]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
12300955da5172f6186cb5ca6d240ea1ae11183e
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "proxmark3.h"
15 #include "ui.h"
16 #include "util.h"
17 #include "data.h"
18 #include "graph.h"
19 #include "cmdparser.h"
20 #include "cmddata.h"
21 #include "cmdlf.h"
22 #include "cmdmain.h"
23 #include "lfdemod.h"
24
25 uint64_t g_em410xId=0;
26
27 static int CmdHelp(const char *Cmd);
28
29 int CmdEMdemodASK(const char *Cmd)
30 {
31 char cmdp = param_getchar(Cmd, 0);
32 int findone = (cmdp == '1') ? 1 : 0;
33 UsbCommand c={CMD_EM410X_DEMOD};
34 c.arg[0]=findone;
35 SendCommand(&c);
36 return 0;
37 }
38
39 //by marshmellow
40 //print 64 bit EM410x ID in multiple formats
41 void printEM410x(uint32_t hi, uint64_t id)
42 {
43 if (id || hi){
44 uint64_t iii=1;
45 uint64_t id2lo=0;
46 uint32_t ii=0;
47 uint32_t i=0;
48 for (ii=5; ii>0;ii--){
49 for (i=0;i<8;i++){
50 id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
51 }
52 }
53 if (hi){
54 //output 88 bit em id
55 PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
56 } else{
57 //output 40 bit em id
58 PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
59 PrintAndLog("\nPossible de-scramble patterns");
60 PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
61 PrintAndLog("HoneyWell IdentKey {");
62 PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
63 PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
64 PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
65 PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
66 PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
67 PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
68 PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
69 PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
70 PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
71 (id2lo & 0xf000000000) >> 36,
72 (id2lo & 0x0f00000000) >> 32,
73 (id2lo & 0x00f0000000) >> 28,
74 (id2lo & 0x000f000000) >> 24,
75 (id2lo & 0x0000f00000) >> 20,
76 (id2lo & 0x00000f0000) >> 16,
77 (id2lo & 0x000000f000) >> 12,
78 (id2lo & 0x0000000f00) >> 8,
79 (id2lo & 0x00000000f0) >> 4,
80 (id2lo & 0x000000000f)
81 );
82 uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
83 PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
84 PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
85
86 uint32_t p1id = (id & 0xFFFFFF);
87 uint8_t arr[32] = {0x00};
88 int i =0;
89 int j = 23;
90 for (; i < 24; ++i, --j ){
91 arr[i] = (p1id >> i) & 1;
92 }
93
94 uint32_t p1 = 0;
95
96 p1 |= arr[23] << 21;
97 p1 |= arr[22] << 23;
98 p1 |= arr[21] << 20;
99 p1 |= arr[20] << 22;
100
101 p1 |= arr[19] << 18;
102 p1 |= arr[18] << 16;
103 p1 |= arr[17] << 19;
104 p1 |= arr[16] << 17;
105
106 p1 |= arr[15] << 13;
107 p1 |= arr[14] << 15;
108 p1 |= arr[13] << 12;
109 p1 |= arr[12] << 14;
110
111 p1 |= arr[11] << 6;
112 p1 |= arr[10] << 2;
113 p1 |= arr[9] << 7;
114 p1 |= arr[8] << 1;
115
116 p1 |= arr[7] << 0;
117 p1 |= arr[6] << 8;
118 p1 |= arr[5] << 11;
119 p1 |= arr[4] << 3;
120
121 p1 |= arr[3] << 10;
122 p1 |= arr[2] << 4;
123 p1 |= arr[1] << 5;
124 p1 |= arr[0] << 9;
125 PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
126
127 uint16_t sebury1 = id & 0xFFFF;
128 uint8_t sebury2 = (id >> 16) & 0x7F;
129 uint32_t sebury3 = id & 0x7FFFFF;
130 PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
131 }
132 }
133 return;
134 }
135
136 /* Read the ID of an EM410x tag.
137 * Format:
138 * 1111 1111 1 <-- standard non-repeatable header
139 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
140 * ....
