give up if we see too many zeros without
186 Uart
.state
= STATE_ERROR_WAIT
;
190 case STATE_AWAITING_START_BIT
:
193 if(Uart
.posCnt
> 25) {
194 // stayed high for too long between
196 Uart
.state
= STATE_ERROR_WAIT
;
199 // falling edge, this starts the data byte
203 Uart
.state
= STATE_RECEIVING_DATA
;
204 LED_A_ON(); // Indicate we're receiving
208 case STATE_RECEIVING_DATA
:
210 if(Uart
.posCnt
== 2) {
211 // time to sample a bit
214 Uart
.shiftReg
|= 0x200;
218 if(Uart
.posCnt
>= 4) {
221 if(Uart
.bitCnt
== 10) {
222 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
224 // this is a data byte, with correct
225 // start and stop bits
226 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
229 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
230 // Buffer overflowed, give up
232 Uart
.state
= STATE_ERROR_WAIT
;
234 // so get the next byte now
236 Uart
.state
= STATE_AWAITING_START_BIT
;
238 } else if(Uart
.shiftReg
== 0x000) {
239 // this is an EOF byte
240 LED_A_OFF(); // Finished receiving
245 Uart
.state
= STATE_ERROR_WAIT
;
250 case STATE_ERROR_WAIT
:
251 // We're all screwed up, so wait a little while
252 // for whatever went wrong to finish, and then
255 if(Uart
.posCnt
> 10) {
256 Uart
.state
= STATE_UNSYNCD
;
261 Uart
.state
= STATE_UNSYNCD
;
265 if (Uart
.state
== STATE_ERROR_WAIT
) LED_A_OFF(); // Error
270 //-----------------------------------------------------------------------------
271 // Receive a command (from the reader to us, where we are the simulated tag),
272 // and store it in the given buffer, up to the given maximum length. Keeps
273 // spinning, waiting for a well-framed command, until either we get one
274 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
276 // Assume that we're called with the SSC (to the FPGA) and ADC path set
278 //-----------------------------------------------------------------------------
279 static int GetIso14443CommandFromReader(uint8_t *received
, int *len
, int maxLen
)
284 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
285 // only, since we are receiving, not transmitting).
286 // Signal field is off with the appropriate LED
289 FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
292 // Now run a `software UART' on the stream of incoming samples.
293 Uart
.output
= received
;
294 Uart
.byteCntMax
= maxLen
;
295 Uart
.state
= STATE_UNSYNCD
;
300 if(BUTTON_PRESS()) return FALSE
;
302 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
303 AT91C_BASE_SSC
->SSC_THR
= 0x00;
305 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
306 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
309 for(i
= 0; i
< 8; i
++, mask
>>= 1) {
311 if(Handle14443UartBit(bit
)) {
320 //-----------------------------------------------------------------------------
321 // Main loop of simulated tag: receive commands from reader, decide what
322 // response to send, and send it.
323 //-----------------------------------------------------------------------------
324 void SimulateIso14443Tag(void)
326 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
327 static const uint8_t response1
[] = {
328 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
329 0x00, 0x21, 0x85, 0x5e, 0xd7
335 uint8_t *resp1
= (((uint8_t *)BigBuf
) + 800);
338 uint8_t *receivedCmd
= (uint8_t *)BigBuf
;
345 memset(receivedCmd
, 0x44, 400);
347 CodeIso14443bAsTag(response1
, sizeof(response1
));
348 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
350 // We need to listen to the high-frequency, peak-detected path.
351 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
359 if(!GetIso14443CommandFromReader(receivedCmd
, &len
, 100)) {
360 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
364 // Good, look at the command now.
366 if(len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
)==0) {
367 resp
= resp1
; respLen
= resp1Len
;
369 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
370 // And print whether the CRC fails, just for good measure
371 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
372 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
373 // Not so good, try again.
374 DbpString("+++CRC fail");
376 DbpString("CRC passes");
381 memset(receivedCmd
, 0x44, 32);
385 if(cmdsRecvd
> 0x30) {
386 DbpString("many commands later...");
390 if(respLen
<= 0) continue;
393 // Signal field is off with the appropriate LED
396 FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
397 AT91C_BASE_SSC
->SSC_THR
= 0xff;
400 // Transmit the response.
