]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
117e4035af7ec7290b55861de73f9ff6d6b942bb
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 // Needed for CRC in emulation mode;
45 // same construction as in ISO 14443;
46 // different initial value (CRC_ICLASS)
47 #include "iso14443crc.h"
48
49 static int timeout = 4096;
50
51
52 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
53
54 //-----------------------------------------------------------------------------
55 // The software UART that receives commands from the reader, and its state
56 // variables.
57 //-----------------------------------------------------------------------------
58 static struct {
59 enum {
60 STATE_UNSYNCD,
61 STATE_START_OF_COMMUNICATION,
62 STATE_RECEIVING
63 } state;
64 uint16_t shiftReg;
65 int bitCnt;
66 int byteCnt;
67 int byteCntMax;
68 int posCnt;
69 int nOutOfCnt;
70 int OutOfCnt;
71 int syncBit;
72 int parityBits;
73 int samples;
74 int highCnt;
75 int swapper;
76 int counter;
77 int bitBuffer;
78 int dropPosition;
79 uint8_t *output;
80 } Uart;
81
82 static RAMFUNC int OutOfNDecoding(int bit)
83 {
84 //int error = 0;
85 int bitright;
86
87 if(!Uart.bitBuffer) {
88 Uart.bitBuffer = bit ^ 0xFF0;
89 return FALSE;
90 }
91 else {
92 Uart.bitBuffer <<= 4;
93 Uart.bitBuffer ^= bit;
94 }
95
96 /*if(Uart.swapper) {
97 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
98 Uart.byteCnt++;
99 Uart.swapper = 0;
100 if(Uart.byteCnt > 15) { return TRUE; }
101 }
102 else {
103 Uart.swapper = 1;
104 }*/
105
106 if(Uart.state != STATE_UNSYNCD) {
107 Uart.posCnt++;
108
109 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
110 bit = 0x00;
111 }
112 else {
113 bit = 0x01;
114 }
115 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
116 bitright = 0x00;
117 }
118 else {
119 bitright = 0x01;
120 }
121 if(bit != bitright) { bit = bitright; }
122
123
124 // So, now we only have to deal with *bit*, lets see...
125 if(Uart.posCnt == 1) {
126 // measurement first half bitperiod
127 if(!bit) {
128 // Drop in first half means that we are either seeing
129 // an SOF or an EOF.
130
131 if(Uart.nOutOfCnt == 1) {
132 // End of Communication
133 Uart.state = STATE_UNSYNCD;
134 Uart.highCnt = 0;
135 if(Uart.byteCnt == 0) {
136 // Its not straightforward to show single EOFs
137 // So just leave it and do not return TRUE
138 Uart.output[Uart.byteCnt] = 0xf0;
139 Uart.byteCnt++;
140
141 // Calculate the parity bit for the client...
142 Uart.parityBits = 1;
143 }
144 else {
145 return TRUE;
146 }
147 }
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
153 }
154 }
155 }
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
160
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
165 }
166 else {
167 //error = 7;
168 }
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
172 }
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
175 }
176 }
177
178 Uart.posCnt = 0;
179
180
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
183
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
188 }
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
194 }
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
198 }
199 Uart.dropPosition = 0;
200 }
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
208 }
209 else {
210 Uart.shiftReg >>= 2;
211
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
220
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224
225 // Calculate the parity bit for the client...
226 Uart.parityBits <<= 1;
227 Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
228
229 Uart.bitCnt = 0;
230 Uart.shiftReg = 0;
231 }
232 }
233 }
234 }
235 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
236 // RECEIVING DATA
237 // 1 out of 256
238 if(!Uart.dropPosition) {
239 Uart.state = STATE_UNSYNCD;
240 Uart.highCnt = 0;
241 //error = 3;
242 }
243 else {
244 Uart.dropPosition--;
245 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
246 Uart.byteCnt++;
247
248 // Calculate the parity bit for the client...