141 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
142 * 0 <-- stop bit, end of tag
143 */
144 int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
145 {
146 size_t idx = 0;
147 size_t BitLen = DemodBufferLen;
148 uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
149 memcpy(BitStream, DemodBuffer, BitLen);
150 if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)){
151 //set GraphBuffer for clone or sim command
152 setDemodBuf(BitStream, BitLen, idx);
153 if (g_debugMode){
154 PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
155 printDemodBuff();
156 }
157 if (verbose){
158 PrintAndLog("EM410x pattern found: ");
159 printEM410x(*hi, *lo);
160 g_em410xId = *lo;
161 }
162 return 1;
163 }
164 return 0;
165 }
166
167 //askdemod then call Em410xdecode
168 int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
169 {
170 bool st = true;
171 if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
172 return AskEm410xDecode(verbose, hi, lo);
173 }
174
175 //by marshmellow
176 //takes 3 arguments - clock, invert and maxErr as integers
177 //attempts to demodulate ask while decoding manchester
178 //prints binary found and saves in graphbuffer for further commands
179 int CmdAskEM410xDemod(const char *Cmd)
180 {
181 char cmdp = param_getchar(Cmd, 0);
182 if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
183 PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
184 PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
185 PrintAndLog(" <invert>, 1 for invert output");
186 PrintAndLog(" [set maximum allowed errors], default = 100.");
187 PrintAndLog("");
188 PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
189 PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
190 PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
191 PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
192 PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
193 return 0;
194 }
195 uint64_t lo = 0;
196 uint32_t hi = 0;
197 return AskEm410xDemod(Cmd, &hi, &lo, true);
198 }
199
200 int usage_lf_em410x_sim(void) {
201 PrintAndLog("Simulating EM410x tag");
202 PrintAndLog("");
203 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
204 PrintAndLog("Options:");
205 PrintAndLog(" h - this help");
206 PrintAndLog(" uid - uid (10 HEX symbols)");
207 PrintAndLog(" clock - clock (32|64) (optional)");
208 PrintAndLog("samples:");
209 PrintAndLog(" lf em 410xsim 0F0368568B");
210 PrintAndLog(" lf em 410xsim 0F0368568B 32");
211 return 0;
212 }
213
214 // emulate an EM410X tag
215 int CmdEM410xSim(const char *Cmd)
216 {
217 int i, n, j, binary[4], parity[4];
218
219 char cmdp = param_getchar(Cmd, 0);
220 uint8_t uid[5] = {0x00};
221
222 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
223 /* clock is 64 in EM410x tags */
224 uint8_t clock = 64;
225
226 if (param_gethex(Cmd, 0, uid, 10)) {
227 PrintAndLog("UID must include 10 HEX symbols");
228 return 0;
229 }
230 param_getdec(Cmd,1, &clock);
231
232 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
233 PrintAndLog("Press pm3-button to about simulation");
234
235
236 /* clear our graph */
237 ClearGraph(0);
238
239 /* write 9 start bits */
240 for (i = 0; i < 9; i++)
241 AppendGraph(0, clock, 1);
242
243 /* for each hex char */
244 parity[0] = parity[1] = parity[2] = parity[3] = 0;
245 for (i = 0; i < 10; i++)
246 {
247 /* read each hex char */
248 sscanf(&Cmd[i], "%1x", &n);
249 for (j = 3; j >= 0; j--, n/= 2)
250 binary[j] = n % 2;
251
252 /* append each bit */
253 AppendGraph(0, clock, binary[0]);
254 AppendGraph(0, clock, binary[1]);
255 AppendGraph(0, clock, binary[2]);
256 AppendGraph(0, clock, binary[3]);
257
258 /* append parity bit */
259 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
260
261 /* keep track of column parity */
262 parity[0] ^= binary[0];
263 parity[1] ^= binary[1];
264 parity[2] ^= binary[2];
265 parity[3] ^= binary[3];
266 }
267
268 /* parity columns */
269 AppendGraph(0, clock, parity[0]);
270 AppendGraph(0, clock, parity[1]);
271 AppendGraph(0, clock, parity[2]);
272 AppendGraph(0, clock, parity[3]);
273
274 /* stop bit */
275 AppendGraph(1, clock, 0);
276
277 CmdLFSim("0"); //240 start_gap.
278 return 0;
279 }
280
281 /* Function is equivalent of lf read + data samples + em410xread
282 * looped until an EM410x tag is detected
283 *
284 * Why is CmdSamples("16000")?