403 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
406 AT91C_BASE_SSC
->SSC_THR
= b
;
413 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
414 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
421 //=============================================================================
422 // An ISO 14443 Type B reader. We take layer two commands, code them
423 // appropriately, and then send them to the tag. We then listen for the
424 // tag's response, which we leave in the buffer to be demodulated on the
426 //=============================================================================
431 DEMOD_PHASE_REF_TRAINING
,
432 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
433 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
434 DEMOD_AWAITING_START_BIT
,
435 DEMOD_RECEIVING_DATA
,
451 * Handles reception of a bit from the tag
454 * LED C -> ON once we have received the SOF and are expecting the rest.
455 * LED C -> OFF once we have received EOF or are unsynced
457 * Returns: true if we received a EOF
458 * false if we are still waiting for some more
461 static int Handle14443SamplesDemod(int ci
, int cq
)
465 // The soft decision on the bit uses an estimate of just the
466 // quadrant of the reference angle, not the exact angle.
467 #define MAKE_SOFT_DECISION() { \
468 if(Demod.sumI > 0) { \
473 if(Demod.sumQ > 0) { \
480 switch(Demod
.state
) {
491 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
497 case DEMOD_PHASE_REF_TRAINING
:
498 if(Demod
.posCount
< 8) {
501 } else if(Demod
.posCount
> 100) {
502 // error, waited too long
503 Demod
.state
= DEMOD_UNSYNCD
;
505 MAKE_SOFT_DECISION();
507 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
514 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
515 MAKE_SOFT_DECISION();
517 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
520 if(Demod
.posCount
> 100) {
521 Demod
.state
= DEMOD_UNSYNCD
;
527 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
528 MAKE_SOFT_DECISION();
530 if(Demod
.posCount
< 12) {
531 Demod
.state
= DEMOD_UNSYNCD
;
533 LED_C_ON(); // Got SOF
534 Demod
.state
= DEMOD_AWAITING_START_BIT
;
541 if(Demod
.posCount
> 100) {
542 Demod
.state
= DEMOD_UNSYNCD
;
548 case DEMOD_AWAITING_START_BIT
:
549 MAKE_SOFT_DECISION();
551 if(Demod
.posCount
> 10) {
552 Demod
.state
= DEMOD_UNSYNCD
;
559 Demod
.state
= DEMOD_RECEIVING_DATA
;
563 case DEMOD_RECEIVING_DATA
:
564 MAKE_SOFT_DECISION();
565 if(Demod
.posCount
== 0) {
571 if(Demod
.thisBit
> 0) {
572 Demod
.metric
+= Demod
.thisBit
;
574 Demod
.metric
-= Demod
.thisBit
;
578 Demod
.shiftReg
>>= 1;
579 if(Demod
.thisBit
> 0) {
580 Demod
.shiftReg
|= 0x200;
584 if(Demod
.bitCount
== 10) {
585 uint16_t s
= Demod
.shiftReg
;
586 if((s
& 0x200) && !(s
& 0x001)) {
587 uint8_t b
= (s
>> 1);
588 Demod
.output
[Demod
.len
] = b
;
590 Demod
.state
= DEMOD_AWAITING_START_BIT
;
591 } else if(s
== 0x000) {
595 Demod
.state
= DEMOD_UNSYNCD
;
597 Demod
.state
= DEMOD_UNSYNCD
;
605 Demod
.state
= DEMOD_UNSYNCD
;
609 if (Demod
.state
== DEMOD_UNSYNCD
) LED_C_OFF(); // Not synchronized...
614 * Demodulate the samples we received from the tag
615 * weTx: set to 'TRUE' if we behave like a reader
616 * set to 'FALSE' if we behave like a snooper
617 * quiet: set to 'TRUE' to disable debug output
619 static void GetSamplesFor14443Demod(int weTx
, int n
, int quiet
)
622 int gotFrame
= FALSE
;
624 //# define DMA_BUFFER_SIZE 8
634 // Clear out the state of the "UART" that receives from the tag.
635 memset(BigBuf
, 0x44, 400);
636 Demod
.output
= (uint8_t *)BigBuf
;
638 Demod
.state
= DEMOD_UNSYNCD
;
640 // And the UART that receives from the reader
641 Uart
.output
= (((uint8_t *)BigBuf
) + 1024);
642 Uart
.byteCntMax
= 100;
643 Uart
.state
= STATE_UNSYNCD
;
645 // Setup for the DMA.