249 Uart.parityBits <<= 1;
250 Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
251
252 Uart.bitCnt = 0;
253 Uart.shiftReg = 0;
254 Uart.nOutOfCnt = 0;
255 Uart.dropPosition = 0;
256 }
257 }
258
259 /*if(error) {
260 Uart.output[Uart.byteCnt] = 0xAA;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = error & 0xFF;
263 Uart.byteCnt++;
264 Uart.output[Uart.byteCnt] = 0xAA;
265 Uart.byteCnt++;
266 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
267 Uart.byteCnt++;
268 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
269 Uart.byteCnt++;
270 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
271 Uart.byteCnt++;
272 Uart.output[Uart.byteCnt] = 0xAA;
273 Uart.byteCnt++;
274 return TRUE;
275 }*/
276 }
277
278 }
279 else {
280 bit = Uart.bitBuffer & 0xf0;
281 bit >>= 4;
282 bit ^= 0x0F; // drops become 1s ;-)
283 if(bit) {
284 // should have been high or at least (4 * 128) / fc
285 // according to ISO this should be at least (9 * 128 + 20) / fc
286 if(Uart.highCnt == 8) {
287 // we went low, so this could be start of communication
288 // it turns out to be safer to choose a less significant
289 // syncbit... so we check whether the neighbour also represents the drop
290 Uart.posCnt = 1; // apparently we are busy with our first half bit period
291 Uart.syncBit = bit & 8;
292 Uart.samples = 3;
293 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
294 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
295 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
296 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
297 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
298 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
299 Uart.syncBit = 8;
300
301 // the first half bit period is expected in next sample
302 Uart.posCnt = 0;
303 Uart.samples = 3;
304 }
305 }
306 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
307
308 Uart.syncBit <<= 4;
309 Uart.state = STATE_START_OF_COMMUNICATION;
310 Uart.bitCnt = 0;
311 Uart.byteCnt = 0;
312 Uart.parityBits = 0;
313 Uart.nOutOfCnt = 0;
314 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
315 Uart.dropPosition = 0;
316 Uart.shiftReg = 0;
317 //error = 0;
318 }
319 else {
320 Uart.highCnt = 0;
321 }
322 }
323 else {
324 if(Uart.highCnt < 8) {
325 Uart.highCnt++;
326 }
327 }
328 }
329
330 return FALSE;
331 }
332
333 //=============================================================================
334 // Manchester
335 //=============================================================================
336
337 static struct {
338 enum {
339 DEMOD_UNSYNCD,
340 DEMOD_START_OF_COMMUNICATION,
341 DEMOD_START_OF_COMMUNICATION2,
342 DEMOD_START_OF_COMMUNICATION3,
343 DEMOD_SOF_COMPLETE,
344 DEMOD_MANCHESTER_D,
345 DEMOD_MANCHESTER_E,
346 DEMOD_END_OF_COMMUNICATION,
347 DEMOD_END_OF_COMMUNICATION2,
348 DEMOD_MANCHESTER_F,
349 DEMOD_ERROR_WAIT
350 } state;
351 int bitCount;
352 int posCount;
353 int syncBit;
354 int parityBits;
355 uint16_t shiftReg;
356 int buffer;
357 int buffer2;
358 int buffer3;
359 int buff;
360 int samples;
361 int len;
362 enum {
363 SUB_NONE,
364 SUB_FIRST_HALF,
365 SUB_SECOND_HALF,
366 SUB_BOTH
367 } sub;
368 uint8_t *output;
369 } Demod;
370
371 static RAMFUNC int ManchesterDecoding(int v)
372 {
373 int bit;
374 int modulation;
375 int error = 0;
376
377 bit = Demod.buffer;
378 Demod.buffer = Demod.buffer2;
379 Demod.buffer2 = Demod.buffer3;
380 Demod.buffer3 = v;
381
382 if(Demod.buff < 3) {
383 Demod.buff++;
384 return FALSE;
385 }
386
387 if(Demod.state==DEMOD_UNSYNCD) {
388 Demod.output[Demod.len] = 0xfa;
389 Demod.syncBit = 0;
390 //Demod.samples = 0;
391 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
392
393 if(bit & 0x08) {
394 Demod.syncBit = 0x08;
395 }
396
397 if(bit & 0x04) {
398 if(Demod.syncBit) {
399 bit <<= 4;
400 }
401 Demod.syncBit = 0x04;
402 }
403
404 if(bit & 0x02) {
405 if(Demod.syncBit) {
406 bit <<= 2;
407 }
408 Demod.syncBit = 0x02;
409 }
410
411 if(bit & 0x01 && Demod.syncBit) {
412 Demod.syncBit = 0x01;
413 }
414
415 if(Demod.syncBit) {
416 Demod.len = 0;
417 Demod.state = DEMOD_START_OF_COMMUNICATION;
418 Demod.sub = SUB_FIRST_HALF;
419 Demod.bitCount = 0;
420 Demod.shiftReg = 0;
421 Demod.parityBits = 0;
422 Demod.samples = 0;
423 if(Demod.posCount) {
424 //if(trigger) LED_A_OFF(); // Not useful in this case...
425 switch(Demod.syncBit) {
426 case 0x08: Demod.samples = 3; break;
427 case 0x04: Demod.samples = 2; break;
428 case 0x02: Demod.samples = 1; break;
429 case 0x01: Demod.samples = 0; break;
430 }
431 // SOF must be long burst... otherwise stay unsynced!!!
432 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
433 Demod.state = DEMOD_UNSYNCD;
434 }
435 }
436 else {
437 // SOF must be long burst... otherwise stay unsynced!!!