285 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
286 * rate gets lower, then grow the number of samples
287 * Changed by martin, 4000 x 4 = 16000,
288 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
289 *
290 * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
291 */
292 int CmdEM410xWatch(const char *Cmd)
293 {
294 do {
295 if (ukbhit()) {
296 printf("\naborted via keyboard!\n");
297 break;
298 }
299
300 CmdLFRead("s");
301 getSamples("8201",true);
302 } while (!CmdAskEM410xDemod(""));
303
304 return 0;
305 }
306
307 //currently only supports manchester modulations
308 int CmdEM410xWatchnSpoof(const char *Cmd)
309 {
310 CmdEM410xWatch(Cmd);
311 PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
312 CmdLFaskSim("");
313 return 0;
314 }
315
316 int CmdEM410xWrite(const char *Cmd)
317 {
318 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
319 int card = 0xFF; // invalid card value
320 unsigned int clock = 0; // invalid clock value
321
322 sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
323
324 // Check ID
325 if (id == 0xFFFFFFFFFFFFFFFF) {
326 PrintAndLog("Error! ID is required.\n");
327 return 0;
328 }
329 if (id >= 0x10000000000) {
330 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
331 return 0;
332 }
333
334 // Check Card
335 if (card == 0xFF) {
336 PrintAndLog("Error! Card type required.\n");
337 return 0;
338 }
339 if (card < 0) {
340 PrintAndLog("Error! Bad card type selected.\n");
341 return 0;
342 }
343
344 // Check Clock
345 // Default: 64
346 if (clock == 0)
347 clock = 64;
348
349 // Allowed clock rates: 16, 32, 40 and 64
350 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
351 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
352 return 0;
353 }
354
355 if (card == 1) {
356 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
357 // NOTE: We really should pass the clock in as a separate argument, but to
358 // provide for backwards-compatibility for older firmware, and to avoid
359 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
360 // the clock rate in bits 8-15 of the card value
361 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
362 } else if (card == 0) {
363 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
364 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
365 } else {
366 PrintAndLog("Error! Bad card type selected.\n");
367 return 0;
368 }
369
370 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
371 SendCommand(&c);
372
373 return 0;
374 }
375
376 //**************** Start of EM4x50 Code ************************
377 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
378 {
379 if (rows*cols>size) return false;
380 uint8_t colP=0;
381 //assume last col is a parity and do not test
382 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
383 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
384 colP ^= BitStream[(rowNum*cols)+colNum];
385 }
386 if (colP != pType) return false;
387 }
388 return true;
389 }
390
391 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
392 {
393 if (rows*cols>size) return false;
394 uint8_t rowP=0;
395 //assume last row is a parity row and do not test
396 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
397 for (uint8_t colNum = 0; colNum < cols; colNum++) {
398 rowP ^= BitStream[(rowNum*cols)+colNum];
399 }
400 if (rowP != pType) return false;
401 }
402 return true;
403 }
404
405 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
406 {
407 if (size<45) return 0;
408 uint32_t code = bytebits_to_byte(BitStream,8);
409 code = code<<8 | bytebits_to_byte(BitStream+9,8);
410 code = code<<8 | bytebits_to_byte(BitStream+18,8);
411 code = code<<8 | bytebits_to_byte(BitStream+27,8);
412 if (verbose || g_debugMode){
413 for (uint8_t i = 0; i<5; i++){
414 if (i == 4) PrintAndLog(""); //parity byte spacer
415 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
416 BitStream[i*9],
417 BitStream[i*9+1],
418 BitStream[i*9+2],
419 BitStream[i*9+3],
420 BitStream[i*9+4],
421 BitStream[i*9+5],
422 BitStream[i*9+6],
423 BitStream[i*9+7],
424 BitStream[i*9+8],
425 bytebits_to_byte(BitStream+i*9,8)
426 );
427 }
428 if (pTest)
429 PrintAndLog("Parity Passed");
430 else
431 PrintAndLog("Parity Failed");
432 }
433 return code;
434 }
435 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
436 * Format:
437 *
438 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
439 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
440 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
441 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
442 * CCCCCCCC <- column parity bits
443 * 0 <- stop bit
444 * LW <- Listen Window
445 *
446 * This pattern repeats for every block of data being transmitted.