646 dmaBuf
= (int8_t *)(BigBuf
+ 32);
648 lastRxCounter
= DMA_BUFFER_SIZE
;
649 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
651 // Signal field is ON with the appropriate LED:
652 if (weTx
) LED_D_ON(); else LED_D_OFF();
653 // And put the FPGA in the appropriate mode
655 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
656 (weTx
? 0 : FPGA_HF_READER_RX_XCORR_SNOOP
));
659 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
660 if(behindBy
> max
) max
= behindBy
;
662 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1))
668 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
669 upTo
-= DMA_BUFFER_SIZE
;
670 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
671 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
674 if(lastRxCounter
<= 0) {
675 lastRxCounter
+= DMA_BUFFER_SIZE
;
680 Handle14443UartBit(1);
681 Handle14443UartBit(1);
683 if(Handle14443SamplesDemod(ci
, cq
)) {
692 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
693 if (!quiet
) Dbprintf("%x %x %x", max
, gotFrame
, Demod
.len
);
696 //-----------------------------------------------------------------------------
697 // Read the tag's response. We just receive a stream of slightly-processed
698 // samples from the FPGA, which we will later do some signal processing on,
700 //-----------------------------------------------------------------------------
701 /*static void GetSamplesFor14443(int weTx, int n)
703 uint8_t *dest = (uint8_t *)BigBuf;
707 FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
708 (weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
712 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
713 AT91C_BASE_SSC->SSC_THR = 0x43;
715 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
717 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
719 dest[c++] = (uint8_t)b;
728 //-----------------------------------------------------------------------------
729 // Transmit the command (to the tag) that was placed in ToSend[].
730 //-----------------------------------------------------------------------------
731 static void TransmitFor14443(void)
737 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
738 AT91C_BASE_SSC
->SSC_THR
= 0xff;
741 // Signal field is ON with the appropriate Red LED
743 // Signal we are transmitting with the Green LED
746 FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
748 for(c
= 0; c
< 10;) {
749 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
750 AT91C_BASE_SSC
->SSC_THR
= 0xff;
753 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
754 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
762 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
763 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
769 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
770 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
775 LED_B_OFF(); // Finished sending
778 //-----------------------------------------------------------------------------
779 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
780 // so that it is ready to transmit to the tag using TransmitFor14443().
781 //-----------------------------------------------------------------------------
782 void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
789 // Establish initial reference level
790 for(i
= 0; i
< 40; i
++) {
794 for(i
= 0; i
< 10; i
++) {
798 for(i
= 0; i
< len
; i
++) {
806 for(j
= 0; j
< 8; j
++) {
817 for(i
= 0; i
< 10; i
++) {
820 for(i
= 0; i
< 8; i
++) {
824 // And then a little more, to make sure that the last character makes
825 // it out before we switch to rx mode.
826 for(i
= 0; i
< 24; i
++) {
830 // Convert from last character reference to length
834 //-----------------------------------------------------------------------------
835 // Read an ISO 14443 tag. We send it some set of commands, and record the
837 // The command name is misleading, it actually decodes the reponse in HEX
838 // into the output buffer (read the result using hexsamples, not hisamples)
839 //-----------------------------------------------------------------------------
840 void AcquireRawAdcSamplesIso14443(uint32_t parameter
)
842 uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
844 // Make sure that we start from off, since the tags are stateful;
845 // confusing things will happen if we don't reset them between reads.
846 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
850 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
853 // Now give it time to spin up.
854 // Signal field is on with the appropriate LED
857 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
860 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
863 GetSamplesFor14443Demod(TRUE
, 2000, FALSE
);
867 //-----------------------------------------------------------------------------
868 // Read a SRI512 ISO 14443 tag.
870 // SRI512 tags are just simple memory tags, here we're looking at making a dump
871 // of the contents of the memory. No anticollision algorithm is done, we assume
872 // we have a single tag in the field.
874 // I tried to be systematic and check every answer of the tag, every CRC, etc...
875 //-----------------------------------------------------------------------------
876 void ReadSRI512Iso14443(uint32_t parameter
)
878 ReadSTMemoryIso14443(parameter
,0x0F);
880 void ReadSRIX4KIso14443(uint32_t parameter
)
882 ReadSTMemoryIso14443(parameter
,0x7F);
885 void ReadSTMemoryIso14443(uint32_t parameter
,uint32_t dwLast
)
889 // Make sure that we start from off, since the tags are stateful;
890 // confusing things will happen if we don't reset them between reads.
892 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
895 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
898 // Now give it time to spin up.