438 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
439 Demod.state = DEMOD_UNSYNCD;
440 error = 0x88;
441 }
442
443 }
444 error = 0;
445
446 }
447 }
448 else {
449 modulation = bit & Demod.syncBit;
450 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
451 //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
452
453 Demod.samples += 4;
454
455 if(Demod.posCount==0) {
456 Demod.posCount = 1;
457 if(modulation) {
458 Demod.sub = SUB_FIRST_HALF;
459 }
460 else {
461 Demod.sub = SUB_NONE;
462 }
463 }
464 else {
465 Demod.posCount = 0;
466 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
467 if(Demod.state!=DEMOD_ERROR_WAIT) {
468 Demod.state = DEMOD_ERROR_WAIT;
469 Demod.output[Demod.len] = 0xaa;
470 error = 0x01;
471 }
472 }*/
473 //else if(modulation) {
474 if(modulation) {
475 if(Demod.sub == SUB_FIRST_HALF) {
476 Demod.sub = SUB_BOTH;
477 }
478 else {
479 Demod.sub = SUB_SECOND_HALF;
480 }
481 }
482 else if(Demod.sub == SUB_NONE) {
483 if(Demod.state == DEMOD_SOF_COMPLETE) {
484 Demod.output[Demod.len] = 0x0f;
485 Demod.len++;
486 Demod.parityBits <<= 1;
487 Demod.parityBits ^= OddByteParity[0x0f];
488 Demod.state = DEMOD_UNSYNCD;
489 // error = 0x0f;
490 return TRUE;
491 }
492 else {
493 Demod.state = DEMOD_ERROR_WAIT;
494 error = 0x33;
495 }
496 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
497 Demod.state = DEMOD_ERROR_WAIT;
498 Demod.output[Demod.len] = 0xaa;
499 error = 0x01;
500 }*/
501 }
502
503 switch(Demod.state) {
504 case DEMOD_START_OF_COMMUNICATION:
505 if(Demod.sub == SUB_BOTH) {
506 //Demod.state = DEMOD_MANCHESTER_D;
507 Demod.state = DEMOD_START_OF_COMMUNICATION2;
508 Demod.posCount = 1;
509 Demod.sub = SUB_NONE;
510 }
511 else {
512 Demod.output[Demod.len] = 0xab;
513 Demod.state = DEMOD_ERROR_WAIT;
514 error = 0xd2;
515 }
516 break;
517 case DEMOD_START_OF_COMMUNICATION2:
518 if(Demod.sub == SUB_SECOND_HALF) {
519 Demod.state = DEMOD_START_OF_COMMUNICATION3;
520 }
521 else {
522 Demod.output[Demod.len] = 0xab;
523 Demod.state = DEMOD_ERROR_WAIT;
524 error = 0xd3;
525 }
526 break;
527 case DEMOD_START_OF_COMMUNICATION3:
528 if(Demod.sub == SUB_SECOND_HALF) {
529 // Demod.state = DEMOD_MANCHESTER_D;
530 Demod.state = DEMOD_SOF_COMPLETE;
531 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
532 //Demod.len++;
533 }
534 else {
535 Demod.output[Demod.len] = 0xab;
536 Demod.state = DEMOD_ERROR_WAIT;
537 error = 0xd4;
538 }
539 break;
540 case DEMOD_SOF_COMPLETE:
541 case DEMOD_MANCHESTER_D:
542 case DEMOD_MANCHESTER_E:
543 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
544 // 00001111 = 1 (0 in 14443)
545 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
546 Demod.bitCount++;
547 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
548 Demod.state = DEMOD_MANCHESTER_D;
549 }
550 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
551 Demod.bitCount++;
552 Demod.shiftReg >>= 1;
553 Demod.state = DEMOD_MANCHESTER_E;
554 }
555 else if(Demod.sub == SUB_BOTH) {
556 Demod.state = DEMOD_MANCHESTER_F;
557 }
558 else {
559 Demod.state = DEMOD_ERROR_WAIT;
560 error = 0x55;
561 }
562 break;
563
564 case DEMOD_MANCHESTER_F:
565 // Tag response does not need to be a complete byte!
566 if(Demod.len > 0 || Demod.bitCount > 0) {
567 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
568 Demod.shiftReg >>= (9 - Demod.bitCount);
569 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
570 Demod.len++;
571 // No parity bit, so just shift a 0
572 Demod.parityBits <<= 1;
573 }
574
575 Demod.state = DEMOD_UNSYNCD;
576 return TRUE;
577 }
578 else {
579 Demod.output[Demod.len] = 0xad;
580 Demod.state = DEMOD_ERROR_WAIT;
581 error = 0x03;
582 }
583 break;
584
585 case DEMOD_ERROR_WAIT:
586 Demod.state = DEMOD_UNSYNCD;
587 break;
588
589 default:
590 Demod.output[Demod.len] = 0xdd;
591 Demod.state = DEMOD_UNSYNCD;
592 break;
593 }
594
595 /*if(Demod.bitCount>=9) {
596 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
597 Demod.len++;
598
599 Demod.parityBits <<= 1;
600 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
601
602 Demod.bitCount = 0;
603 Demod.shiftReg = 0;
604 }*/
605 if(Demod.bitCount>=8) {
606 Demod.shiftReg >>= 1;
607 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
608 Demod.len++;
609
610 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
611 Demod.parityBits <<= 1;
612 Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
613
614 Demod.bitCount = 0;
615 Demod.shiftReg = 0;
616 }
617
618 if(error) {
619 Demod.output[Demod.len] = 0xBB;
620 Demod.len++;
621 Demod.output[Demod.len] = error & 0xFF;
622 Demod.len++;
623 Demod.output[Demod.len] = 0xBB;
624 Demod.len++;
625 Demod.output[Demod.len] = bit & 0xFF;
626 Demod.len++;
627 Demod.output[Demod.len] = Demod.buffer & 0xFF;
628 Demod.len++;
629 // Look harder ;-)
630 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
631 Demod.len++;
632 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
633 Demod.len++;
634 Demod.output[Demod.len] = 0xBB;
635 Demod.len++;
636 return TRUE;
637 }
638
639 }
640
641 } // end (state != UNSYNCED)
642
643 return FALSE;
644 }
645
646 //=============================================================================
647 // Finally, a `sniffer' for iClass communication
648 // Both sides of communication!