447 * Transmission starts with two Listen Windows (LW - a modulated
448 * pattern of 320 cycles each (32/32/128/64/64)).
449 *
450 * Note that this data may or may not be the UID. It is whatever data
451 * is stored in the blocks defined in the control word First and Last
452 * Word Read values. UID is stored in block 32.
453 */
454 //completed by Marshmellow
455 int EM4x50Read(const char *Cmd, bool verbose)
456 {
457 uint8_t fndClk[] = {8,16,32,40,50,64,128};
458 int clk = 0;
459 int invert = 0;
460 int tol = 0;
461 int i, j, startblock, skip, block, start, end, low, high, minClk;
462 bool complete = false;
463 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
464 uint32_t Code[6];
465 char tmp[6];
466 char tmp2[20];
467 int phaseoff;
468 high = low = 0;
469 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
470
471 // get user entry if any
472 sscanf(Cmd, "%i %i", &clk, &invert);
473
474 // save GraphBuffer - to restore it later
475 save_restoreGB(1);
476
477 // first get high and low values
478 for (i = 0; i < GraphTraceLen; i++) {
479 if (GraphBuffer[i] > high)
480 high = GraphBuffer[i];
481 else if (GraphBuffer[i] < low)
482 low = GraphBuffer[i];
483 }
484
485 i = 0;
486 j = 0;
487 minClk = 255;
488 // get to first full low to prime loop and skip incomplete first pulse
489 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
490 ++i;
491 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
492 ++i;
493 skip = i;
494
495 // populate tmpbuff buffer with pulse lengths
496 while (i < GraphTraceLen) {
497 // measure from low to low
498 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
499 ++i;
500 start= i;
501 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
502 ++i;
503 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
504 ++i;
505 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
506 break;
507 }
508 tmpbuff[j++]= i - start;
509 if (i-start < minClk && i < GraphTraceLen) {
510 minClk = i - start;
511 }
512 }
513 // set clock
514 if (!clk) {
515 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
516 tol = fndClk[clkCnt]/8;
517 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
518 clk=fndClk[clkCnt];
519 break;
520 }
521 }
522 if (!clk) return 0;
523 } else tol = clk/8;
524
525 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
526 start = -1;
527 for (i= 0; i < j - 4 ; ++i) {
528 skip += tmpbuff[i];
529 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
530 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
531 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
532 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
533 {
534 start= i + 4;
535 break;
536 }
537 }
538 startblock = i + 4;
539
540 // skip over the remainder of LW
541 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
542 if (tmpbuff[i+3]>clk)
543 phaseoff = tmpbuff[i+3]-clk;
544 else
545 phaseoff = 0;
546 // now do it again to find the end
547 end = skip;
548 for (i += 3; i < j - 4 ; ++i) {
549 end += tmpbuff[i];
550 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
551 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
552 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
553 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
554 {
555 complete= true;
556 break;
557 }
558 }
559 end = i;
560 // report back
561 if (verbose || g_debugMode) {
562 if (start >= 0) {
563 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
564 } else {
565 PrintAndLog("No data found!, clock tried:%d",clk);
566 PrintAndLog("Try again with more samples.");
567 PrintAndLog(" or after a 'data askedge' command to clean up the read");
568 return 0;
569 }
570 } else if (start < 0) return 0;
571 start = skip;
572 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
573 // get rid of leading crap
574 snprintf(tmp, sizeof(tmp), "%i", skip);
575 CmdLtrim(tmp);
576 bool pTest;
577 bool AllPTest = true;
578 // now work through remaining buffer printing out data blocks
579 block = 0;
580 i = startblock;
581 while (block < 6) {
582 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
583 skip = phaseoff;
584
585 // look for LW before start of next block
