1 //-----------------------------------------------------------------------------
2 // ISO14443-A support for the Proxmark III
3 // Gerhard de Koning Gans, April 2008
4 //-----------------------------------------------------------------------------
7 pck0, ck_1356meg, ck_1356megb,
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
15 input pck0, ck_1356meg, ck_1356megb;
16 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
20 output ssp_frame, ssp_din, ssp_clk;
21 input cross_hi, cross_lo;
29 always @(posedge ck_1356meg)
33 assign adc_clk = ck_1356meg;
35 reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3;
36 reg [11:0] has_been_low_for;
37 reg [8:0] saw_deep_modulation;
38 reg [2:0] deep_counter;
40 always @(negedge adc_clk)
42 if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196
43 else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15
47 if(deep_counter == 3'd7)
49 deep_modulation <= 1'b1;
50 saw_deep_modulation <= 8'd0;
53 deep_counter <= deep_counter + 1;
58 if(saw_deep_modulation == 8'd255)
59 deep_modulation <= 1'b0;
61 saw_deep_modulation <= saw_deep_modulation + 1;
66 has_been_low_for <= 7'b0;
70 if(has_been_low_for == 12'd4095)
72 has_been_low_for <= 12'd0;
73 after_hysteresis <= 1'b1;
76 has_been_low_for <= has_been_low_for + 1;
80 // Report every 4 subcarrier cycles
81 // 64 periods of carrier frequency => 6-bit counter [negedge_cnt]
82 reg [5:0] negedge_cnt;
85 reg [3:0] count_zeros;
88 // reg signed [12:0] step1;
89 // reg signed [12:0] step2;
90 // reg [7:0] stepsize;
91 reg [7:0] rx_mod_edge_threshold;
93 // reg [12:0] average;
94 // wire signed [9:0] dif;
96 // storage for two previous samples:
102 // the filtered signal (filter performs noise reduction and edge detection)
103 // (gaussian derivative)
104 wire signed [10:0] adc_d_filtered;
105 assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1);
107 // Registers to store steepest edges detected:
108 reg [7:0] rx_mod_falling_edge_max;
109 reg [7:0] rx_mod_rising_edge_max;
111 // A register to send the results to the arm
112 reg signed [7:0] to_arm;
116 reg fdt_indicator, fdt_elapsed;
117 reg [10:0] fdt_counter;
118 reg [47:0] mod_sig_buf;
119 wire mod_sig_buf_empty;
120 reg [5:0] mod_sig_ptr;
121 reg [3:0] mod_sig_flip;
122 reg mod_sig, mod_sig_coil;
123 reg temp_buffer_reset;
126 assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]);
127 reg [2:0] ssp_frame_counter;
129 // ADC data appears on the rising edge, so sample it on the falling edge
130 always @(negedge adc_clk)
132 // ------------------------------------------------------------------------------------------------------------------------------------------------------------------
133 // relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader
134 // ISO14443-3 specifies:
135 // fdt = 1172, if last bit was 0.
136 // fdt = 1236, if last bit was 1.
137 // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit).
138 // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay.
139 if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?)
140 // Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits,
141 // i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks)
143 if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below
144 // the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock.
148 if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set)
152 mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation
153 mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set)
155 fdt_indicator = 1'b0;
157 if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks.