649 //=============================================================================
650
651 //-----------------------------------------------------------------------------
652 // Record the sequence of commands sent by the reader to the tag, with
653 // triggering so that we start recording at the point that the tag is moved
654 // near the reader.
655 //-----------------------------------------------------------------------------
656 void RAMFUNC SnoopIClass(void)
657 {
658
659
660 // We won't start recording the frames that we acquire until we trigger;
661 // a good trigger condition to get started is probably when we see a
662 // response from the tag.
663 //int triggered = FALSE; // FALSE to wait first for card
664
665 // The command (reader -> tag) that we're receiving.
666 // The length of a received command will in most cases be no more than 18 bytes.
667 // So 32 should be enough!
668 uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
669 // The response (tag -> reader) that we're receiving.
670 uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
671
672 // reset traceLen to 0
673 iso14a_set_tracing(TRUE);
674 iso14a_clear_trace();
675 iso14a_set_trigger(FALSE);
676
677 // The DMA buffer, used to stream samples from the FPGA
678 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
679 int lastRxCounter;
680 int8_t *upTo;
681 int smpl;
682 int maxBehindBy = 0;
683
684 // Count of samples received so far, so that we can include timing
685 // information in the trace buffer.
686 int samples = 0;
687 rsamples = 0;
688
689 // Set up the demodulator for tag -> reader responses.
690 Demod.output = tagToReaderResponse;
691 Demod.len = 0;
692 Demod.state = DEMOD_UNSYNCD;
693
694 // Setup for the DMA.
695 FpgaSetupSsc();
696 upTo = dmaBuf;
697 lastRxCounter = DMA_BUFFER_SIZE;
698 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
699
700 // And the reader -> tag commands
701 memset(&Uart, 0, sizeof(Uart));
702 Uart.output = readerToTagCmd;
703 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
704 Uart.state = STATE_UNSYNCD;
705
706 // And put the FPGA in the appropriate mode
707 // Signal field is off with the appropriate LED
708 LED_D_OFF();
709 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
710 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
711
712 uint32_t time_0 = GetCountSspClk();
713
714
715 int div = 0;
716 //int div2 = 0;
717 int decbyte = 0;
718 int decbyter = 0;
719
720 // And now we loop, receiving samples.
721 for(;;) {
722 LED_A_ON();
723 WDT_HIT();
724 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
725 (DMA_BUFFER_SIZE-1);
726 if(behindBy > maxBehindBy) {
727 maxBehindBy = behindBy;
728 if(behindBy > 400) {
729 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
730 goto done;
731 }
732 }
733 if(behindBy < 1) continue;
734
735 LED_A_OFF();
736 smpl = upTo[0];
737 upTo++;
738 lastRxCounter -= 1;
739 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
740 upTo -= DMA_BUFFER_SIZE;
741 lastRxCounter += DMA_BUFFER_SIZE;
742 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
743 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
744 }
745
746 //samples += 4;
747 samples += 1;
748
749 if(smpl & 0xF) {
750 decbyte ^= (1 << (3 - div));
751 }
752
753 // FOR READER SIDE COMMUMICATION...
754
755 decbyter <<= 2;
756 decbyter ^= (smpl & 0x30);
757
758 div++;
759
760 if((div + 1) % 2 == 0) {
761 smpl = decbyter;
762 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
763 rsamples = samples - Uart.samples;
764 LED_C_ON();
765
766 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
767 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
768 if(tracing)
769 {
770 LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE);
771 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE);
772 }
773
774
775 /* And ready to receive another command. */
776 Uart.state = STATE_UNSYNCD;
777 /* And also reset the demod code, which might have been */
778 /* false-triggered by the commands from the reader. */
779 Demod.state = DEMOD_UNSYNCD;
780 LED_B_OFF();
781 Uart.byteCnt = 0;
782 }
783 decbyter = 0;
784 }
785
786 if(div > 3) {
787 smpl = decbyte;
788 if(ManchesterDecoding(smpl & 0x0F)) {
789 rsamples = samples - Demod.samples;
790 LED_B_ON();
791
792 if(tracing)
793 {
794 LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE);
795 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE);
796 }
797
798
799 // And ready to receive another response.