586 for ( ; i < j - 4 ; ++i) {
587 skip += tmpbuff[i];
588 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
589 if (tmpbuff[i+1] >= clk-tol)
590 break;
591 }
592 if (i >= j-4) break; //next LW not found
593 skip += clk;
594 if (tmpbuff[i+1]>clk)
595 phaseoff = tmpbuff[i+1]-clk;
596 else
597 phaseoff = 0;
598 i += 2;
599 if (ASKDemod(tmp2, false, false, 1) < 1) {
600 save_restoreGB(0);
601 return 0;
602 }
603 //set DemodBufferLen to just one block
604 DemodBufferLen = skip/clk;
605 //test parities
606 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
607 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
608 AllPTest &= pTest;
609 //get output
610 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
611 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
612 //skip to start of next block
613 snprintf(tmp,sizeof(tmp),"%i",skip);
614 CmdLtrim(tmp);
615 block++;
616 if (i >= end) break; //in case chip doesn't output 6 blocks
617 }
618 //print full code:
619 if (verbose || g_debugMode || AllPTest){
620 if (!complete) {
621 PrintAndLog("*** Warning!");
622 PrintAndLog("Partial data - no end found!");
623 PrintAndLog("Try again with more samples.");
624 }
625 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
626 end = block;
627 for (block=0; block < end; block++){
628 PrintAndLog("Block %d: %08x",block,Code[block]);
629 }
630 if (AllPTest) {
631 PrintAndLog("Parities Passed");
632 } else {
633 PrintAndLog("Parities Failed");
634 PrintAndLog("Try cleaning the read samples with 'data askedge'");
635 }
636 }
637
638 //restore GraphBuffer
639 save_restoreGB(0);
640 return (int)AllPTest;
641 }
642
643 int CmdEM4x50Read(const char *Cmd)
644 {
645 return EM4x50Read(Cmd, true);
646 }
647
648 //**************** Start of EM4x05/EM4x69 Code ************************
649 int usage_lf_em_read(void) {
650 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
651 PrintAndLog("");
652 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
653 PrintAndLog("Options:");
654 PrintAndLog(" h - this help");
655 PrintAndLog(" address - memory address to read. (0-15)");
656 PrintAndLog(" pwd - password (hex) (optional)");
657 PrintAndLog("samples:");
658 PrintAndLog(" lf em 4x05readword 1");
659 PrintAndLog(" lf em 4x05readword 1 11223344");
660 return 0;
661 }
662
663 // for command responses from em4x05 or em4x69
664 // download samples from device and copy them to the Graphbuffer
665 bool downloadSamplesEM() {
666 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
667 uint8_t got[6000];
668 GetFromBigBuf(got, sizeof(got), 0);
669 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
670 PrintAndLog("command execution time out");
671 return false;
672 }
673 setGraphBuf(got, sizeof(got));
674 return true;
675 }
676
677 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
678 // em4x05/em4x69 command response preamble is 00001010
679 // skip first two 0 bits as they might have been missed in the demod
680 uint8_t preamble[] = {0,0,1,0,1,0};
681 size_t startIdx = 0;
682
683 // set size to 20 to only test first 14 positions for the preamble or less if not a read command
684 size_t size = (readCmd) ? 20 : 11;
685 // sanity check
686 size = (size > DemodBufferLen) ? DemodBufferLen : size;
687 // test preamble
688 if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
689 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
690 return false;
691 }
692 // if this is a readword command, get the read bytes and test the parities
693 if (readCmd) {
694 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
695 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
696 return false;
697 }
698 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
699 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
700 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
701 return false;
702 }
703
704 setDemodBuf(DemodBuffer, 32, 0);
705 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
706 }
707 return true;
708 }
709
710 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
711 // should cover 90% of known used configs
712 // the rest will need to be manually demoded for now...