158 else temp_buffer_reset = 1'b1; // else fix the buffer size at current position
163 fdt_counter <= fdt_counter + 1; // Count until 1148
167 //-------------------------------------------------------------------------------------------------------------------------------------------
168 // Relevant for READER_LISTEN only
169 // look for steepest falling and rising edges:
170 if (adc_d_filtered > 0)
172 if (adc_d_filtered > rx_mod_falling_edge_max)
173 rx_mod_falling_edge_max <= adc_d_filtered;
177 if (-adc_d_filtered > rx_mod_rising_edge_max)
178 rx_mod_rising_edge_max <= -adc_d_filtered;
181 // store previous samples for filtering and edge detection:
189 if(& negedge_cnt[3:0]) // == 0xf == 15
191 // Relevant for TAGSIM_MOD only (timing Tag's answer. See above)
192 // When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD)
193 if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset
195 fdt_counter <= 11'd0;
197 fdt_indicator = 1'b0;
198 temp_buffer_reset = 1'b0;
199 mod_sig_ptr <= 6'b000000;
202 // Relevant for READER_LISTEN only
203 // detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa
204 if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6)
205 curbit = 1'b1; // modulation
207 curbit = 1'b0; // no modulation
209 // prepare next edge detection:
210 rx_mod_rising_edge_max <= 0;
211 rx_mod_falling_edge_max <= 0;
214 // What do we communicate to the ARM
215 if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN
216 else if(mod_type == 3'b010) // TAGSIM_MOD
218 if(fdt_counter > 11'd772) sendbit = mod_sig_coil;
219 else sendbit = fdt_indicator;
221 else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN
222 else sendbit = 1'b0; // READER_MOD, SNIFFER
226 //------------------------------------------------------------------------------------------------------------------------------------------
227 // Relevant for SNIFFER mode only. Prepare communication to ARM.
228 if(negedge_cnt == 7'd63)
232 to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0};
236 to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit};
244 negedge_cnt <= negedge_cnt + 1;
247 if(negedge_cnt == 6'd15)
249 after_hysteresis_prev1 <= after_hysteresis;
252 if(negedge_cnt == 6'd31)
254 after_hysteresis_prev2 <= after_hysteresis;
257 if(negedge_cnt == 6'd47)
259 after_hysteresis_prev3 <= after_hysteresis;
263 //--------------------------------------------------------------------------------------------------------------------------------------------------------------
264 // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time
265 // Note: Data in READER_MOD is fed through this delay line as well.
266 if(mod_type != 3'b000) // != SNIFFER
268 if(negedge_cnt[3:0] == 4'b1000) // == 0x8
270 // The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well.
271 // Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and
272 // content of the next bit to be transmitted.
273 mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always.
274 if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks.
275 if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss
277 mod_sig_ptr <= 6'b000000;
279 else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1.
280 else if(fdt_elapsed && ~temp_buffer_reset)
281 // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already.
283 // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
284 // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3)
285 if(ssp_dout) temp_buffer_reset = 1'b1;
286 if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval
287 else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
290 // mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER
291 // mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested.
293 // don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s)
294 // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed.
295 if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
296 // finally, do the modulation:
297 else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed;
302 //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
303 // Communication to ARM (SSP Clock and data)
304 // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
305 if(mod_type == 3'b000)
307 if(negedge_cnt[2:0] == 3'b100)
310 if(negedge_cnt[2:0] == 3'b000)
313 // Don't shift if we just loaded new data, obviously.
314 if(negedge_cnt != 7'd0)
316 to_arm[7:1] <= to_arm[6:0];
320 if(negedge_cnt[5:4] == 2'b00)
325 bit_to_arm = to_arm[7];
328 //-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
329 // Communication to ARM (SSP Clock and data)
330 // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
332 if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0;
334 if(negedge_cnt[3:0] == 4'b0111)
336 if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0;
337 else ssp_frame_counter <= ssp_frame_counter + 1;
340 if(negedge_cnt[3:0] == 4'b0000)
345 ssp_frame = (ssp_frame_counter == 3'd7);
347 bit_to_arm = sendbit;
352 assign ssp_din = bit_to_arm;
355 // Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes.
356 wire modulating_carrier;
357 assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0.
359 // for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off
360 assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
363 // Enable HF antenna drivers:
364 assign pwr_oe1 = 1'b0;
365 assign pwr_oe3 = 1'b0;
367 // TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier)
368 // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
369 // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
370 assign pwr_oe4 = modulating_carrier;
372 // This is all LF, so doesn't matter.
373 assign pwr_oe2 = 1'b0;
374 assign pwr_lo = 1'b0;
377 assign dbg = negedge_cnt[3];