800 memset(&Demod, 0, sizeof(Demod));
801 Demod.output = tagToReaderResponse;
802 Demod.state = DEMOD_UNSYNCD;
803 LED_C_OFF();
804 }
805
806 div = 0;
807 decbyte = 0x00;
808 }
809 //}
810
811 if(BUTTON_PRESS()) {
812 DbpString("cancelled_a");
813 goto done;
814 }
815 }
816
817 DbpString("COMMAND FINISHED");
818
819 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
820 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
821
822 done:
823 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
824 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
825 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
826 LED_A_OFF();
827 LED_B_OFF();
828 LED_C_OFF();
829 LED_D_OFF();
830 }
831
832 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
833 int i;
834 for(i = 0; i < 8; i++) {
835 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
836 }
837 }
838
839 //-----------------------------------------------------------------------------
840 // Wait for commands from reader
841 // Stop when button is pressed
842 // Or return TRUE when command is captured
843 //-----------------------------------------------------------------------------
844 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
845 {
846 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
847 // only, since we are receiving, not transmitting).
848 // Signal field is off with the appropriate LED
849 LED_D_OFF();
850 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
851
852 // Now run a `software UART' on the stream of incoming samples.
853 Uart.output = received;
854 Uart.byteCntMax = maxLen;
855 Uart.state = STATE_UNSYNCD;
856
857 for(;;) {
858 WDT_HIT();
859
860 if(BUTTON_PRESS()) return FALSE;
861
862 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
863 AT91C_BASE_SSC->SSC_THR = 0x00;
864 }
865 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
866 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
867 /*if(OutOfNDecoding((b & 0xf0) >> 4)) {
868 *len = Uart.byteCnt;
869 return TRUE;
870 }*/
871 if(OutOfNDecoding(b & 0x0f)) {
872 *len = Uart.byteCnt;
873 return TRUE;
874 }
875 }
876 }
877 }
878
879
880 //-----------------------------------------------------------------------------
881 // Prepare tag messages
882 //-----------------------------------------------------------------------------
883 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
884 {
885 //So far a dummy implementation, not used
886 //int lastProxToAirDuration =0;
887 int i;
888
889 ToSendReset();
890
891 // Send SOF
892 ToSend[++ToSendMax] = 0x00;
893 ToSend[++ToSendMax] = 0x00;
894 ToSend[++ToSendMax] = 0x00;
895 ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
896 ToSend[++ToSendMax] = 0xff;
897 ToSend[++ToSendMax] = 0xff;
898 ToSend[++ToSendMax] = 0x00;
899 ToSend[++ToSendMax] = 0xff;
900
901 for(i = 0; i < len; i++) {
902 int j;
903 uint8_t b = cmd[i];
904
905 // Data bits
906 for(j = 0; j < 8; j++) {
907 if(b & 1) {
908 ToSend[++ToSendMax] = 0x00;
909 ToSend[++ToSendMax] = 0xff;
910 } else {
911 ToSend[++ToSendMax] = 0xff;
912 ToSend[++ToSendMax] = 0x00;
913 }
914 b >>= 1;
915 }
916 }
917
918 // Send EOF
919 ToSend[++ToSendMax] = 0xff;
920 ToSend[++ToSendMax] = 0x00;
921 ToSend[++ToSendMax] = 0xff;
922 ToSend[++ToSendMax] = 0xff;
923 ToSend[++ToSendMax] = 0xff;
924 ToSend[++ToSendMax] = 0x00;
925 ToSend[++ToSendMax] = 0x00;
926 ToSend[++ToSendMax] = 0x00;
927
928 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
929
930 // Convert from last byte pos to length
931 ToSendMax++;
932 }
933
934 // Only SOF
935 static void CodeIClassTagSOF()
936 {
937 //So far a dummy implementation, not used
938 //int lastProxToAirDuration =0;
939
940 ToSendReset();
941 // Send SOF
942 ToSend[++ToSendMax] = 0x00;
943 ToSend[++ToSendMax] = 0x00;
944 ToSend[++ToSendMax] = 0x00;
945 ToSend[++ToSendMax] = 0xff;
946 ToSend[++ToSendMax] = 0xff;
947 ToSend[++ToSendMax] = 0xff;
948 ToSend[++ToSendMax] = 0x00;
949 ToSend[++ToSendMax] = 0xff;
950
951 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
952
953
954 // Convert from last byte pos to length
955 ToSendMax++;
956 }
957
958 /**
959 * @brief SimulateIClass simulates an iClass card.