713 int demodEM4x05resp(uint32_t *word, bool readCmd) {
714 int ans = 0;
715
716 // test for FSK wave (easiest to 99% ID)
717 if (GetFskClock("", false, false)) {
718 //valid fsk clocks found
719 ans = FSKrawDemod("0 0", false);
720 if (!ans) {
721 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
722 } else {
723 if (EM4x05testDemodReadData(word, readCmd)) {
724 return 1;
725 }
726 }
727 }
728 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
729 ans = GetPskClock("", false, false);
730 if (ans>0) {
731 //try psk1
732 ans = PSKDemod("0 0 6", false);
733 if (!ans) {
734 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
735 } else {
736 if (EM4x05testDemodReadData(word, readCmd)) {
737 return 1;
738 } else {
739 //try psk2
740 psk1TOpsk2(DemodBuffer, DemodBufferLen);
741 if (EM4x05testDemodReadData(word, readCmd)) {
742 return 1;
743 }
744 }
745 //try psk1 inverted
746 ans = PSKDemod("0 1 6", false);
747 if (!ans) {
748 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
749 } else {
750 if (EM4x05testDemodReadData(word, readCmd)) {
751 return 1;
752 } else {
753 //try psk2
754 psk1TOpsk2(DemodBuffer, DemodBufferLen);
755 if (EM4x05testDemodReadData(word, readCmd)) {
756 return 1;
757 }
758 }
759 }
760 }
761 }
762
763 // manchester is more common than biphase... try first
764 bool stcheck = false;
765 // try manchester - NOTE: ST only applies to T55x7 tags.
766 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
767 if (!ans) {
768 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
769 } else {
770 if (EM4x05testDemodReadData(word, readCmd)) {
771 return 1;
772 }
773 }
774
775 //try biphase
776 ans = ASKbiphaseDemod("0 0 1", false);
777 if (!ans) {
778 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
779 } else {
780 if (EM4x05testDemodReadData(word, readCmd)) {
781 return 1;
782 }
783 }
784
785 //try diphase (differential biphase or inverted)
786 ans = ASKbiphaseDemod("0 1 1", false);
787 if (!ans) {
788 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
789 } else {
790 if (EM4x05testDemodReadData(word, readCmd)) {
791 return 1;
792 }
793 }
794
795 return -1;
796 }
797
798 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
799 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
800 clearCommandBuffer();
801 SendCommand(&c);
802 UsbCommand resp;
803 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
804 PrintAndLog("Command timed out");
805 return -1;
806 }
807 if ( !downloadSamplesEM() ) {
808 return -1;
809 }
810 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
811 if (graphJustNoise(GraphBuffer, testLen)) {
812 PrintAndLog("no tag not found");
813 return -1;
814 }
815 //attempt demod:
816 return demodEM4x05resp(wordData, true);
817 }
818
819 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
820 uint32_t wordData = 0;
821 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
822 if (success == 1)
823 PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
824 else
825 PrintAndLog("Read Address %02d | failed",addr);
826
827 return success;
828 }
829
830 int CmdEM4x05ReadWord(const char *Cmd) {
831 uint8_t addr;
832 uint32_t pwd;
833 bool usePwd = false;
834 uint8_t ctmp = param_getchar(Cmd, 0);
835 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
836
837 addr = param_get8ex(Cmd, 0, 50, 10);
838 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
839 pwd = param_get32ex(Cmd, 1, 1, 16);
840
841 if ( (addr > 15) ) {