899 // Signal field is on with the appropriate LED
902 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
905 // First command: wake up the tag using the INITIATE command
906 uint8_t cmd1
[] = { 0x06, 0x00, 0x97, 0x5b};
907 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
910 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
913 if (Demod
.len
== 0) {
914 DbpString("No response from tag");
917 Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
918 Demod
.output
[0], Demod
.output
[1],Demod
.output
[2]);
920 // There is a response, SELECT the uid
921 DbpString("Now SELECT tag:");
922 cmd1
[0] = 0x0E; // 0x0E is SELECT
923 cmd1
[1] = Demod
.output
[0];
924 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
925 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
928 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
930 if (Demod
.len
!= 3) {
931 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
934 // Check the CRC of the answer:
935 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
936 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
937 DbpString("CRC Error reading select response.");
940 // Check response from the tag: should be the same UID as the command we just sent:
941 if (cmd1
[1] != Demod
.output
[0]) {
942 Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1
[1], Demod
.output
[0]);
945 // Tag is now selected,
946 // First get the tag's UID:
948 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
949 CodeIso14443bAsReader(cmd1
, 3); // Only first three bytes for this one
952 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
954 if (Demod
.len
!= 10) {
955 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
958 // The check the CRC of the answer (use cmd1 as temporary variable):
959 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
960 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
961 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
962 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
963 // Do not return;, let's go on... (we should retry, maybe ?)
965 Dbprintf("Tag UID (64 bits): %08x %08x",
966 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
967 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
969 // Now loop to read all 16 blocks, address from 0 to 15
970 DbpString("Tag memory dump, block 0 to 15");
976 DbpString("System area block (0xff):");
980 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
981 CodeIso14443bAsReader(cmd1
, sizeof(cmd1
));
984 GetSamplesFor14443Demod(TRUE
, 2000,TRUE
);
986 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
987 DbpString("Expected 6 bytes from tag, got less...");
990 // The check the CRC of the answer (use cmd1 as temporary variable):
991 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
992 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
993 Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
994 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
995 // Do not return;, let's go on... (we should retry, maybe ?)
997 // Now print out the memory location:
998 Dbprintf("Address=%x, Contents=%x, CRC=%x", i
,
999 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1000 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1009 //=============================================================================
1010 // Finally, the `sniffer' combines elements from both the reader and
1011 // simulated tag, to show both sides of the conversation.
1012 //=============================================================================
1014 //-----------------------------------------------------------------------------
1015 // Record the sequence of commands sent by the reader to the tag, with
1016 // triggering so that we start recording at the point that the tag is moved
1018 //-----------------------------------------------------------------------------
1020 * Memory usage for this function, (within BigBuf)
1021 * 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE
1022 * 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE
1023 * 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE
1024 * 8192-9215 : DMA Buffer, 1024 bytes (samples) - DMA_BUFFER_SIZE
1026 void SnoopIso14443(void)
1028 // We won't start recording the frames that we acquire until we trigger;
1029 // a good trigger condition to get started is probably when we see a
1030 // response from the tag.
1031 int triggered
= FALSE
;
1033 // The command (reader -> tag) that we're working on receiving.
1034 uint8_t *receivedCmd
= (uint8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
;
1035 // The response (tag -> reader) that we're working on receiving.
1036 uint8_t *receivedResponse
= (uint8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
+ READER_TAG_BUFFER_SIZE
;
1038 // As we receive stuff, we copy it from receivedCmd or receivedResponse
1039 // into trace, along with its length and other annotations.
1040 uint8_t *trace
= (uint8_t *)BigBuf
;
1043 // The DMA buffer, used to stream samples from the FPGA.
1044 int8_t *dmaBuf
= (int8_t *)(BigBuf
) + DEMOD_TRACE_SIZE
+ READER_TAG_BUFFER_SIZE
+ TAG_READER_BUFFER_SIZE
;
1048 int maxBehindBy
= 0;
1050 // Count of samples received so far, so that we can include timing
1051 // information in the trace buffer.
1054 // Initialize the trace buffer
1055 memset(trace
, 0x44, DEMOD_TRACE_SIZE
);
1057 // Set up the demodulator for tag -> reader responses.
1058 Demod
.output
= receivedResponse
;
1060 Demod
.state
= DEMOD_UNSYNCD
;
1062 // And the reader -> tag commands
1063 memset(&Uart
, 0, sizeof(Uart
));
1064 Uart
.output
= receivedCmd
;
1065 Uart
.byteCntMax
= 100;
1066 Uart
.state
= STATE_UNSYNCD
;
1068 // Print some debug information about the buffer sizes
1069 Dbprintf("Snooping buffers initialized:");
1070 Dbprintf(" Trace: %i bytes", DEMOD_TRACE_SIZE
);
1071 Dbprintf(" Reader -> tag: %i bytes", READER_TAG_BUFFER_SIZE
);
1072 Dbprintf(" tag -> Reader: %i bytes", TAG_READER_BUFFER_SIZE
);
1073 Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE
);
1075 // Use a counter for blinking the LED
1077 long ledFlashAt
=200000;
1079 // And put the FPGA in the appropriate mode
1080 // Signal field is off with the appropriate LED
1083 FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
|
1084 FPGA_HF_READER_RX_XCORR_SNOOP
);
1085 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1087 // Setup for the DMA.