960 * @param arg0 type of simulation
961 * - 0 uses the first 8 bytes in usb data as CSN
962 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
963 * in the usb data. This mode collects MAC from the reader, in order to do an offline
964 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
965 * - Other : Uses the default CSN (031fec8af7ff12e0)
966 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
967 * @param arg2
968 * @param datain
969 */
970 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
971 {
972 uint32_t simType = arg0;
973 uint32_t numberOfCSNS = arg1;
974
975 // Enable and clear the trace
976 iso14a_set_tracing(TRUE);
977 iso14a_clear_trace();
978
979 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
980
981 if(simType == 0) {
982 // Use the CSN from commandline
983 memcpy(csn_crc, datain, 8);
984 doIClassSimulation(csn_crc,0);
985 }else if(simType == 1)
986 {
987 doIClassSimulation(csn_crc,0);
988 }
989 else if(simType == 2)
990 {
991 Dbprintf("Going into attack mode");
992 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
993 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
994 // in order to obtain the keys, as in the "dismantling iclass"-paper.
995 for(int i = 0 ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
996 {
997 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
998
999 memcpy(csn_crc, datain+(i*8), 8);
1000 if(doIClassSimulation(csn_crc,1))
1001 {
1002 return; // Button pressed
1003 }
1004 }
1005 }
1006 else{
1007 // We may want a mode here where we hardcode the csns to use (from proxclone).
1008 // That will speed things up a little, but not required just yet.
1009 Dbprintf("The mode is not implemented, reserved for future use");
1010 }
1011
1012 }
1013 /**
1014 * @brief Does the actual simulation
1015 * @param csn - csn to use
1016 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1017 */
1018 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived)
1019 {
1020
1021 // CSN followed by two CRC bytes
1022 uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1023 uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
1024 memcpy(response3,csn,sizeof(response3));
1025 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1026 // e-Purse
1027 uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1028
1029 // Construct anticollision-CSN
1030 rotateCSN(response3,response2);
1031
1032 // Compute CRC on both CSNs
1033 ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
1034 ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
1035
1036 int exitLoop = 0;
1037 // Reader 0a
1038 // Tag 0f
1039 // Reader 0c
1040 // Tag anticoll. CSN
1041 // Reader 81 anticoll. CSN
1042 // Tag CSN
1043
1044 uint8_t *resp;
1045 int respLen;
1046 uint8_t* respdata = NULL;
1047 int respsize = 0;
1048 uint8_t sof = 0x0f;
1049
1050 // Respond SOF -- takes 8 bytes
1051 uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1052 int resp1Len;
1053
1054 // Anticollision CSN (rotated CSN)
1055 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1056 uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
1057 int resp2Len;
1058
1059 // CSN
1060 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1061 uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
1062 int resp3Len;
1063
1064 // e-Purse
1065 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1066 uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
1067 int resp4Len;
1068
1069 // + 1720..
1070 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
1071 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1072 int len;
1073
1074 // Prepare card messages
1075 ToSendMax = 0;
1076
1077 // First card answer: SOF
1078 CodeIClassTagSOF();
1079 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1080
1081 // Anticollision CSN
1082 CodeIClassTagAnswer(response2, sizeof(response2));
1083 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1084
1085 // CSN
1086 CodeIClassTagAnswer(response3, sizeof(response3));
1087 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1088
1089 // e-Purse
1090 CodeIClassTagAnswer(response4, sizeof(response4));
1091 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1092
1093
1094 // Start from off (no field generated)
1095 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1096 //SpinDelay(200);
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1098 SpinDelay(100);
1099 StartCountSspClk();
1100 // We need to listen to the high-frequency, peak-detected path.
1101 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1102 FpgaSetupSsc();
1103
1104 // To control where we are in the protocol
1105 int cmdsRecvd = 0;
1106 uint32_t time_0 = GetCountSspClk();
1107 uint32_t t2r_time =0;
1108 uint32_t r2t_time =0;
1109
1110 LED_A_ON();
1111 bool buttonPressed = false;
1112 while(!exitLoop) {
1113
1114 LED_B_OFF();
1115 //Signal tracer
1116 // Can be used to get a trigger for an oscilloscope..
1117 LED_C_OFF();
1118
1119 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1120 buttonPressed = true;
1121 break;
1122 }
1123 r2t_time = GetCountSspClk();
1124 //Signal tracer
1125 LED_C_ON();
1126
1127 // Okay, look at the command now.
1128 if(receivedCmd[0] == 0x0a ) {
1129 // Reader in anticollission phase
1130 resp = resp1; respLen = resp1Len; //order = 1;
1131 respdata = &sof;
1132 respsize = sizeof(sof);
1133 } else if(receivedCmd[0] == 0x0c) {
1134 // Reader asks for anticollission CSN
1135 resp = resp2; respLen = resp2Len; //order = 2;
1136 respdata = response2;
1137 respsize = sizeof(response2);
1138 //DbpString("Reader requests anticollission CSN:");
1139 } else if(receivedCmd[0] == 0x81) {
1140 // Reader selects anticollission CSN.