842 PrintAndLog("Address must be between 0 and 15");
843 return 1;
844 }
845 if ( pwd == 1 ) {
846 PrintAndLog("Reading address %02u", addr);
847 } else {
848 usePwd = true;
849 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
850 }
851
852 return EM4x05ReadWord(addr, pwd, usePwd);
853 }
854
855 int usage_lf_em_dump(void) {
856 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
857 PrintAndLog("");
858 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
859 PrintAndLog("Options:");
860 PrintAndLog(" h - this help");
861 PrintAndLog(" pwd - password (hex) (optional)");
862 PrintAndLog("samples:");
863 PrintAndLog(" lf em 4x05dump");
864 PrintAndLog(" lf em 4x05dump 11223344");
865 return 0;
866 }
867
868 int CmdEM4x05dump(const char *Cmd) {
869 uint8_t addr = 0;
870 uint32_t pwd;
871 bool usePwd = false;
872 uint8_t ctmp = param_getchar(Cmd, 0);
873 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
874
875 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
876 pwd = param_get32ex(Cmd, 0, 1, 16);
877
878 if ( pwd != 1 ) {
879 usePwd = true;
880 }
881 int success = 1;
882 for (; addr < 16; addr++) {
883 if (addr == 2) {
884 if (usePwd) {
885 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
886 } else {
887 PrintAndLog(" PWD Address 02 | cannot read");
888 }
889 } else {
890 success &= EM4x05ReadWord(addr, pwd, usePwd);
891 }
892 }
893
894 return success;
895 }
896
897
898 int usage_lf_em_write(void) {
899 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
900 PrintAndLog("");
901 PrintAndLog("Usage: lf em 4x05writeword [h] [s] <address> <data> <pwd>");
902 PrintAndLog("Options:");
903 PrintAndLog(" h - this help");
904 PrintAndLog(" s - swap data bit order before write");
905 PrintAndLog(" address - memory address to write to. (0-15)");
906 PrintAndLog(" data - data to write (hex)");
907 PrintAndLog(" pwd - password (hex) (optional)");
908 PrintAndLog("samples:");
909 PrintAndLog(" lf em 4x05writeword 1");
910 PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
911 return 0;
912 }
913
914 int CmdEM4x05WriteWord(const char *Cmd) {
915 uint8_t ctmp = param_getchar(Cmd, 0);
916 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
917
918 bool usePwd = false;
919
920 uint8_t addr = 16; // default to invalid address
921 uint32_t data = 0xFFFFFFFF; // default to blank data
922 uint32_t pwd = 0xFFFFFFFF; // default to blank password
923 char swap = 0;
924
925 int p = 0;
926 swap = param_getchar(Cmd, 0);
927 if (swap == 's' || swap=='S') p++;
928 addr = param_get8ex(Cmd, p++, 16, 10);
929 data = param_get32ex(Cmd, p++, 0, 16);
930 pwd = param_get32ex(Cmd, p++, 1, 16);
931
932 if (swap == 's' || swap=='S') data = SwapBits(data, 32);
933
934 if ( (addr > 15) ) {
935 PrintAndLog("Address must be between 0 and 15");
936 return 1;
937 }
938 if ( pwd == 1 )
939 PrintAndLog("Writing address %d data %08X", addr, data);
940 else {
941 usePwd = true;
942 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
943 }
944
945 uint16_t flag = (addr << 8 ) | usePwd;
946
947 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
948 clearCommandBuffer();
949 SendCommand(&c);
950 UsbCommand resp;
951 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
952 PrintAndLog("Error occurred, device did not respond during write operation.");
953 return -1;
954 }
955 if ( !downloadSamplesEM() ) {
956 return -1;
957 }
958 //check response for 00001010 for write confirmation!