1090 lastRxCounter
= DMA_BUFFER_SIZE
;
1091 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
1092 // And now we loop, receiving samples.
1094 // Blink the LED while Snooping
1096 if (ledCount
== ledFlashAt
) {
1099 if (ledCount
>= 2*ledFlashAt
) {
1104 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1105 (DMA_BUFFER_SIZE
-1);
1106 if(behindBy
> maxBehindBy
) {
1107 maxBehindBy
= behindBy
;
1108 if(behindBy
> (DMA_BUFFER_SIZE
-2)) { // TODO: understand whether we can increase/decrease as we want or not?
1109 Dbprintf("blew circular buffer! behindBy=%x", behindBy
);
1113 if(behindBy
< 2) continue;
1119 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
1120 upTo
-= DMA_BUFFER_SIZE
;
1121 lastRxCounter
+= DMA_BUFFER_SIZE
;
1122 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1123 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
1128 #define HANDLE_BIT_IF_BODY \
1131 trace[traceLen++] = ((samples >> 0) & 0xff); \
1132 trace[traceLen++] = ((samples >> 8) & 0xff); \
1133 trace[traceLen++] = ((samples >> 16) & 0xff); \
1134 trace[traceLen++] = ((samples >> 24) & 0xff); \
1135 trace[traceLen++] = 0; \
1136 trace[traceLen++] = 0; \
1137 trace[traceLen++] = 0; \
1138 trace[traceLen++] = 0; \
1139 trace[traceLen++] = Uart.byteCnt; \
1140 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
1141 traceLen += Uart.byteCnt; \
1142 if(traceLen > 1000) break; \
1144 /* And ready to receive another command. */ \
1145 memset(&Uart, 0, sizeof(Uart)); \
1146 Uart.output = receivedCmd; \
1147 Uart.byteCntMax = 100; \
1148 Uart.state = STATE_UNSYNCD; \
1149 /* And also reset the demod code, which might have been */ \
1150 /* false-triggered by the commands from the reader. */ \
1151 memset(&Demod, 0, sizeof(Demod)); \
1152 Demod.output = receivedResponse; \
1153 Demod.state = DEMOD_UNSYNCD; \
1155 if(Handle14443UartBit(ci & 1)) {
1158 if(Handle14443UartBit(cq
& 1)) {
1162 if(Handle14443SamplesDemod(ci
, cq
)) {
1163 // timestamp, as a count of samples
1164 trace
[traceLen
++] = ((samples
>> 0) & 0xff);
1165 trace
[traceLen
++] = ((samples
>> 8) & 0xff);
1166 trace
[traceLen
++] = ((samples
>> 16) & 0xff);
1167 trace
[traceLen
++] = 0x80 | ((samples
>> 24) & 0xff);
1168 // correlation metric (~signal strength estimate)
1169 if(Demod
.metricN
!= 0) {
1170 Demod
.metric
/= Demod
.metricN
;
1172 trace
[traceLen
++] = ((Demod
.metric
>> 0) & 0xff);
1173 trace
[traceLen
++] = ((Demod
.metric
>> 8) & 0xff);
1174 trace
[traceLen
++] = ((Demod
.metric
>> 16) & 0xff);
1175 trace
[traceLen
++] = ((Demod
.metric
>> 24) & 0xff);
1177 trace
[traceLen
++] = Demod
.len
;
1178 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
1179 traceLen
+= Demod
.len
;
1180 if(traceLen
> DEMOD_TRACE_SIZE
) {
1181 DbpString("Reached trace limit");
1187 // And ready to receive another response.
1188 memset(&Demod
, 0, sizeof(Demod
));
1189 Demod
.output
= receivedResponse
;
1190 Demod
.state
= DEMOD_UNSYNCD
;
1194 if(BUTTON_PRESS()) {
1195 DbpString("cancelled");
1202 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1203 DbpString("Snoop statistics:");
1204 Dbprintf(" Max behind by: %i", maxBehindBy
);
1205 Dbprintf(" Uart State: %x", Uart
.state
);
1206 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1207 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1208 Dbprintf(" Trace length: %i", traceLen
);