1141 // Tag sends the corresponding real CSN
1142 resp = resp3; respLen = resp3Len; //order = 3;
1143 respdata = response3;
1144 respsize = sizeof(response3);
1145 //DbpString("Reader selects anticollission CSN:");
1146 } else if(receivedCmd[0] == 0x88) {
1147 // Read e-purse (88 02)
1148 resp = resp4; respLen = resp4Len; //order = 4;
1149 respdata = response4;
1150 respsize = sizeof(response4);
1151 LED_B_ON();
1152 } else if(receivedCmd[0] == 0x05) {
1153 // Reader random and reader MAC!!!
1154 // Do not respond
1155 // We do not know what to answer, so lets keep quit
1156 resp = resp1; respLen = 0; //order = 5;
1157 respdata = NULL;
1158 respsize = 0;
1159 if (breakAfterMacReceived){
1160 // TODO, actually return this to the caller instead of just
1161 // dbprintf:ing ...
1162 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x");
1163 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1164 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1165 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1166 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1167 exitLoop = true;
1168 }
1169 } else if(receivedCmd[0] == 0x00 && len == 1) {
1170 // Reader ends the session
1171 resp = resp1; respLen = 0; //order = 0;
1172 respdata = NULL;
1173 respsize = 0;
1174 } else {
1175 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1176 // Never seen this command before
1177 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1178 len,
1179 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1180 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1181 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1182 // Do not respond
1183 resp = resp1; respLen = 0; //order = 0;
1184 respdata = NULL;
1185 respsize = 0;
1186 }
1187
1188 if(cmdsRecvd > 100) {
1189 //DbpString("100 commands later...");
1190 break;
1191 }
1192 else {
1193 cmdsRecvd++;
1194 }
1195
1196 if(respLen > 0) {
1197 SendIClassAnswer(resp, respLen, 21);
1198 t2r_time = GetCountSspClk();
1199 }
1200
1201 if (tracing) {
1202 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE);
1203 LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE);
1204
1205 if (respdata != NULL) {
1206 LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE);
1207 LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE);
1208
1209
1210 }
1211 if(!tracing) {
1212 DbpString("Trace full");
1213 //break;
1214 }
1215
1216 }
1217 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1218 }
1219
1220 Dbprintf("%x", cmdsRecvd);
1221 LED_A_OFF();
1222 LED_B_OFF();
1223 if(buttonPressed)
1224 {
1225 DbpString("Button pressed");
1226 }
1227 return buttonPressed;
1228 }
1229
1230 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1231 {
1232 int i = 0, d=0;//, u = 0, d = 0;
1233 uint8_t b = 0;
1234
1235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1236
1237 AT91C_BASE_SSC->SSC_THR = 0x00;
1238 FpgaSetupSsc();
1239 while(!BUTTON_PRESS()) {
1240 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1241 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1242 }
1243 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1244 b = 0x00;
1245 if(d < delay) {
1246 d++;
1247 }
1248 else {
1249 if( i < respLen){
1250 b = resp[i];
1251 //Hack
1252 //b = 0xAC;
1253 }
1254 i++;
1255 }
1256 AT91C_BASE_SSC->SSC_THR = b;
1257 }
1258
1259 if (i > respLen +4) break;
1260 }
1261
1262 return 0;
1263 }
1264
1265 /// THE READER CODE
1266
1267 //-----------------------------------------------------------------------------
1268 // Transmit the command (to the tag) that was placed in ToSend[].
1269 //-----------------------------------------------------------------------------
1270 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1271 {
1272 int c;
1273 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1274 AT91C_BASE_SSC->SSC_THR = 0x00;
1275 FpgaSetupSsc();
1276
1277 if (wait)
1278 if(*wait < 10)
1279 *wait = 10;
1280
1281 for(c = 0; c < *wait;) {
1282 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1283 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1284 c++;
1285 }
1286 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1287 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1288 (void)r;
1289 }
1290 WDT_HIT();
1291 }
1292
1293 uint8_t sendbyte;
1294 bool firstpart = TRUE;
1295 c = 0;
1296 for(;;) {
1297 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1298
1299 // DOUBLE THE SAMPLES!