959 //attempt demod:
960 uint32_t dummy = 0;
961 int result = demodEM4x05resp(&dummy,false);
962 if (result == 1) {
963 PrintAndLog("Write Verified");
964 } else {
965 PrintAndLog("Write could not be verified");
966 }
967 return result;
968 }
969
970 void printEM4x05config(uint32_t wordData) {
971 uint16_t datarate = (((wordData & 0x3F)+1)*2);
972 uint8_t encoder = ((wordData >> 6) & 0xF);
973 char enc[14];
974 memset(enc,0,sizeof(enc));
975
976 uint8_t PSKcf = (wordData >> 10) & 0x3;
977 char cf[10];
978 memset(cf,0,sizeof(cf));
979 uint8_t delay = (wordData >> 12) & 0x3;
980 char cdelay[33];
981 memset(cdelay,0,sizeof(cdelay));
982 uint8_t LWR = (wordData >> 14) & 0xF; //last word read
983
984 switch (encoder) {
985 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
986 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
987 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
988 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
989 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
990 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
991 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
992 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
993 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
994 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
995 default: snprintf(enc,sizeof(enc),"Unknown"); break;
996 }
997
998 switch (PSKcf) {
999 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
1000 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
1001 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
1002 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
1003 }
1004
1005 switch (delay) {
1006 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1007 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
1008 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
1009 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1010 }
1011 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
1012 PrintAndLog("Config Breakdown:", wordData);
1013 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
1014 PrintAndLog(" Encoder: %u | %s", encoder, enc);
1015 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
1016 PrintAndLog(" Delay: %u | %s", delay, cdelay);
1017 PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
1018 PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
1019 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
1020 PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
1021 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
1022 PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
1023 PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
1024 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
1025 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
1026 }
1027
1028 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
1029 switch (chipType) {
1030 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
1031 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
1032 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
1033 //add more here when known
1034 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
1035 }
1036
1037 switch (cap) {
1038 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
1039 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
1040 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
1041 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
1042 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
1043 }
1044
1045 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1046 if (serial != 0) {
1047 PrintAndLog("\n Serial #: %08X\n", serial);
1048 }
1049 }
1050
1051 void printEM4x05ProtectionBits(uint32_t wordData) {
1052 for (uint8_t i = 0; i < 15; i++) {
1053 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1054 if (i==14) {
1055 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1056 }
1057 }
1058 }
1059
1060 //quick test for EM4x05/EM4x69 tag
1061 bool EM4x05Block0Test(uint32_t *wordData) {
1062 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
1063 return true;
1064 }
1065 return false;
1066 }
1067
1068 int CmdEM4x05info(const char *Cmd) {
1069 //uint8_t addr = 0;
1070 uint32_t pwd;
1071 uint32_t wordData = 0;
1072 bool usePwd = false;
1073 uint8_t ctmp = param_getchar(Cmd, 0);
1074 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
1075
1076 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1077 pwd = param_get32ex(Cmd, 0, 1, 16);
1078
1079 if ( pwd != 1 ) {
1080 usePwd = true;
1081 }
1082
1083 // read word 0 (chip info)
1084 // block 0 can be read even without a password.
1085 if ( !EM4x05Block0Test(&wordData) )
1086 return -1;
1087
1088 uint8_t chipType = (wordData >> 1) & 0xF;
1089 uint8_t cap = (wordData >> 5) & 3;
1090 uint16_t custCode = (wordData >> 9) & 0x3FF;
1091
1092 // read word 1 (serial #) doesn't need pwd
1093 wordData = 0;
1094 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1095 //failed, but continue anyway...
1096 }
1097 printEM4x05info(chipType, cap, custCode, wordData);
1098
1099 // read word 4 (config block)
1100 // needs password if one is set
1101 wordData = 0;
1102 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
1103 //failed
1104 return 0;
1105 }
1106 printEM4x05config(wordData);
1107
1108 // read word 14 and 15 to see which is being used for the protection bits
1109 wordData = 0;
1110 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1111 //failed
1112 return 0;
1113 }
1114 // if status bit says this is not the used protection word
1115 if (!(wordData & 0x8000)) {
1116 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1117 //failed
1118 return 0;
1119 }
1120 }
1121 if (!(wordData & 0x8000)) {
1122 //something went wrong
1123 return 0;
1124 }
1125 printEM4x05ProtectionBits(wordData);
1126
1127 return 1;
1128 }
1129
1130
1131 static command_t CommandTable[] =
1132 {
1133 {"help", CmdHelp, 1, "This help"},
1134 {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1135 {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
1136 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
1137 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1138 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1139 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1140 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
1141 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
1142 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
1143 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
1144 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
1145 {NULL, NULL, 0, NULL}
1146 };
1147
1148 int CmdLFEM4X(const char *Cmd)
1149 {
1150 CmdsParse(CommandTable, Cmd);
1151 return 0;
1152 }
1153
1154 int CmdHelp(const char *Cmd)
1155 {
1156 CmdsHelp(CommandTable);
1157 return 0;
1158 }
Impressum, Datenschutz