1300 if(firstpart) {
1301 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1302 }
1303 else {
1304 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1305 c++;
1306 }
1307 if(sendbyte == 0xff) {
1308 sendbyte = 0xfe;
1309 }
1310 AT91C_BASE_SSC->SSC_THR = sendbyte;
1311 firstpart = !firstpart;
1312
1313 if(c >= len) {
1314 break;
1315 }
1316 }
1317 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1318 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1319 (void)r;
1320 }
1321 WDT_HIT();
1322 }
1323 if (samples) *samples = (c + *wait) << 3;
1324 }
1325
1326
1327 //-----------------------------------------------------------------------------
1328 // Prepare iClass reader command to send to FPGA
1329 //-----------------------------------------------------------------------------
1330 void CodeIClassCommand(const uint8_t * cmd, int len)
1331 {
1332 int i, j, k;
1333 uint8_t b;
1334
1335 ToSendReset();
1336
1337 // Start of Communication: 1 out of 4
1338 ToSend[++ToSendMax] = 0xf0;
1339 ToSend[++ToSendMax] = 0x00;
1340 ToSend[++ToSendMax] = 0x0f;
1341 ToSend[++ToSendMax] = 0x00;
1342
1343 // Modulate the bytes
1344 for (i = 0; i < len; i++) {
1345 b = cmd[i];
1346 for(j = 0; j < 4; j++) {
1347 for(k = 0; k < 4; k++) {
1348 if(k == (b & 3)) {
1349 ToSend[++ToSendMax] = 0x0f;
1350 }
1351 else {
1352 ToSend[++ToSendMax] = 0x00;
1353 }
1354 }
1355 b >>= 2;
1356 }
1357 }
1358
1359 // End of Communication
1360 ToSend[++ToSendMax] = 0x00;
1361 ToSend[++ToSendMax] = 0x00;
1362 ToSend[++ToSendMax] = 0xf0;
1363 ToSend[++ToSendMax] = 0x00;
1364
1365 // Convert from last character reference to length
1366 ToSendMax++;
1367 }
1368
1369 void ReaderTransmitIClass(uint8_t* frame, int len)
1370 {
1371 int wait = 0;
1372 int samples = 0;
1373 int par = 0;
1374
1375 // This is tied to other size changes
1376 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1377 CodeIClassCommand(frame,len);
1378
1379 // Select the card
1380 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1381 if(trigger)
1382 LED_A_ON();
1383
1384 // Store reader command in buffer
1385 if (tracing) LogTrace(frame,len,rsamples,par,TRUE);
1386 }
1387
1388 //-----------------------------------------------------------------------------
1389 // Wait a certain time for tag response
1390 // If a response is captured return TRUE
1391 // If it takes too long return FALSE
1392 //-----------------------------------------------------------------------------
1393 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1394 {
1395 // buffer needs to be 512 bytes
1396 int c;
1397
1398 // Set FPGA mode to "reader listen mode", no modulation (listen
1399 // only, since we are receiving, not transmitting).
1400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1401
1402 // Now get the answer from the card
1403 Demod.output = receivedResponse;
1404 Demod.len = 0;
1405 Demod.state = DEMOD_UNSYNCD;
1406
1407 uint8_t b;
1408 if (elapsed) *elapsed = 0;
1409
1410 bool skip = FALSE;
1411
1412 c = 0;
1413 for(;;) {
1414 WDT_HIT();
1415
1416 if(BUTTON_PRESS()) return FALSE;
1417
1418 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1419 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1420 if (elapsed) (*elapsed)++;
1421 }
1422 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1423 if(c < timeout) { c++; } else { return FALSE; }
1424 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1425 skip = !skip;
1426 if(skip) continue;
1427 /*if(ManchesterDecoding((b>>4) & 0xf)) {
1428 *samples = ((c - 1) << 3) + 4;
1429 return TRUE;
1430 }*/
1431 if(ManchesterDecoding(b & 0x0f)) {
1432 *samples = c << 3;
1433 return TRUE;
1434 }
1435 }
1436 }
1437 }
1438
1439 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1440 {
1441 int samples = 0;
1442 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1443 rsamples += samples;
1444 if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE);
1445 if(samples == 0) return FALSE;
1446 return Demod.len;
1447 }
1448
1449 // Reader iClass Anticollission
1450 void ReaderIClass(uint8_t arg0) {
1451 uint8_t act_all[] = { 0x0a };
1452 uint8_t identify[] = { 0x0c };
1453 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1454
1455 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1456
1457 // Reset trace buffer
1458 memset(trace, 0x44, RECV_CMD_OFFSET);
1459 traceLen = 0;
1460
1461 // Setup SSC
1462 FpgaSetupSsc();
1463 // Start from off (no field generated)
1464 // Signal field is off with the appropriate LED
1465 LED_D_OFF();
1466 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1467 SpinDelay(200);
1468
1469 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1470
1471 // Now give it time to spin up.
1472 // Signal field is on with the appropriate LED
1473 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1474 SpinDelay(200);
1475
1476 LED_A_ON();
1477
1478 for(;;) {
1479
1480 if(traceLen > TRACE_SIZE) {
1481 DbpString("Trace full");
1482 break;
1483 }
1484
1485 if (BUTTON_PRESS()) break;
1486
1487 // Send act_all
1488 ReaderTransmitIClass(act_all, 1);
1489 // Card present?
1490 if(ReaderReceiveIClass(resp)) {
1491 ReaderTransmitIClass(identify, 1);
1492 if(ReaderReceiveIClass(resp) == 10) {
1493 // Select card
1494 memcpy(&select[1],resp,8);
1495 ReaderTransmitIClass(select, sizeof(select));
1496
1497 if(ReaderReceiveIClass(resp) == 10) {
1498 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1499 resp[0], resp[1], resp[2],
1500 resp[3], resp[4], resp[5],
1501 resp[6], resp[7]);
1502 }
1503 // Card selected, whats next... ;-)
1504 }
1505 }
1506 WDT_HIT();
1507 }
1508
1509 LED_A_OFF();
1510 }
1511
1512
Impressum, Datenschutz